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Abstract

This document is a brief introduction to the CHERI C/C++ programming languages.
We explain the principles underlying these language variants, and their grounding in
CHERTI’s multiple architectural instantiations: CHERI-MIPS, CHERI-RISC-V, and Arm’s
Morello. We describe the most commonly encountered differences between these dialects
and C/C++ on conventional architectures, and where existing software may require minor
changes. We document new compiler warnings and errors that may be experienced compil-
ing code with the CHERI Clang/LLVM compiler, and suggest how they may be addressed
through typically minor source-code changes. We explain how modest language exten-
sions allow selected software, such as memory allocators, to further refine permissions
and bounds on pointers. This guidance is based on our experience adapting the FreeBSD
operating-system userspace, and applications such as PostgreSQL and WebKit, to run in a
CHERI C/C++ capability-based programming environment. We conclude by recommend-
ing further reading.
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1 Introduction

This document is a brief introduction to the CHERI C/C++ programming languages. We ex-
plain the principles underlying these language variants, and their grounding in CHERI’s mul-
tiple architectural instantiations: CHERI-MIPS, CHERI-RISC-V, and Arm’s Morello. We
describe the most commonly encountered differences between these dialects and C/C++ on
conventional architectures, and where existing software may require minor changes. We doc-
ument new compiler warnings and errors that may be experienced compiling code with the
CHERI Clang/LLVM compiler, and suggest how they may be addressed through typically
minor source-code changes. We explain how modest language extensions allow selected soft-
ware, such as memory allocators, to further refine permissions and bounds on pointers. This
guidance is based on our experience adapting the FreeBSD operating-system userspace, and
applications such as PostgreSQL and WebK:it, to run in a CHERI C/C++ capability-based pro-
gramming environment. We conclude by recommending further reading.

1.1 Definitions

CHERI Clang/LLVM and LLD implement the following new language, code-generation, and
linkage models:

CHERI C/C++ are C/C++-language dialects tuned to requirements arising from implementing
all pointers using CHERI capabilities. This includes all explicit pointers (i.e., those
declared by the programmer) and all implied pointers (e.g., those used to access local
and global variables). For example, they diverge from C/C++ implementations on con-
ventional architectures by preventing pointers passed through integer type other than
uintptr_t and intptr_t from being dereferenced. New Application Programming
Interfaces (APIs) provide access to capability features of pointers, including getting and
setting their bounds, required by selected software such as memory allocators. The vast
majority of C/C++ source code we have encountered requires little or no modification to
be compiled as CHERI C/C++.

Pure-capability machine code is compiled code (or hand-written assembly) that utilizes
CHERI capabilities for all memory accesses — including loads, stores, and instruction
fetches — rather than integer addresses. Capabilities are used to implement pointers ex-
plicitly described in the source program, and also to implement implied pointers in the
C execution environment, such as those used for control flow. Pure-capability machine
code is not binary compatible with capability-unaware code using integer pointers, not
least due to the different size of the pointer data type.

While the focus of this document is CHERI C/C++, CHERI is an architectural feature able
to support other software use cases including other C/C++language mappings into its features.
Another mapping is hybrid C/C++, in which only selected pointers are implemented using cap-
abilities, with the remainder implemented using integers. We have primarily used hybrid C in
systems software that bridges between environments executing pure-capability machine code
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and those running largely or entirely non-CHERI-aware machine code. For example, a largely
CHERI-unaware CheriBSD kernel can host pure-capability processes using its CheriABI wrap-
per implemented in hybrid C (see Section 5). Hybrid machine code has stronger binary com-
patibility, but weaker protection, than pure-capability machine code. We do not consider hybrid
C further in this document.

2 Background

CHERI extends conventional processor Instruction-Set Architectures (ISAs) with support for
architectural capabilities. One important use for this new hardware data type is in the im-
plementation of safer C/C++ pointers and the code or data they point at. Our technical report,
An Introduction to CHERI, provides a more detailed overview of the CHERI architecture, ISA
modeling, hardware implementations, and software stack [7].

2.1 CHERI capabilities

CHERI capabilities are twice the width of the native integer pointer type of the baseline ar-
chitecture: there are 128-bit capabilities on 64-bit platforms, and 64-bit capabilities on 32-bit
platforms. Each capability consists of an integer (virtual) address of the natural size for the
architecture (e.g., 32 or 64 bit), and also additional metadata that is compressed in order to
fit in the remaining 32 or 64 bits of the capability (see Figure 1 for an example; details vary
across underlying architectures and word sizes). In addition, they are associated with a 1-bit
validity “tag” whose value is maintained in registers and memory by the architecture, but not
part of addressable memory. Each element of the additional metadata and tag of the capability
contributes to the protection model:

Validity tag The tag tracks the validity of a capability. If invalid, the capability cannot be used
for load, store, instruction fetch, or other operations. It is still possible to extract fields
from an invalid capability, including its address.

Bounds The lower and upper bounds are addresses restricting the portion of the address space
within which the capability can be used for load, store, and instruction fetch. Setting a
capability’s address (i.e., where it points) within bounds will retain the capability’s valid-
ity tag. Setting addresses out of bounds is subject to the precision limits of the bounds
compression model (see below and Section 4.3.5); broadly speaking, setting addresses

63 0

128-bit
1-bit tag { H perms otype bounds in-memory
64-bit address capability

Figure 1: 128-bit CHERI Concentrate capability representation used in 64-bit CHERI-MIPS
and 64-bit CHERI-RISC-V: 64-bit address and metadata in addressable memory; and 1-bit
out-of-band tag.
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“near” the capability’s bounds will preserve the validity tag. (These out-of-bounds cap-
abilities continue to authorize access only to memory within bounds.)

Permissions The permissions mask controls how the capability can be used — for example, by
authorizing the loading and storing of data and/or capabilities.

Object type If this value is not equal to the unsealed object type, the capability is “sealed”” and
cannot be modified or dereferenced, but can be used to implement opaque pointer types.
This feature is not described further in this document, as it is primarily used to implement
software compartmentalization rather than object-level memory protection.

When stored in memory, valid capabilities must be naturally aligned —i.e., at 64-bit or 128-
bit boundaries, depending on capability size — as that is the granularity at which in-memory tags
are maintained. Partial or complete overwrites with data, rather than a complete overwrite with
a valid capability, lead to the in-memory tag being cleared, preventing corrupted capabilities
from later being dereferenced.

In order to reduce the memory footprint of capabilities, capability compression is used
to reduce the overhead of bounds so that the full capability, including address, permissions,
and bounds fits within 64 or 128 bits (plus the 1-bit out-of-band tag). Bounds compression
takes advantage of redundancy between the address and the bounds, which occurs because a
pointer typically falls within (or close to) its associated allocation, and because allocations are
typically well aligned. The compression scheme uses a floating-point representation, allowing
high-precision bounds for small objects, but requiring stronger alignment and padding for larger
allocations (see Section 7.5).

2.2 Architectural rules for capability use

The architecture enforces several important security properties on changes to this metadata:

Provenance validity ensures that capabilities can be used — for load, store, instruction fetch,
etc. — only if they are derived via valid transformations of valid capabilities. This prop-
erty holds for capabilities in both registers and memory.

Monotonicity requires that any capability derived from another cannot exceed the permissions
and bounds of the capability from which it was derived (leaving aside sealed capabilities,
used for domain transition, whose mechanism is not detailed in this report).

At boot time, the architecture provides initial capabilities to the firmware, allowing data
access and instruction fetch across the full address space. Additionally, all tags are cleared
in memory. Further capabilities can then be derived (in accordance with the monotonicity
property) as they are passed from firmware to boot loader, from boot loader to hypervisor,
from hypervisor to the OS, and from the OS to the application. At each stage in the derivation
chain, bounds and permissions may be restricted to further limit access. For example, the OS
may assign capabilities for only a limited portion of the address space to the user software,
preventing use of other portions of the address space.
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Similarly, capabilities carry with them intentionality: when a process passes a capability
as an argument to a system call, the OS kernel can carefully use only that capability to ensure
that it does not access other process memory that was not intended by the user process — even
though the kernel may in fact have permission to access the entire address space through other
capabilities it holds. This is important, as it prevents “confused deputy” problems, in which
a more privileged party uses an excess of privilege when acting on behalf of a less privileged
party, performing operations that were not intended to be authorized. For example, this prevents
the kernel from overflowing the bounds on a userspace buffer when a pointer to the buffer is
passed as a system-call argument.

