
A Brief Introduction to Figaro

April 16, 2013

(Language, features, and the tutorial, from which most of this slide
deck is appreciatively “borrowed,” by Avi Pfeffer. Slides and errors

by Nathaniel Wesley Filardo.)

1 / 23



What is Figaro?

I Figaro is a probabilistic programming language.
I Describes probabilistic models and inference thereon.

I Designed by Avi Pfeffer at Charles River Analytics.
I Successor to his earlier language, IBAL.

I Open-source, available under a 4-BSD-like license, from
https://www.cra.com

I Embedded Domain-Specific Language in Scala.

2 / 23

https://www.cra.com


What is a domain-specific language?

A domain-specific language is a syntax which is geared towards
the semantics of a problem domain.

Examples abound:

Problem Domain DSL

Lexing {POSIX,Perl,. . . } regular expressions
Parsing YACC, ANTLR, . . .

Database interaction SQL, SPARQL, . . .
Graph rendering GraphViz, . . .

Mathematical programming AMPL, . . .
Symbolic algebra Mathematica, Maple, Maxima, . . .

3 / 23



Embedded Domain-Specific Language?

Embedded (sometimes Internal) DSLs are a (relatively) recently
popularized form of software development.

I Defined in a host language
I Popular examples: Lisp, Forth, Prolog, Scala, Haskell.
I Typically very expressive and syntactically flexible.
I EDSL inherits features (e.g., calling convention, type system)

and tools (e.g., compiler) from its host.

I Offer a library of domain-relevant functionality
I and powerful operators.

I Often continue to try to hide or de-emphasize details of host.

4 / 23



What does a DSL for Probabilistic Modeling look like?

We might consider the canonical mathematical syntax for
describing generative models a DSL. Its basic operation is to
declare that a value is distributed according to some distribution,
parameterized by other values:

ap ∼ Normal(µp, σ
2
p)

dq ∼ Normal(µq, σ
2
q)

tpq = ap − dq

(These are parts of the model of Bachrach et al., How To Grade a
Test Without Knowing the Answers – A Bayesian Graphical Model
for Adaptive Crowdsourcing and Aptitude Testing, ICML 2012.)

5 / 23



What does a DSL for Probabilistic Modeling look like?

We could argue that plate notation for graphical models is a DSL.
Bachrach et al’s full model is shown in their paper as:

6 / 23



What’s wrong with this picture?

Unfortunately, these forms of PRMs are

I Not directly executable

I Even when we make them executable (which takes time), all
we get is the sampler!

That is, it takes even more work to be able to. . .

I specify observed or constrained variables.

I run inference to recover information about un-observed
variables.

7 / 23



What’s wrong with this picture?

Unfortunately, these forms of PRMs are

I Not directly executable

I Even when we make them executable (which takes time), all
we get is the sampler!

That is, it takes even more work to be able to. . .

I specify observed or constrained variables.

I run inference to recover information about un-observed
variables.

7 / 23



So what does Figaro bring to the table?

Figaro, as with other PPLs, lets the programmer

I capture a PRM in a syntax that is not so far removed from
the mathematical notation (IMHO),

I specify knowns about the variables in the model,

I and run inference.

Because it is embedded in Scala, the full power of that language
can be brought to bear on any of these parts of the task.

Anecdotally, I was able to take the model from before (Bachrach et
al.) and cobble together the program in 2.5 hours and 65 lines.

I I am not a domain expert.

I I don’t really even know Scala all that well.

I The resulting program is unlikely to win any speed contests.

I And it’s a little too big to fit in slides.

8 / 23



So what does Figaro bring to the table?

Figaro, as with other PPLs, lets the programmer

I capture a PRM in a syntax that is not so far removed from
the mathematical notation (IMHO),

I specify knowns about the variables in the model,

I and run inference.

Because it is embedded in Scala, the full power of that language
can be brought to bear on any of these parts of the task.
Anecdotally, I was able to take the model from before (Bachrach et
al.) and cobble together the program in 2.5 hours and 65 lines.

I I am not a domain expert.

I I don’t really even know Scala all that well.

I The resulting program is unlikely to win any speed contests.

I And it’s a little too big to fit in slides.

8 / 23



Defining A Model

Figaro represents models as collections of elements.

I AKA random variable.

I Elements are parameterized by their output type: an
Element[T] is a T-valued random variable.

I Elements come in two flavors: atomic and compound.
I Atomic elements are self-contained.
I Compound elements wire other elements together.