The hardware furthermore guarantees that capability tags and capability data is written
atomically. For example, if one thread stores a valid capability and another writes arbitrary
data to the same location, it is impossible to observe the arbitrary data with the validity bit set.

These architectural properties provide the foundation on which a capability-based OS, com-
piler, and runtime can implement C/C++language memory safety. They have been made precise
and have been proved, with machine-checked proof, to hold for the CHERI-MIPS architec-
ture [6].

3 CHERI C/C++

The architectural-capability type can be used in a variety of ways by software. One particularly
useful use case is in implementing CHERI C/C++. In this model, all C/C++ language-visible
pointer types, as well as any implied pointers implementing vtables, return addresses, global
variables, arrays of variadic-function arguments, and so on, are implemented using capabilities
with tight bounds. This allows the architecture to imbue pointers with protection by virtue
of architectural provenance validity, bounds checking, and permission checking, protecting
pointers from corruption and providing strong spatial memory safety.

3.1 The CHERI C/C++ run-time environment

CHERI C code executes within a capability-aware run-time environment — whether “bare
metal” with a suitable runtime, or in a richer, OS-based process environment such as Cheri-
ABI (see Section 5), which ensures that:

* capabilities are context switched (if required);
* tags are maintained by the OS virtual-memory subsystem (if present);
* capabilities are supported in OS control operations such as debugging (as needed);

* system-call arguments, the run-time linker, and other aspects of the OS Application Bin-
ary Interface (ABI) utilize capabilities rather than integer pointers; and

* the C/C++language runtime implements suitable capability preservation
(e.g., in memcpy ()) and restriction (e.g., in malloc ()).

In CheriBSD, our CHERI-extended version of the open-source FreeBSD operating system,
CheriABI operates as a complete additional OS ABI. CheriABI is implemented in the style of
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a 32-bit or 64-bit OS personality, in that it requires its own set of suitably compiled system
libraries and classes. We have also successfully adapted bare-metal runtimes, such as newlib,
and embedded operating systems, such as FreeRTOS (CheriFreeRTOS) and RTEMS (CHERI-
RTEMS), to support CHERI memory protection.

Outside of the OS and language runtime themselves, CHERI C/C++ require relatively few
source-code-level changes to C/C++language software. We explore those changes in the re-
mainder of this document.

3.2 Referential, spatial, and temporal safety

CHERI C/C++ introduces a number of new types of protection not present in compilation to
conventional architectures:

Referential safety protects pointers (references) themselves. This includes integrity (corrup-
ted pointers cannot be dereferenced) and provenance validity (only pointers derived from
valid pointers via valid manipulations can be dereferenced).

When pointers are implemented using architectural capabilities, CHERI’s capability tags
and provenance validity naturally provide this protection.

Spatial safety ensures that pointers may be used only to access memory within bounds of their
associated allocation; dually, manipulating an out-of-bounds pointer will not grant access
to another allocation.

This is accomplished by adapting various memory allocators, including the run-time
linker for global variables, the stack allocator, and the heap allocator, to set the bounds on
the capability implementing a pointer before returning it to the caller. Due to precision
constraints on capability bounds, bounds on returned pointers may include additional
padding, but will still not permit access to any other allocations (see Section 7.5). Mono-
tonicity ensures that callers cannot later broaden the bounds to cover other allocations.

Referential safety and spatial safety are implemented in CheriBSD’s pure-capability CheriABI
execution environment and for bare-metal in CheriFreeRTOS and CHERI-RTEMS.

Temporal safety prevents a pointer retained after the release of its underlying allocation from
being used to access its memory if that memory has been reused for a fresh allocation
(e.g., after a fresh pointer to that memory has been returned by a further call tomalloc ()
after the current pointer passed to free ()).

Heap temporal safety is accomplished by preventing new pointers being returned to a
previously allocated region of memory while any prior pointers to that memory persist
in application-accessible memory. Memory will be held in guarantine until any prior
pointers have been revoked; then the memory may be reallocated. Architectural capabil-
ity tags and virtual memory allow intermittent revocation sweeps to accurately and effi-
ciently locate and overwrite any capabilities implementing stale pointers. Spatial safety
ensures that pointers cannot be used to reference other memory, including other freed
memory.



10 4 IMPACT ON THE C/C+ PROGRAMMING MODEL

Temporal safety is the object of ongoing experiments. A prototype that guards heap allocations
has been developed for CheriABI on CheriBSD, but is not yet integrated with the main devel-
opment branch. We currently have no plans to develop support for temporal memory safety
in CheriFreeRTOS and CHERI-RTEMS, both due to the complexity of the temporal safety
runtime, and also because of CHERI temporal safety’s dependence on an MMU for perform-
ance.

4 TImpact on the C/C++ programming model

Several kinds of changes may be required by programmers; the extent to which these changes
impact a particular library or application will depend significantly on its idiomatic use of C.
Our experience suggests that low-level system components such as run-time linkers, debuggers,
memory allocators, and language runtimes require a modest but non-trivial porting effort. Sim-
ilarly, support classes that include, for example, custom synchronization features, may also re-
quire moderate adaptation. Other applications may compile with few or no changes — especially
if they are already portable across 32-bit and 64-bit platforms and are written in a contemporary
C or C++ dialect. In the following sections, we consider various kinds of programmer-visible
changes required in the CHERI C/C++ programming environment. In many cases, compiler
warnings and errors can be used to identify potential issues compiling code as CHERI C/C++
(see Section 6).

4.1 Capability-related faults

When architectural capability properties are violated, such as by an attempt to dereference
an invalid capability, access memory outside the bounds of a capability, or perform accesses
not authorized by the permissions on a capability, this typically leads to a hardware exception
(trap). Operating-system kernels are able to catch this exception via a trap handler, optionally
delivering it to the run-time environment via OS-specific mechanisms.

However, the language-level behavior of CHERI C/C++ is considerably more subtle: exist-
ing undefined behavior semantics in C are retained. The compiler is free to assume that loads
and stores will not trap (i.e., that any program is free of undefined behavior), and may optim-
ize under this assumption, including reordering code. Architectural traps occur when dynamic
loads and stores are attempted, and reordering could lead to potential confusing behavior for
programmers.

In the CheriABI process environment, the operating system catches the hardware exception
and delivers a STGPROT signal to the user process; further information may be found in Sec-
tion 5. In other environments, such as bare metal or under an embedded OS, behavior is specific
to those environments, as it will depend both on how architectural exceptions are handled, and
how those events are delivered to the C-language stack. Fail stop may be appropriate behavior
in some environments, and is in fact the default behavior in CheriABI when SIGPROT is not
handled.
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4.2 Pointer provenance validity

CHERI C/C++ implement pointers using architectural capabilities, rather than using conven-
tional 32-bit or 64-bit integers. This allows the provenance validity of language-level pointers
to be protected by the provenance properties of CHERI architectural capabilities: only pointers
implemented using valid capabilities can be dereferenced. Other types that contain pointers,
uintptr_t and intptr_t, are similarly implemented using architectural capabilities, so that
casts through these types can retain capability properties. When a dereference is attempted
on a capability without a valid tag — including load, store, and instruction fetch — a hardware
exception fires (see Section 4.1).

On the whole, the effects of pointer provenance validity are non-disruptive to C/C++ source
code. However, a number of cases exist in language runtimes and other (typically less portable)
C code that conflate integers and pointers that can disrupt provenance validity. In general,
generated code will propagate provenance validity in only two situations:

Pointer types The compiler will generate suitable code to propagate the provenance validity
of pointers by using capability load and store instructions. This occurs when using a
pointer type (e.g., void =) or an integer type defined as being able to hold a pointer
(e.g., intptr_t). As with attempting to store 64-bit pointers in 32-bit integers on 64-bit
architectures, passing a pointer through an inappropriate type will lead to truncation of
metadata (e.g., the validity tag and bounds). It is therefore important that a suitable type
be used to hold pointers.

This pattern often occurs where an opaque field exists in a data structure — e.g., a long
argument to a callback in older C code — that needs to be changed to use a capability-
oblivious type such as intptr_t.

Capability-oblivious code In some portions of the C/C++ runtime and compiler-generated
code, it may not be possible to know whether memory is intended to contain a pointer
or not — and yet preserving pointers is desirable. In those cases, memory accesses must
be performed in a way that preserves pointer provenance. In the C runtime itself, this in-
cludes memcpy (), which must use capability load and store instructions to transparently
propagate capability metadata and tags.

A useful example of potentially surprising code requiring modification for CHERI C/C++
is gsort (). Some C programs assume that gsort () on an array of data structures con-
taining pointers will preserve the usability of those pointers. As a result, gsort () must
be modified to perform memory copies using pointer-based types, such as intptr_t,
when size and alignment require it.

4.2.1 Recommended use of C-language types

As confusion frequently arises about the most appropriate types to use for integers, pointers,
and pointer-related values, we make the following recommendations:

int, int32_t, long, int64_t,... These pure integer types should be used to hold integer
values that will never be cast to a pointer type without first combining them with another
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pointer value — e.g., by using them as an array offset. Most integers in a C/C++-language
program will be of these types.

vaddr_t This is a new integer type introduced by CHERI C and should be used to hold virtual
addresses. vaddr_t should not be directly cast to a pointer type for dereference; instead,
it must be combined with an existing valid capability to the address space to generate a
dereferenceable pointer. Typically, this is done using the cheri_address_set (¢, x)
function.

size_t, ssize_t These integer types should be used to hold the unsigned or signed lengths
of regions of address space.

ptrdiff t This integer type describes the difference of indices between two pointers to
elements of the same array, and should not be used for any other purpose. It can be added
to a pointer to obtain a new pointer, but the result will be dereferenceable only if the
address lies within the bounds of the pointer from which it was derived.

Less standards-compliant code sometimes uses pt rdiff_t when the programmer more
likely meant intptr_t or (less commonly) size_t. When porting code, it is worth-
while to audit use of ptrdiff_t.

intptr_t,uintptr_t These integer types should be used to hold values that may be valid
pointers if cast back to a pointer type. When an intptr_t is assigned an integer value
—e.g., due to constant initialization to an integer in the source — and the result is cast to a
pointer type, the pointer will be invalid and hence non-dereferenceable. These types will
be used in two cases: (1) Where there is uncertainty as to whether the value to be held
will be an integer or a pointer — e.g., for an opaque argument to a callback function; or (2)
Where it is more convenient to place a pointer value in an integer type for the purposes
of arithmetic (which takes place on the capability’s address and in units of bytes, as if the
pointer had been cast to char x).

The observable, integer range of a uintptr_t is the same as that of a vaddr_t (or
ptrdiff_t for intptr_t), despite the increased alignment and storage requirements.

intmax_t, uintmax_t According to the C standard, these integer types should be ‘capable
of representing any value of any (unsigned) integer type’. In CHERI C/C++, they are not
provenance-carrying and can represent the integer range of uintptr_t/intptr_t, but
not the capability metadata or tag bit. As the observable value of uintptr_t/intptr_t
is the pointer address range, we believe this choice to be compatible with the C standard.

Additionally, due to ABI constraints, it would be extremely difficult to change the width
of these types from 64 to 129 bits. This is also true for other architectures such as x86:
despite Clang and GCC supporting an __int128 type, intmax_t remains 64 bits wide.

We generally do not recommend use of these types in CHERI C/C++. However, the types
may be useful in printf () calls (using the %7 format string width modifier) as the
inttypes.h PRI+ macros can be rather verbose.
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max_align_t This type is defined in C as ‘an object type whose alignment is the greatest
fundamental alignment’ and this includes capability types for CHERI C/C++. We found
that some custom allocators use sizeof (long double) Or sizeof (uint64_t) to
align their return values. While this appears to work on most architectures, in CHERI
C/C++ this must be changed to alignof (max_align_t).!

char *,... These pointer types are suitable for dereference, but in general should not be cast
to or from arbitrary integer values. Valid pointers are always derived from other valid
pointers (including those cast to intptr_t or uintptr_t), and cannot be constructed
using arbitrary integer arithmetic.

It is important to note that uintptr_t is no longer the same size as size_t. This differ-
ence may require making some changes to existing code to use the correct type depending on
whether the variable needs to be able store a pointer type. In cases where this is not obvious
(such as for a callback argument), we recommend the use of uintptr_t. This ensures that
provenance is maintained.

4.2.2 Capability alignment in memory

Because tags apply only to memory locations that are capability-aligned and capability-sized,
unaligned storage of pointers will either generate a run-time hardware exception (if a capability-
aware load or store is performed), or discard the tag (if a capability-oblivious memory copy is
performed — e.g., using memcpy () to copy from an aligned location to an unaligned one). One
example of this is Berkeley DB (BDB) when used as an in-memory implementation rather than
as an on-disk database format. Even when patched to use memcpy () to copy objects stored as
data, it does not ensure sufficient alignment in its internal storage to preserve tags. We therefore
recommend against using BDB for this purpose. While unaligned pointer use is uncommon in
C programs, as data-structure layouts are normally designed to keep them strongly aligned for
performance and atomicity reasons, any code depending on unaligned pointers will need to be
changed.

4.2.3 Single-origin provenance

In the CHERI memory protection model, capabilities are derived from a single other capability.
However, in C code, expressions may construct a new intptr_t value from more than one
provenance-carrying parent intptr_t — for example, by casting both a pointer and a literal
value to intptr_t-s, and then adding them. In that case, the compiler must decide which
input capability provides the capability metadata (bounds, permissions, ...) to be used in the
output value. Consider for example the following code:

void *cl = (void ) ((uintptr_t)input_ptr + 1);
void *c2 = (void *) (1 + (uintptr_t)input_ptr);
uintptr_t offset = 1;

void xc3 = (void ) (offset + (uintptr_t)input_ptr);

'Tt is important to use alignof instead of sizeof since many common implementations, such as GCC
and FreeBSD, definemax_align_t asa struct andnotaunion.
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In C with integer pointers, the values of c1, c2, and c3 might be expected to have the
same value as input_ptr, except with the address incremented by one. In CHERI C, each
expression includes an arithmetic operation between provenance-carrying types. While not
visible in the source code, the constant 1 is promoted to a capability type, uintptr_t. In
the current implementation, the compiler will return the expected provenance-carrying result
for cases c1 and c2 but not ¢3.? For c1 and c2, the compiler sees that one of the sides is a
non-provenance-carrying integer type that was promoted to uintptr_t and therefore selects
the other operand as the provenance source. It is not feasible to infer the correct provenance
source for the third case, so the compiler will emit a warning.> The current behavior for such
ambiguous cases is to select the left-hand-side as the provenance source, but we are considering
making this an error in the future. The recommended approach to resolve such ambiguous
cases is to change the type of one operand to a non-provenance-carrying type such as size_t.
Alternatively, if the variable declaration cannot be changed, it is also possible to use a cast in
the expression itself.

size_t offset_size_t = 1;
void xc3_goodl = (void «) (offset_size_t + (uintptr_t)input_ptr);

uintptr_t offset_uintptr_t = 1;
void xc3_good2 = (void «) ((size_t)offset_uintptr_t + (uintptr_t)input_ptr);

We also provide a new attribute cheri_no_provenance that can be used to annotate vari-
ables or fields of type intptr_t/uintptr_t where the underlying type cannot be changed:

struct S {

uintptr_t maybe_tagged;

uintptr_t never_tagged __attribute__ ((cheri_no_provenance));
}
void test (struct S s, uintptr_t ptr) {

void *x1 = (void x) (s.maybe_tagged + ptr); // ambiguous, currently uses LHS
void *x2 = (void ) (s.never_tagged + ptr); // not ambiguous, uses RHS

}

4.3 Bounds

CHERI C/C++ pointers are implemented using capabilities that enforce lower and upper bounds
on access. In the pure-capability run-time environment, those bounds are normally set to the
range of the memory allocation into which the pointer is intended to point. Because of cap-
ability compression, increased alignment requirements may apply to larger allocations (see
Section 7.5).