9 / 23



Defining A Model: Atomic Elements

I Constants (the least random “random variable”).

Constant(4)

I Discrete distributions:

Flip(0.75)

Select(1 -> "a", 1 -> "b", 2 -> "c")

I Continuous distributions:

Uniform(0.0,1.0)

Normal(0.0,4.0)

I Many more than listed on this slide
I Also quite easy to add more

10 / 23



Defining A Model: Compound Elements

Three base compounds:

1. A function applied to a RV is itself a RV:

Apply(Uniform(0.0,1.0), (d:Double) => d > 0.3)

2. Several T-valued RVs can be grouped to a list-of-T-valued RV:

Inject(Uniform(0.0,1.0), Uniform(1.0,2.0))

3. Random variables can be chained; under the covers:

Chain(Uniform(0.0,1.0), (d:Double) => Flip(d))

Element[Double] (Double) => Bool

Element[Bool]

11 / 23



Defining A Model: Compound Elements

Three base compounds:

1. A function applied to a RV is itself a RV:

Apply(Uniform(0.0,1.0), (d:Double) => d > 0.3)

2. Several T-valued RVs can be grouped to a list-of-T-valued RV:

Inject(Uniform(0.0,1.0), Uniform(1.0,2.0))

3. Random variables can be chained; under the covers:

Chain(Uniform(0.0,1.0), (d:Double) => Flip(d))

Element[Double] Element[Double]

Element[Seq[Double]]

11 / 23



Defining A Model: Compound Elements

Three base compounds:

1. A function applied to a RV is itself a RV:

Apply(Uniform(0.0,1.0), (d:Double) => d > 0.3)

2. Several T-valued RVs can be grouped to a list-of-T-valued RV:

Inject(Uniform(0.0,1.0), Uniform(1.0,2.0))

These two combine to let us define a sum of random variables:

val es = Inject(Uniform(0.0,1.0), Normal(0.0,1.0))

val esum = Apply(es, (x:Seq[Double]) => (0 /: x) (_ + _))

3. Random variables can be chained; under the covers:

Chain(Uniform(0.0,1.0), (d:Double) => Flip(d))

11 / 23



Defining A Model: Compound Elements

Three base compounds:

1. A function applied to a RV is itself a RV:

Apply(Uniform(0.0,1.0), (d:Double) => d > 0.3)

2. Several T-valued RVs can be grouped to a list-of-T-valued RV:

Inject(Uniform(0.0,1.0), Uniform(1.0,2.0))

3. Random variables can be chained:

Flip(Uniform(0.0,1.0))

Element[Double]

Element[Bool]

11 / 23



Defining A Model: Compound Elements

Three base compounds:

1. A function applied to a RV is itself a RV:

Apply(Uniform(0.0,1.0), (d:Double) => d > 0.3)

2. Several T-valued RVs can be grouped to a list-of-T-valued RV:

Inject(Uniform(0.0,1.0), Uniform(1.0,2.0))

3. Random variables can be chained; under the covers:

Chain(Uniform(0.0,1.0), (d:Double) => Flip(d))

Element[Double] (Double) => Element[Bool]

Element[Bool]

11 / 23



Defining A Model: Compound Elements

Three base compounds:1

1. A function applied to a RV is itself a RV:

Apply(Uniform(0.0,1.0), (d:Double) => d > 0.3)

2. Several T-valued RVs can be grouped to a list-of-T-valued RV:

Inject(Uniform(0.0,1.0), Uniform(1.0,2.0))

3. Random variables can be chained; under the covers:

Chain(Uniform(0.0,1.0), (d:Double) => Flip(d))

Element[Double] (Double) => Element[Bool]

Element[Bool]

1
The categorically inclined will recognize these as the Element functor on morphisms, a folded strength, and a

monadic bind. The not-so-inclined should take all that to mean that these are the right things to have.

11 / 23



Defining A Model: Compound Elements

Many more things in the library built up from these:

I Conditionals:

If(Flip(0.3), Constant("Yes"), Constant("No"))

I Tuples:

^^(Flip(0.4), Normal(0.0,1.0))

I Convenient sugars for specifying conditional probability tables.

Element[Bool] Element[String] Element[String]

Element[String]

12 / 23



Defining A Model: Compound Elements

Many more things in the library built up from these:

I Conditionals:

If(Flip(0.3), Constant("Yes"), Constant("No"))

I Tuples:

^^(Flip(0.4), Normal(0.0,1.0))

I Convenient sugars for specifying conditional probability tables.