Historically, the CHERI compiler would select the left-hand-most pointer in the expression as the provenance
source. While this model follows a single consistent rule, it can lead to surprising behavior if an expression places
the provenance-carrying value to the right-hand-side. In the example above, the value of c1 would be a valid
capability, but c2 and c¢3 would hold an untagged value (albeit with the expected address).

3We could add a data-flow-sensitive analysis to determine whether values are the result of promotion from a
non-provenance-carrying type. However, this would add significant complexity to the compiler and we have not
seen many cases where this would have avoided changes to the source code.
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Bounds may be set on pointers returned by multiple system components including the OS
kernel, the run-time linker, compiler-generated code, system libraries, and other utility func-
tions. As with violations of provenance validity, out-of-bounds accesses — including load, store,
and instruction fetch — trigger a hardware exception (see Section 4.1).

4.3.1 Bounds from the compiler and linker

The compiler will arrange that language-level pointers to stack allocations have suitable
bounds, and that the run-time linker will return bounded pointers to global variables. Bounds
will typically be set based on an explicitly requested allocation size (e.g., via the size passed to
alloca ()) or, for compiler-generated code or linker-allocated memory, by the C type mechan-
ism (e.g., sizeof (£00)), adjusted for precision requirements arising from capability compres-
sion. In some cases, such as with global variables allocated in multiple object files, the actual
size of the allocation may not be resolved until run time, by the run-time linker. These bounds
will typically not cause observable changes in behavior — other than hardware exceptions when
(accidentally) performing an out-of-bounds access.

4.3.2 Bounds from the heap allocator

malloc () will set bounds on pointers to new heap allocations. In typical C use, this is not a
problem, as programmers expect to access addresses only within an allocation.

However, in some uses of C, there may be an expectation that memory access can occur out-
side the allocation bounds of the pointer via which memory access takes place. For example, if
an integer pointer difference D is taken between pointers to two different allocations (B and 2),
and later added to pointer 2, the new pointer will have an address within B, but permit access
only to A. This idiom is mostly likely to be found with non-trivial uses of realloc () (e.g.,
cases where multiple pointers into a buffer allocated or reallocated by realloc () need to be
updated). We note that the subtraction of two pointers from different allocations is undefined
behavior in ISO C, and risks mis-optimization from breaking compiler alias analysis assump-
tions. Further, any operation on the pointer passed to realloc () is undefined upon return.
Instead, we suggest that the programmer measure a pointer P’s offset into an object A prior
to realloc () and derive new pointers from the realloc () result B and these offsets. (i.e.,
compute B + (P — A) rather than P + (B — 2a)).*

4.3.3 Subobject bounds

CHERI C/C++ also supports automatically restricting the bounds when a pointer is taken to
a subobject — for example, an array embedded within another structure that itself has been
heap allocated. This will prevent an overflow on that array from affecting the remainder of
the structure, improving spatial safety. Subobject bounds are not enabled by default as they

“While it may seem that A remains available after realloc (), our revocation sweeps which enforce tem-
poral safety may have atomically replaced this with a non-pointer value. The scalar value D = P — A will naturally
be preserved by revocation.
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may require additional source code changes for compatibility, but can be enabled using the
-Xclang —cheri-bounds=subobject-safe compiler flag.

One example of C code that requires changes for subobject bounds is the containerof
pattern, in which pointer arithmetic on a pointer to a subobject is used to recover a pointer to
the container object — for example, as seen in the widely used BSD queue . h linked-list macros
or the generic C hash-table implementation, uthash.h.

In these cases, an opt-out annotation can be applied to a given type, field or variable that
instructs the compiler to not tighten bounds when creating pointers to subobjects. We cur-
rently define three opt-out annotations that can be used to allow existing code to disable use of
subobject bounds:

Completely disable subobject bounds It is possible to annotate a typedef, record member,
or variable declaration with:

__attribute__ ((cheri_no_subobject_bounds))

to indicate that the compiler should not tighten bounds when taking the address or a C++ refer-
ence. In C+11/C20 mode this can also be spelled as [ [cheri: :no_subobject_bounds]].

struct str {

/%
* Nul-terminated string array —-- polnters taken to this subobject will
* use the array’s bounds, not those of the container structure.
*/
char str_array[128];
/%
* Linked-1list entry element —-—- because of the additional attribute,

* pointers taken to this subobject will use the container structure’s
* bounds, not those of the specific field.
*/
struct list_entry str_le _ attribute_ ((cheri_no_subobject_bounds));
} str_instance;

void

fn (void)

{
/% Struct pointer gets bounds of str_instance. */
struct str xstrp = &str_instance;

/+ Character pointer gets bounds of the subobject, not str_instance. x/
char xc = str_instance.str_array;

/% Struct pointer gets bounds of str_instance, not the subobject. */
struct list_entry *xlep = &str_instance.str_le;

Disable subobject bounds in specific expressions It is also possible to opt out of bounds-
tightening on a per-expression granularity by casting to an annotated type:
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char *xfoo(struct str *strp) {
return (& ((__attribute__ ((cheri_no_subobject_bounds))struct str x)
strp) —>str_array);

Use remaining allocation size In certain cases, the size of the subobject is not known, but
we still know that data before the field member will not be accessed (e.g., variable size array
members inside structs). Pre-C99 code will declare such members as fixed-size arrays, which
will cause a hardware exception if the allocation does not grant access to that many bytes.’ To
use the remaining allocation size instead of completely disabling bounds (and thus protecting
against buffer underflows) the annotation:

__attribute__ ((cheri_subobject_bounds_use_remaining_size))

can be used. When targeting C++11/C20:

[ [cheri::subobject_bounds_use_remaining_size]]

is also supported. Examples of this pattern include FreeBSD’s struct dirent, which uses
char d_name[255] foran array that is actually of variable size, with the containing allocation
(e.g., of the heap) being sized to allow additional space for array entries regardless of size in
the type definition. For example:

struct message {

int m_type;
/%
* Variable—-length character array —-- because of the additional

* attribute, pointers taken to this subobject will have a lower bound
* at the first address of the array, but retain an upper bound of the
* allocation containing the array, rather than 252 bytes higher.
*/
char m_data[252]
__attribute__ ((cheri_subobject_bounds_use_remaining_size));

}i

The use of subobject bounds imposes additional compatibility constraints on existing C and
C++ code. While we have not encountered many issues related to subobject bounds in existing
code, it does slightly increase the porting effort.

4.3.4 Other sources of bounds

Bounds may also be set by other parts of the implementation. For example, the kernel may set
bounds on pointers to new memory mappings (see Section 5), and the system library may set
bounds on pointers into returned buffers from APIs —e.g., fget1n (). More detailed informa-
tion on how C/C++ code can set bounds can be found in Section 7.

3If flexible arrays members are declared using the C99 syntax with empty square brackets, the compiler will
automatically use the remaining allocation size.
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4.3.5 Out-of-bounds pointers

ISO C permits pointers to go only one byte beyond their original allocation, but widely used
code sometimes constructs transient pointer values that are further out of bounds. For example,
for loops iterating over an array may increment a pointer into the array by the array entry size
before performing an overflow check that terminates the loop. This temporarily constructs an
out-of-bounds pointer without an out-of-bounds dereference taking place.

To support this behavior, capabilities can hold a range of out-of-bounds addresses while
retaining a valid tag, and CHERI-enabled hardware performs bounds checks only on pointer
use (i.e., dereference), not on pointer manipulation. Dereferencing an out-of-bounds pointer
will raise a hardware exception (see Section 4.1). However, an out-of-bounds pointer can be
dereferenced once it has been brought back in bounds, by adjusting the address or supplying a
suitable offset in the dereference.

There is, however, a limit to the range of out-of-bounds addresses a capability can hold. The
capability compression model exploits redundancy between the pointer’s address and its bounds
to reduce memory overhead (see Section 2.1). However, when a pointer goes out of bounds,
this redundancy is reduced, and at some point the bounds can no longer be represented within
the capability. The architecture prohibits manipulations that would produce such a capability.
Depending on the architecture and context, this may lead to the tag being cleared, resulting
in an invalid capability, or in an immediate hardware exception being thrown. Attempting to
dereference the invalid capability will fail in the same manner as a loss of pointer provenance
validity (see Section 4.2). The range of out-of-bounds addresses permitted for a capability is
a function of the length of the bounded region and the number of bits used for bounds in the
capability representation. With 27 bits of the capability used for bounds, CHERI-MIPS and
64-bit CHERI-RISC-V provide the following guarantees:

* A pointer is able to travel at least ¥ the size of the object, or 2 KiB (2flcor(bounds_bits/2)=2y
whichever is greater, above its upper bound.

« It is able to travel at least ' the size of the object, or 1 KiB (2ficor(bounds_bits/2)=3y
whichever is greater, below its lower bound.

In general, programmers should not rely on support for arbitrary out-of-bounds pointers.
Nevertheless, in practice, we have found that the CHERI capability compression scheme sup-
ports almost all in-the-field out-of-bounds behavior in widely used software such as FreeBSD,
PostgreSQL, and WebKit.

4.4 Pointer comparison

In CHERI C/C++, pointer comparison considers only the integer address part of a capability.
This means that differences in tag validity, bounds, permissions, and so on, will not be con-
sidered when by C operators such as ==, <, and <=. On the whole, this leads to intuitive
behavior in systems software, where, for example, malloc () adjusts bounds on a pointer be-
fore returning it to a caller, and then expects an address-wise comparison to succeed when
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the pointer is later returned via a call to free (). However, this behavior could also lead to
potentially confusing results; for example:

 If a tag on a pointer is lost due to non-provenance-preserving memcpy () (e.g., a for
loop copying a sequence of bytes), the source and destination pointers will compare as
equal even though the destination will not be dereferenceable.

* Ifarealloc () implementation returns a pointer to the same address, but with different
bounds, a caller check to see if the passed and returned pointers are equal will return
true even though an access might be permitted via one pointer but not the other.

However, practical experience has suggested that the current semantics produce fewer subtle
bugs, and require fewer changes, than having comparison operators take the tag or other
metadata into account.®

4.5 Implications of capability revocation for temporal safety

Heap temporal safety utilizes revocation sweeps, which, after some quarantine period, replace
in-register and in-memory capabilities to freed memory with non-dereferenceable values. For
performance reasons, that replacement may be substantially deferred, or, if there is little de-
mand for fresh allocations, may never occur. Pointer value replacement may also permit some
instances of a pointer to continue to be usable for longer than others, but the referenced memory
will not be reallocated or otherwise reused until all instances have been rendered unusable. This
model does permit non-exploitable use-after-free of heap memory, but prohibits exploitable
memory aliasing by disallowing use-after-reallocation.

A pointer’s value after free () is undefined, and so dereference is an undefined behavior.
In practice, however, the value of a free ()-d pointer may still be observed in a number of
situations, including in lockless algorithms, which may compare an allocated pointer to a freed
one.

Our systems have a choice of replacement values for revoked pointers; all that is required
for correct temporal safety is that the replacement not authorize access to memory. Our pro-
totype implementation clears the tag when replacing, as this certainly removes authority and
possibly simplifies debugging and non-dereferencing operations, as the original capability bits
are left behind. For example, pointer equality checks that compare only the addresses of the
two pointers (and not their tag values) will continue to work as expected. With revocation per-
formed this way, software making explicit use of tags must be designed to tolerate capability
tag clearing by revocation.

Unfortunately, tag-clearing risks type confusion if programmers intend to use the capab-
ility tag to distinguish between integers and pointers in tagged unions (we have so far gener-
ally discouraged this idea, but understand why it may remain attractive). Therefore, we have
considered other options for revocation, including tag-preserving permission-zeroing (but tag
preservation) and wholesale replacement with NULL (i.e., the untagged all zero value). These

®The CHERI Clang compiler supports an experimental flag —cheri-comparison=exact that causes cap-
ability equality comparisons to also include capability metadata and the tag bit.
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options may be more attractive for some software, and would have different implications for
the C/C++ programming model.

We anticipate that revocation will remain a tag-clearing operation by default, as tag-clearing
removes any risk of needlessly re-examining the capability in later revocations. However, it
may be possible to allow coarse control over revocation behavior either per process or by region
of the address space. In the latter case, mmap () may gain flags specifying which revocation
behavior is desirable for capabilities pointing info the mapped region and/or madvise () may
gain flags controlling the revocation behavior of capabilities within a target region. Which
of these or similar mechanisms provide utility to software and can be offered at reasonable
performance remains an open question.

4.6 Bitwise operations on capability types

In most cases bitwise operations — such as those used to store or clear flags in the lower bits
of pointers to well-aligned allocations — will result in the expected uintptr_t value being
created. However, there are some corner cases where the result may be a tagged (but out-
of-bounds) capability when an integer value is expected. Dually, bitwise operations may also
result in the loss of tags if intermediate results become unrepresentable (recall Section 4.3.5).”
Most bitwise operations on uintptr_t fall into one of three categories for which we provide
higher-level abstractions.

Aligning pointer values If the C code is attempting to align a pointer or check the alignment
of pointers, the following compiler builtins should be used instead:

T _ builtin_align_down(T ptr, size_t alignment) This builtin returns ptr
rounded down to the next multiple of alignment.

T _ builtin_align_up(T ptr, size_t alignment) This builtin returns ptr roun-
ded up to the next multiple of alignment.

_Bool _ builtin_is_aligned(T ptr, size_t alignment) This builtin returns
true if ptr is aligned to at least alignment bytes.

One advantage of these builtins compared to uintptr_t arithmetic is that they preserve the
type of the argument and can therefore remove the need for intermediate casts to uintptr_t.
Moreover, using these builtins allows for improved compiler diagnostics and can result in bet-
ter code-generation compared to hand-written functions or macros. We have submitted these
builtins as part of the upstream Clang 10.0 release, so they can also be used for code that does
not depend on CHERI.

"Previous versions of the compiler used the capability offset (address minus base) instead of the address for
arithmetic on uintptr_t. This often resulted in unexpected results and therefore we switched to using the
addressin uintptr_t arithmetic instead. The old offset-based mode may be interesting for garbage collected C
where addresses are less useful and therefore it can still be enabled by passing —cheri-uintcap=offset.
However, this may result in significantly reduced compatibility with legacy C code.
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Storing additional data in pointers In many cases the minimum alignment of pointer values
is known and therefore programmers assume that the low bits (which will always be zero)
can be used to store additional data.® Unused high pointer bits cannot be used for additional
metadata since toggling them causes a large change to the address field, and capabilities that
are significantly far out-of-bounds cannot be represented (see Section 4.3.5).