Element[Bool] Element[Double]

Element[(Bool,Double)]

12 / 23



Defining A Model: Compound Elements

Many more things in the library built up from these:

I Conditionals:

If(Flip(0.3), Constant("Yes"), Constant("No"))

I Tuples:

^^(Flip(0.4), Normal(0.0,1.0))

I Convenient sugars for specifying conditional probability tables.

12 / 23



Defining A Model: Elements are Objects

When we do inference over a model (later), we assign values to
elements. Each element in a Figaro model will have the same value
throughout.
Contrast:

1. Two separate flips:

val x = Flip(0.75)

val y = Flip(0.75)

If(Eq(x,y),Constant("Eq"),Constant("Neq"))

2. A single flip:

val x = Flip(0.75)

If(Eq(x,x),Constant("Eq"),Constant("Neq"))

13 / 23



So let’s define a model Prior

yy �� %%
Alice oo //

%%

Bob oo //

��

Clara

yy
nsmokers

A small smokers-and-friends example:

1 class Person { val smokes = Flip(smokePrior); }

3 val smokePrior = Uniform(0.0,1.0);

5 val alice, bob, clara = new Person

6 val allPeople = List(alice,bob,clara)

8 val nSmokers = Apply(Inject(allPeople map (_.smokes):_*),

9 (_:Seq[Boolean]).count((b:Boolean) => b))

11 val friends = List((alice,bob),(bob,clara))

14 / 23



Specifying Hard Evidence Prior

yy �� %%
Alice oo //

%%

Bob oo //

��

Clara

yy
nsmokers

Elements within the model may be conditioned.

I The simplest kind of conditioning is a observation, which
fixes the value of an element:

clara.smokes.observe(true)

I More general conditioning is possible, too:

smokePrior.condition = (d:Double) => (d < 0.75)

I Also possible to add conditions dynamically:

smokePrior.addCondition((d:Double) => d > 0.2)

15 / 23



Specifying Soft Evidence: Constraints

It is common in PRMs to attach unary factors to RVs. These
capture indirect observation assertions of the form

All other things being equal, having observed f (v) it is k
times more likely that v is such that g(v) holds than not.

For example,

Absent any other evidence about nwf’s political views, he
has been seen walking barefoot in the woods, which
doubles the odds that he is a hippie.

Figaro has a convenient short-cut for this, called constraints:

bob.smokes.constraint = (b:Boolean) => if (b) 2.0; else 1.0

And of course we can add dynamically,

bob.smokes.addConstraint((b:Boolean) => if (b) 4.0; else 3.0)

16 / 23



Specifying Soft Evidence: Constraints

It is common in PRMs to attach unary factors to RVs. These
capture indirect observation assertions of the form

All other things being equal, having observed f (v) it is k
times more likely that v is such that g(v) holds than not.

For example,

Absent any other evidence about nwf’s political views, he
has been seen walking barefoot in the woods, which
doubles the odds that he is a hippie.

Figaro has a convenient short-cut for this, called constraints:

bob.smokes.constraint = (b:Boolean) => if (b) 2.0; else 1.0

And of course we can add dynamically,

bob.smokes.addConstraint((b:Boolean) => if (b) 4.0; else 3.0)

16 / 23



Specifying Soft Evidence: Constraints Prior

yy �� %%
Alice oo //

%%

Bob oo //

��

Clara

yy
nsmokers

In fact, we often will create elements
explicitly for the purpose of con-
straining them. We might believe
that friends are three times more
likely to share smoking habits than
not:

I Need a function that expresses our three-to-one odds:

def smokingInfluence(i:Boolean,j:Boolean) =

if (i == j) 3.0; else 1.0

I And need to traverse the list of friends, creating and
constraining pair elements.

for { (p1, p2) <- friends } {

^^(p1.smokes, p2.smokes).constraint =

Function.tupled(smokingInfluence _)

}

17 / 23



Specifying Soft Evidence: Constraints Prior

yy �� %%
Alice

�� %%

Bob

yy �� %%

Clara

yy ��
ˆ̂ab nsmokers ˆ̂bc

In fact, we often will create elements
explicitly for the purpose of con-
straining them. We might believe
that friends are three times more
likely to share smoking habits than
not:

I Need a function that expresses our three-to-one odds:

def smokingInfluence(i:Boolean,j:Boolean) =

if (i == j) 3.0; else 1.0

I And need to traverse the list of friends, creating and
constraining pair elements.

for { (p1, p2) <- friends } {

^^(p1.smokes, p2.smokes).constraint =

Function.tupled(smokingInfluence _)

}

17 / 23



Reasoning

Figaro can, out of the box, try to do several kinds of probabilistic
inference:

I Range (i.e., support) computation

I Exact inference w/ variable elimination

I Probability of evidence

I Most Probable Explanation

I Importance/rejection sampling (one-time or any-time)
I MCMC (one-time or any-time)

I With built-in or user-specified proposers

I Particle Filtering (on dynamic models)

And, as with Elements, it aims to make it easy to add your own.