The compiler-provided header <cheri.h> provides explicit macros for this use of bitwise
arithmetic on pointers. The use of these macros is currently optional,” but we believe that
they can improve readability compared to hand-written bitwise operations. Additionally, the
bitwise-AND operation is ambiguous since it can be used both to clear bits (which should return
a provenance-carrying uintptr_t) and to check bits (which should return an integer value).
In complex nested expressions, these macros can avoid ambiguous provenance sources (see
Section 4.2.3) since it shows the compiler which intermediate results can carry provenance.

uintptr t cheri_low bits_clear (uintptr_ t ptr, vaddr_t mask) This func-
tion clears the low bits of ptr in the same way as ptr & ~mask. It returns a new
uintptr_t value that can be used for memory accesses when cast to a pointer. mask
should be a bitwise-AND mask less than _Alignof (ptr).

vaddr_t cheri_low_bits_get (uintptr_t ptr, vaddr_t mask) This function re-
turns the low bits of ptr in the same way as ptr & mask. It should be used instead of
the raw bitwise operation since it can never return an unexpectedly tagged value. mask
should be a bitwise-AND mask less than _Alignof (ptr).

uintptr t cheri_low bits_or (uintptr_t ptr, vaddr_t bits) This function
performs a bitwise-OR of ptr with bits. In order to retain compatibility with a
non-CHERI architecture, bits should be less than the known alignment of ptr.

uintptr t cheri_low_bits_set (uintptr_t ptr, vaddr_t mask, wvaddr_t bits)
This function sets the low bits of ptr to bits by clearing the low bits in mask first.

Computing hash values The compiler will also warn when operators such as modulus or
shifts are used on uintptr_t. This usually indicates that the pointer is being used as the input
to a hash function or similar computations. In this case, the programmer should not be using
uintptr_t but instead cast the pointer to vaddr_t and perform the arithmetic on this type
instead. This has the advantage that it can be slightly more efficient than uintptr_t arithmetic
on a split-register file architecture such as CHERI-MIPS.

8CHERI actually provides many more usable bits than a conventional architecture. In the current implementa-
tion of 128-bit CHERI, any bit between the least significant and the 9th least significant bit may be toggled without
causing the tag to be cleared in pointers that point to the beginning of an allocation (i.e., whose offset is zero). If
the pointer is strongly aligned, further bits may be toggled without clearing the tag.

Until recently, not using these macros could result in subtle bugs at run time since pointer equality comparis-
ons included the tag bit in addition to the address.
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4.7 Function prototypes and calling conventions

CHERI C/C++ distinguishes between integer and pointer types at an architectural level, which
can lead to compatibility problems with older C programming styles that fail to unambiguously
differentiate these types:

Unprototyped (K&R) functions Because pointers can no longer be loaded and stored without
using capability-aware instructions, the compiler must know whenever a load or store
might operate on a pointer value. The C-language default of using an integer type
for function arguments when there is not an appropriate function prototype will cause
pointer values to be handled improperly; this is also true on LP64 ABIs (e.g., most 64-bit
POSIX systems).!? To avoid these problems, the CHERI Clang compiler emits a warn-
ing (-Wcheri-prototypes) by default when a function without a declared prototype
is called. This warning is less strict than -Wstrict-prototypes and can be used to
convert K&R functions that may cause problems.!! This should not be an issue for C
code written in the last 20 years, but many core operating-system components can be
significantly older.

Variadic arguments The calling convention for variadic functions passes all variadic argu-
ments via the stack and accesses them via an appropriately bounded capability. This
provides memory-protection benefits, but means that vararg functions must be declared
and called via a correct prototype.

Some C code assumes that the calling convention of variadic and non-variadic functions
is sufficiently similar that they may be used interchangeably. Historically, this included
the FreeBSD kernel’s implementation of open (), fcntl (), and syscall ().

4.8 Data-structure and memory-allocation alignment

CHERI C/C++ have stronger alignment requirements than C/C++ on conventional architectures.
These requirements arise from two sources: that capabilities themselves must be aligned at
twice the integer architectural pointer width, and that capability compression constrains the
addresses that can be used for bounds on larger objects.

4.8.1 Restrictions in capability locations in memory
CHERI C/C++ constrain how and where pointers can be stored in memory in two ways:
Alignment CHERI’s tags are associated with capability-aligned, capability-sized locations in

physical memory. Because of this, all valid pointers must be stored at such locations,
potentially disrupting code that may use other alignments.

10The forthcoming ISO C2x standard makes function declarations with an empty parameter list equivalent to a
parameter list consisting of a single void.

1 the K&R function is defined within the same file, the compiler can determine the correct calling convention
and will not emit a warning.
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On the whole, for performance and atomicity reasons, pointers are strongly aligned even
on non-tagged architectures — however, when C constructs such as __packed are used,
unaligned pointers can arise, and will not work with CHERI. While the compiler and
native allocators (stack, heap, ...) will provide sufficient alignment for capability-based
pointers, custom allocators may align allocations to sizeof (intmax_t) rather than

alignof (max_align_t).

Size CHERI capabilities are twice the size of an integer able to describe the full address space.
On 64-bit systems, this means that CHERI pointers will have a width of 128 bits — while
maintaining the arithmetic properties of a 64-bit integer address. C code historically
embeds assumptions about pointer size in a number of forms, all of which will need to
be addressed when porting to CHERI, including:

Assuming that a pointer will fit into the largest integer type.

Assuming that the number of bits in a pointer type is the same as the number of bits
indexing the address space it can refer to.

Assuming that the number of bits in a pointer type is the same as the number of bits
suitable for use in performing bit-wise manipulations of pointer values.

Assuming that pointers must either be 32 or 64 bits.
Assuming that aligning to sizeof (double) is sufficient to store any type.

Assuming that high bits of the pointer address can be used for additional metadata.
This is not true on CHERI since toggling high bits of a pointer can cause it to be so
far out of bounds that it is no longer representable due to the compression of pointer
bounds. However, it is still possible to use the low bits for additional metadata (see
Section 4.6).

These portability problems will typically be found due to hardware exceptions thrown on
attempted unaligned accesses of capability values (see Section 4.1). However, they can also
arise in the form of stripped tag bits, leading to invalid capabilities that cannot be dereferenced,
if, for example, pointer values are copied into inappropriately aligned allocations.

S The CheriABI POSIX process environment

The CheriABI process environment implements a standard POSIX/UNIX API, but in some
areas there are changes to API semantics (e.g., in the handling of tagged pointer values and
I/O) or new functionality (such as relates to handling capability-related faults).

5.1 POSIX API changes

Writing and reading pointers via files In the CheriABI process environment, only untagged
data (not tagged pointers) may be written to or read from files. If a region of memory
containing valid pointers is written to a file, and then read back, the pointers in that region
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will no longer be valid. If a file is memory mapped, then pages mapped copy-on-write
(MAP_PRIVATE) are able to hold tagged pointers, since they are swap-backed rather than
file-backed, but pages mapped directly from the buffer cache (MAP_SHARED) are not.

Passing pointers via IPC In the CheriABI process environment, only untagged data, not
tagged pointers, may be passed via various forms of message-passing Inter-Process Com-
munication (IPC). Some existing software takes advantage of a shared address-space lay-
out (via fork ()) to pass pointers to elements of shared data structures (e.g., entries in
dispatch tables). This code must be converted to use indexes into tables or other lookup
mechanisms rather than passing pointers via IPC.

mmap () bounds In CheriABI, the mmap () system call returns a bounded capability to the
allocated address space. To ensure the capability does not overlap other allocations,
lengths that would otherwise be unrepresentable are rounded up and padded with a new
type of guard pages. These guard pages fault on access and may not be mapped over.
They are unmapped when the rest of the mapping is unmapped.

mmap () permissions The permissions of the capability returned by mmap () are determined by
a combination of the requested page protections and the capability passed as an address
hint (or fixed address with MAP_FIXED). When using the pattern of requesting a mapping
with PROT_NONE and then filling in sections (as is done in run-time linkers, VM host
environments, etc), it is necessary to ensure that the initial capability has the right per-
missions. The prot argument has been extended to accept additional flags indicating the
maximum permission the page can have so that a linker might request a reservation for a
library with the permissions (PROT_MAX (PROT_READ |PROT_WRITE |PROT_EXEC) |
PROT_NONE), which would return a capability permitting loads, stores, and instruction
fetch while mapping the pages with no (MMU) permissions.

5.2 Handling capability-related signals

When a capability hardware exception fires, the operating system will map it into the UNIX
SIGPROT signal. By default, this signal terminates the process, but the signal can be caught by
registering a STGPROT handler. When the signal handler fires, siginfo.si_code will be set
to describe the cause of the fault; available values, defined in signal.h, include:

PROT_CHERI_BOUNDS Capability bounds fault — an out-of-bounds access was attempted.

PROT_CHERI_PERM Capability permission fault — the attempted access exceeded the permis-
sions granted by a capability.

PROT_CHERI_SEALED Capability sealed fault — dereferencing a sealed capability was attemp-
ted.

PROT_CHERI_TAG Capability tag fault — dereferencing an invalid capability was attempted.
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6 CHERI compiler warnings and errors

The CHERI Clang compiler includes many diagnostic warnings to identify code that is in-
compatible with CHERI C/C++ or may result in behavioral differences. In many cases, a suc-
cessful compilation that does not emit any CHERI-specific warnings will result in a functional
spatially-safe program. However, some incompatibilities (e.g., memory allocators returning
insufficiently aligned pointers) cannot yet be diagnosed statically. This section describes some
of the more-commonly seen compiler warnings and provides suggestions on how to change the
source code to be compatible with CHERI C/C++. All these warnings are enabled when the
-Wall compiler flag is set.

6.1 Loss of provenance

This common compiler warning is triggered when casting a non-capability type (e.g., Long) to
a pointer. As mentioned in Section 4.2, the result of this cast is a NULL-derived capability with
the address set to the integer value. As any NULL-derived capability is untagged, any attempt
to dereference it will trap.

Usually, this warning is caused by programmers incorrectly assuming that 1ong is able to
store pointers. The fix for this problem is to change the type of the cast source to a provenance-
carrying type such as intptr_t or uintptr_t (see Section 4.2.1):

char xexample_bad(long ptr_or_int) {
return strdup((const char *)ptr_or_int);
}
char xexample_good (intptr_t ptr_or_int) {
return strdup ((const char x)ptr_or_int);

}

<source>:2:17: warning: cast from provenance-free integer type to pointer type will give
pointer that can not be dereferenced [-Wcheri-capability-misuse]
return strdup((const char *)ptr_or_int);
A

1 warning generated.

In some cases, this warning can be a false positive. For example, it is common for C callback
APIs take a void = data argument that is passed to the callback. If this value is in fact an
integer constant, the warning can be silenced by casting to uintptr_t first:

void invoke_cb (void (*cb) (void %), wvoid =«);
void callback (void =xarqg);
void false_positive_example (int callback_data) {
invoke_cb (&callback, (void x)callback_data); // warning
invoke_cb (&callback, (void x) (uintptr_t)callback_data); // no warning
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<source>:4:24: warning: cast from provenance-free integer type to pointer type will give
pointer that can not be dereferenced [-Wcheri-capability-misuse]

invoke_cb (&callback, (void x)callback_data); // warning
A

<source>:15:24: warning: cast to ’'void *’ from smaller integer type ’'int’ [-Wint-to-void-
pointer-cast]
invoke_cb (&callback, (void *)callback_data); // warning
A

2 warnings generated.

6.2 Ambiguous provenance

For arithmetic and bitwise binary operations between uintptr_t/intptr_t, the compiler
can generally infer which side of the expression should be used as the provenance (and bounds)
source. However, as noted in Section 4.2.3, there are cases that are ambiguous as far as the
compiler is concerned.

Consider for example a structure that holds a pointer and a small number of flags. In this
case the pointer is known to be aligned to at least 8 bytes, so the programmer uses the lowest 3
bits to store additional data:
typedef struct { uintptr_t data; } pointer_and_flags;
void set_ptr (pointer_and_flags =p, void =*value) {

p—->data = (p—->data & (uintptr_t)7) | (uintptr_t) (value);

}
void set_flags (pointer_and_flags #*p, unsigned flags) {

p—->data = p->data | (flags & 7);
}
<source>:3:40: warning: binary expression on capability types ’'__ _uintcap_t’ and ’'uintptr_t’ (
aka ’'__uintcap_t’); it is not clear which should be used as the source of provenance;
currently provenance is inherited from the left-hand side [-Wcheri-provenance]
p—->data = (p—->data & (uintptr_t)7) | (uintptr_t) (value);
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1 warning generated.

Unlike the compiler, the programmer knows that inside set_ptr () capability metadata should
always be taken from the value argument. The suggested fix for this problem is fix is to cast
the non-pointer argument to an integer type:

void set_ptr (pointer_and_flags =p, void =*value) {
p—->data = (size_t) (p—>data & (uintptr_t)7) | (uintptr_t) (value);

—

6.3 Underaligned capabilities

This warning is triggered when packed structures contain pointers. As mentioned in Sec-
tion 4.8.1, pointers must always be aligned to the size of a CHERI capability (16 bytes for
a 64-bit architecture). This warning can be triggered by code that attempts to align pointers to
at least 8 bytes (e.g., for compatibility between 32- and 64-bit architectures). For example:
struct AtLeast8ByteAlignedBad {

void =xdata;
} __attribute_ ((packed, aligned(8)));
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<source>:1:8: warning: alignment (8) of ’'struct AtLeast8ByteAlignedBad’ is less than the
required capability alignment (16) [-Wcheri-capability-misuse]
struct AtLeast8ByteAlignedBad {
A

<source>:1:8: note: If you are certain that this is correct you can silence the warning by
adding __ attribute__ ((annotate ("underaligned capability")))
1 warning generated.

The simplest fix for this issue is to either increase alignment to be CHERI-compatible, or use a
ternary expression to include alignof (void =):
#include <stdalign.h>
struct AtlLeast8ByteAlignedGood {
void xdata;
} __attribute_ ((packed,aligned(alignof (void ) > 8 ? alignof (void x) : 8))
)i
In the rare case that creating a potentially underaligned pointer is actually intended, the warn-
ing can be silence by adding a annotate ("underaligned_capability™") attribute:
struct UnderalignPointerIgnoreWarning {

void xdata;
} __attribute_ ((packed, aligned(4), annotate ("underaligned capability")));

7 C APIs to get and set capability properties

CHERI C/C++ supports a number of new APIs to get and set capability properties given a pointer
argument. Although most software does not need to directly manage capability properties, there
are some cases when application code needs to further constrain permissions or limit bounds
associated with pointers. For example, high-performance applications may contain custom
memory allocators and wish to narrow bounds and permissions on returned pointers to prevent
overflows between its own allocations.

7.1 CHERI-related header files

A set of compiler built-in functions provide access to capability properties of pointers. Two new
header files (distributed as part of the CHERI Clang compiler) provide access to further CHERI-
related programming interfaces including more human-friendly macro wrappers around the
compiler builtins, and also definitions of key CHERI constants:

cheriintrin.h defines interfaces to access and modify capability properties. It also defines
constants for capability permissions that are portable across all implementations of
CHERI.

cheri.h provides macros for slightly higher-level operations such as the manipulation of low
pointer bits (Section 4.6).

When compiling for CheriBSD, the following header provides additional constants relating to
OS use of capabilities — for example, software-defined permission bits:

cheri/cheri.h defines constants such as those used in the capability permission mask.
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7.2 Retrieving capability properties

The following APIs allow capability properties to be retrieved from pointers:

vaddr_t cheri_address_get (void *c) Return the address of the capability c.
vaddr_t cheri_base_get (void *c) Return the lower bound of capability c.

size_t cheri_length_get (void =*c) Return the length of the bounds for the capability
c. The base plus the length gives the upper bound on c’s address.

size_t cheri_offset_get (void *c) Return the difference between the address and the
lower bound of the capability c.

size_t cheri_perms_get (void *c) Return the permissions of capability c. (See Sec-
tion 7.4.)

_Bool cheri_tag_get (void *c) Return whether capability c has its validity tag set.