18 / 23



Reasoning: Importance Sampling Prior

yy �� %%
Alice

�� %%

Bob

yy �� %%

Clara

yy ��
ˆ̂ab nsmokers ˆ̂bc

Importance (+rejection) sampling is
typical of Figaro’s algorithms:

I Create the inference engine, passing the elements we want to
know about and any algorithm parameters:

val ia = Importance(alice.smokes,nSmokers,1000)

ia.start()

I Ask questions:

val pm = ia.probability(nSmokers, (_:Int) >= 2) //0.9343...

val eas = ia.expectation(alice.smokes, //3.7056...

(b:Boolean) => if (b) 5.0; else 0.0)

val das = ia.distribution(alice.smokes)

// stream of (0.2503...,false), (0.7496...,true)

19 / 23



In Summary

Figaro aims to be a Scala EDSL for the whole pipeline of
probabilistic modeling: describing the model, stating observations
and priors, and performing inference.

Questions?

20 / 23



Reasoning: Metropolis-Hastings MCMC

There are two (more) things needed for MHMCMC:

I A proposal scheme.
I The ability to compute the ratio of the model’s constraints

before and after a change.

I All built-in Elements know how to do this.
I Extensions need to be taught; not hard.

There’s even a default proposal scheme:

I Selects an element from the model at random each step.

I This may or may not mix well, depending on your model.
How do we do better?

21 / 23



Reasoning: Metropolis-Hastings MCMC

There are two (more) things needed for MHMCMC:

I A proposal scheme.
I The ability to compute the ratio of the model’s constraints

before and after a change.
I All built-in Elements know how to do this.
I Extensions need to be taught; not hard.

There’s even a default proposal scheme:

I Selects an element from the model at random each step.

I This may or may not mix well, depending on your model.
How do we do better?

21 / 23



Reasoning: Metropolis-Hastings MCMC

There are two (more) things needed for MHMCMC:

I A proposal scheme.
I The ability to compute the ratio of the model’s constraints

before and after a change.
I All built-in Elements know how to do this.
I Extensions need to be taught; not hard.

There’s even a default proposal scheme:

I Selects an element from the model at random each step.

I This may or may not mix well, depending on your model.
How do we do better?

21 / 23



Reasoning: Building a Proposal Scheme

Proposal schemes are themselves built up from modular pieces!

I The base case is a ProposalScheme, which takes a list of
elements and selects each in turn:

val psA = ProposalScheme(alice.smokes)

val psB = ProposalScheme(bob.smokes)

I A DisjointScheme takes a weighted list of ProposalSchemes
and selects among them at random:

val psAorB = DisjointScheme(0.75 -> psA, 0.25 -> psB)

I An UntypedScheme proposes an element this step and then
(optionally) behaves like another scheme in subsequent steps.

val psAthenB = UntypedScheme(alice.smokes, Some(psB))

I The TypedScheme proposes an element and can continue as a
different scheme in light of that element’s value.

22 / 23



Under the hood: Elements

An Element[T] is really a deterministic producer of T values, with a
relatively simple API:

I An abstract type Randomness.

I A non-deterministic randomness-creation function
generateRandomness : () => Randomness.

I A deterministic generateValue : Randomness => T.

I A density function density : T => Double.

For MCMC, there is an additional hook:
I nextRandomness : Randomness => (Randomness, Double)

which not only proposes a new Randomness for the object but

also returns the proposal probability ratio P(r ′→r)P(r ′)
P(r→r ′)P(r) .

I Useful so that elements can help the chain mix quickly.
I e.g., SwitchingFlip, a version of Flip that always changes

its mind.

23 / 23


	Introduction
	What is Figaro?
	Embedded Domain-Specific Language?
	PPL

	Defining A Model
	Representation
	OOP
	Putting It All Together

	Specifying Evidence: Conditions, Observations, and Constraints
	Hard
	Soft

	Reasoning
	Appendix
	More Reasoning
	A Taste Of Extension