7.3 Modifying or restricting capability properties
The following APIs allow capability properties to be refined on pointers:

void *cheri_address_set (void *c, vaddr_t a) Return a new capability with the
same permissions and bounds as ¢ with the address set to a. This can be useful to
re-derive a valid pointer from an address.

cheri_address_set () is able to set an address a that is outside of the current bounds
of c. The resulting capability is treated as an out-of-bounds pointer as described in
Section 4.3.5. However, if the address a is not representable in the current bounds of
c due to capability compression, cheri_address_set () returns a capability without
the tag bit set.

void xcheri_bounds_set (void *c, size_t x) Narrow the bounds of capability c¢ so
that the lower bound is the current address (which may have been increased relative to
c’s original lower bound), and its upper bound is suitable for a length of x.

Note that the effective bounds of the returned capability may be wider than the range
[cheri_address_get (c), cheri_address_get (c) + x) due to capability com-
pression (see Section 7.5), but they will always be a subset of the original bounds.

void *cheri_bounds_set_exact (void *c, size_t x) Narrow the bounds of cap-
ability c so that the lower bound is the current address, and its upper bound is
cheri_address_get (c) + x. This is similar to cheri_bounds_set () but will
raise a hardware exception if the resulting capability is not precisely representable in-
stead of rounding the bounds.

void *cheri_perms_and(void *c, size_t x) Perform a bitwise-AND of capability
c’s permissions and the value x, returning the new capability (see Section 7.4).

void *cheri_tag clear (void =*c) Clear the tag on c, returning the new capability.
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7.4 Capability permissions

A number of capability permissions are available for use; only those relating to CHERI memory
protection are enumerated here:

CHERI_PERM EXECUTE Authorize instruction fetch via this capability.
CHERI_PERM LOAD Authorize data load via this capability.

CHERI_PERM LOAD_CAP Authorize capability load via this capability. If the permission is not
present, the tag on the loaded value will be silently cleared.

CHERI_PERM STORE Authorize data store via this capability.

CHERI_PERM STORE_CAP Authorize capability store via this capability. If the permission is
not present, and the tag on the stored capability is valid, then a hardware exception will
be thrown.

In addition to architectural permissions, CHERI capabilities have software-defined permis-
sions. CheriBSD defines the following additional memory-protection-related permission:

CHERI_PERM CHERIABI_VMMAP A CheriABI-specific user permission that the kernel uses
to authorize modifications to virtual-memory mappings. If the permission is not present,
system calls that alter the contents or the presentation of memory mappings will reject the
request. As this is a CheriBSD-specific permission, it is not defined in cheriintrin.h
and requires inclusion of cheri/cheri.h.

7.5 Bounds alignment due to compression

Bounds imprecisions may require a memory allocator to increase the alignment of an allocation,
or increase padding on an allocation, to prevent bounds from spanning more than one object.
When the length of an object exceeds 2/!0cr(bounds_bits/2)=1 (j e 4 KiB for CHERI-MIPS and 64-
bit CHERI-RISC-V), additional alignment requirements apply to the lower and upper bounds.
The alignment required for allocations exceeding the minimum representable range (4 KiB
for CHERI-MIPS and 64-bit CHERI-RISC-V) is 2573 bytes, where E is determined from the
length, I, by £ = 52 — CountLeadingZeros(/[64 : floor(bounds_bits/2)]).

Correctly computing the rounded size and minimum alignment for a given allocation is
non-trivial and may require many instructions to compute, especially in the context of fast
allocators such as the stack allocator. Moreover, the architectural constants used for bounds
precision differ across architectures or their variations, and so alignment constraints also vary.
For example, the number of bits available for bounds differs between 32-bit and 64-bit CHERI-
RISC-V, and also between 64-bit CHERI-RISC-V and Morello.

To avoid overly specific software knowledge of alignment requirements, and also to allow
efficient calculation of alignment constraints during (for example) stack allocation, the CHERI
ISA provides instructions that allow determining precisely representable allocations. These
instructions can be generated using compiler builtins that are provided by cheriintrin.h:
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size_t cheri_representable_length(size_t len) returns the length that a capab-
ility would have after using cheri_bounds_set to set the length to len (assuming
appropriate alignment of the base).

size_t cheri_representable_alignment_mask (size_t len) returns a bitmask
that can be used to align an address downwards such that it is sufficiently aligned to
create a precisely bounded capability.

The precisely representable base address can be computed using:

base = base & cheri_representable_alignment_mask (len);

When allocating from a contiguous buffer, the base needs to be aligned upwards instead of
downwards. This can be done with the following code:

size_t required_alignment (size_t len) {
return ~cheri_representable_alignment_mask (len) + 1;
}
struct Buffer {
void xdata;
size_t allocated;
bi
void xallocate_next (struct Buffer *buf, size_t len) {
char *result = buf->data + buf->allocated;

result = _ builtin_align_up(result, required_alignment (len));
size_t rounded_len = cheri_representable_length(len);
buf->allocated = (result + rounded_len) - (char x)buf->data;

return cheri_bounds_set_exact (result, rounded_len);

}

Software written to use these compiler builtins, rather than encoding alignment requirements
directly, is more likely to be portable between CHERI-MIPS, CHERI-RISC-V, and Morello.

7.6 Implications for memory-allocator design

One use case of these APIs is high-performance applications that contain custom memory al-
locators and wish to narrow the bounds of returned pointers. Two kinds of modifications are
typically required:

Changes to alignment to allow for capabilities and bounds Changes relating to alignment
fall into two categories. First, those required to allow pointers to be stored within alloca-
tions, which requires that allocations be aligned to the pointer width (128 bits). Second,
further alignment changes will be required to ensure that bounds can be represented pre-
cisely. This requires suitably aligning both the bottom and top bounds to exclude any
other live allocations, as described in Section 7.5.

Reaching allocation metadata on free () It is often the case that allocators utilize the value
of the pointer passed to their custom free () function to locate corresponding metadata
— for example, by always placing that metadata immediately before the allocation, which
would be outside of the allocation’s bounds. Therefore, some additional work may be
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required to derive a pointer to the allocation’s metadata via another global capability,
rather than the one that has been passed to free ().

These two concerns may interact: When a custom allocator places metadata at the beginning
of the allocation, care must be taken that the resulting pointer is still strongly aligned. While
porting programs to run on CHERI, we found multiple sub-allocators that used 8 bytes of
metadata after the result from malloc (). This causes the resulting pointer to no longer be
sufficiently aligned to store capabilities without faulting or stripping tag bits.

Note that it is also possible to use the above APIs to validate inputs to free (), which is use-
ful when the consumer of free () is, for example, an untrusted compartment or a component of
a web browser that might be influenced by an attacker. In such cases, free () should validate
that the passed-in capability is tagged, is in-bounds, and points to a legitimate, still-allocated
allocation. For allocators engaged in revocation for temporal safety, concurrent revocation
opens the door to TOCTTOU races within free (); additional care must be taken to prevent a
double-free () using a stale pointer from freeing an object allocated after revocation.

8 Further reading

The primary reference for the CHERI Instruction-Set Architecture (ISA) is the ISA specifica-
tion; at the time of writing, the most recent version is CHERI ISAv7 [8]:

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf

Our technical report, An Introduction to CHERI, provides a high-level overview of the CHERI
architecture, ISA modeling, hardware implementations, and software stack [7]:

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
We published a paper on idiomatic C and spatial memory protection at ASPLOS 2015 [1]:

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/
201503-asplos2015-cheri-cmachine.pdf

We published a paper on CheriABI and the adaptation of a complete OS userspace and applic-
ation suite to a pure-capability process environment at ASPLOS 2019 [2]:

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/
201904-asplos—-cheriabi.pdf

We also released an extended technical-report version of this paper that includes greater imple-
mentation detail [3]:

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-932.pdf
We published a paper on CHERI and temporal memory safety for the heap at Oakland 2020 [4]:

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/
2020o0akland-cornucopia.pdf

We published a paper on C-language pointer provenance, and the implications for software
design, at POPL 2019; CHERI C was a case study in the practical enforcement of capability
provenance-validity enforcement [5]:


https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201503-asplos2015-cheri-cmachine.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201503-asplos2015-cheri-cmachine.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-asplos-cheriabi.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-asplos-cheriabi.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-932.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2020oakland-cornucopia.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2020oakland-cornucopia.pdf
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