
CHERI: A Modern Capability

Micro-Architecture

Dr. Nathaniel Wesley Filardo

April 11, 2019

Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the author(s)/presenter(s) and
should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

1 / 25

Introductions

I am. . .

I a postdoc at Cambridge University, working on CHERI.

I not speaking on behalf of my employer.

I only one of many of us on CHERI:
Robert N. M. Watson, Simon W. Moore, Peter G. Neumann,
Hesham Almatary, Jonathan Anderson, John Baldwin, Hadrien
Barrel, Ruslan Bukin, David Chisnall, Nirav Dave, Brooks Davis,
Lawrence Esswood, Khilan Gudka, Alexandre Joannou, Robert
Kovacsics, Ben Laurie, A. Theo Markettos, J. Edward Maste,
Alfredo Mazzinghi, Alan Mujumdar, Prashanth Mundkur, Steven J.
Murdoch, Edward Napierala, Robert Norton-Wright, Philip Paeps,
Lucian Paul-Trifu, Alex Richardson, Michael Roe, Colin Rothwell,
Hassen Saidi, Peter Sewell, Stacey Son, Domagoj Stolfa, Andrew
Turner, Munraj Vadera, Jonathan Woodruff, Hongyan Xia, Bjoern
A. Zeeb

2 / 25

Introductions

This talk is. . .

I not a job talk.

I an experimental information sharing exercise.

I interruptable.

I choose your own adventure!

3 / 25

Introductions

You. . .

I find your home in ECE? CS? Others?

I undergrad? graduate? postdoc? faculty?

I focus on (micro)Architecture? Kernel/OS? Security?

I have heard of “iAPX 432”?

4 / 25

Outline

I Fixed bits of the talk:
I Motivation for CHERI
I Project Status
I CHERI ISA Overview

I Modular lecture components:
I Tags in Memory and Caches
I Capabilities as Threats to Pipelines
I FreeBSD ABI for CHERI: syscall, libc, . . . (ASPLOS’19)
I Sealing and Controlled Amplification
I Temporal safety and capability revocation
I Why is CHERI not doomed to die? (“iAPX 432 again?”)
I Projects seeking students

5 / 25

Motivation

State of software security is “not great.”
Pretty sure that’s not controversial.

6 / 25

Motivation

We keep having the same kinds of problems:

I Stack smashing (Ye Olde Buffere Overflowe, ROP)

I Heap smashing (malloc gadgets, JOP)

I Unintended, overt disclosures (Heartbleed)

I Covert disclosures (Spectre variants 1 − ω)

7 / 25

Motivation

Many proposals to improve the world floating about:

I Proof-Carrying Code

I Heavy emulation of fake systems (JVM, JS, wasm)

I Ever more layers of virtualization (“ring -1”)

I Hardware-assisted isolation and attestation (SGX)

I Memory & pointer versioning (ADI, MTE)

I Remove speculation entirely from hardware

I Information flow tagging (PUMP)

I Hardware that directly understands object model (CHERI)

8 / 25

Motivation

We think CHERI is a unique point in the space:

I directly conveys some high-level notions in hardware

I scales better than current protection mechanisms

I retains broad compatibility with
I languages (C)
I OSes (FreeBSD)
I applications (PostgreSQL)

I new hardware, but “just” cores and caches

I has a gradual software transition path,
with incremental gains to be had

I exists, in FPGA, with large software stack
& encouraging results so far

9 / 25

Project Status

Commodity DRAM

Cache hierarchy

Tag cache

CHERI MIPS CPU

Kernel (FreeBSD 12!)
(ABI, VM, pager, execve)

libc

(varargs, malloc, linker)

PostgreSQL QTWebKit

LLVM
clang

lld

(cross)

FPGA

Pure cap.

Hybrid

Also
QEMU

10 / 25

Project Status

I Much of FreeBSD user space is pure capability.
I Everything from bash to OpenSSL.

I C++ support is WIP, focusing on QTWebKit.
I Self-hosting LLVM in the fullness of time.

I Lots of details in ASPLOS’19 talk next week!

11 / 25

Project Status

MiBench, SPEC CPU2006, and PostgreSQL (ASPLOS’19):

se
cu

rit
y-

sh
a

offi
ce

-s
tr

in
gs

ea
rc

h

au
to

-q
so

rt

au
to

-b
as

ic
m

at
h

net
wor

k-
dijk

st
ra

net
wor

k-
pat

ric
ia

te
lc

o-
ad

pcm
-e

nc

te
lc

o-
ad

pcm
-d

ec

sp
ec

20
06

-g
ob

m
k

sp
ec

20
06

-li
bquan

tu
m

sp
ec

20
06

-a
st

ar

sp
ec

20
06

-x
al

an
cb

m
k

in
itd

b-d
yn

am
ic

-10
+0

+10
+20
+30
+40
+50
+60
+70
+80 instructions cycles l2cache misses

12 / 25

ISA Overview

Motivation for CHERI

Project Status

I CHERI ISA Overview

Modular lecture components

13 / 25

ISA Overview
Why Capabilities?

I When reasoning about code, big gains if we can
rule out possible actions.
I Type systems for memory safety
I Object types for access control
I Separation logic for local pointer graph reasoning

I Integer pointers are terrible for this!
I Add any offset you like before dereferencing.

I Maybe the MMU, if there is one, will stop you?

I Any integer might be a pointer in disguise.
I “Pointers” can even transit the network.

14 / 25

ISA Overview
Why Capabilities?

I When reasoning about code, big gains if we can
rule out possible actions.
I Type systems for memory safety
I Object types for access control
I Separation logic for local pointer graph reasoning

I Integer pointers are terrible for this!
I Add any offset you like before dereferencing.

I Maybe the MMU, if there is one, will stop you?

I Any integer might be a pointer in disguise.
I “Pointers” can even transit the network.

14 / 25

ISA Overview
Capability Coprocessor

CHERI MIPS core has capability coprocessor.

I Exposes 32 general-purpose capability registers via new
“load/store via capability” instructions.

I Some special-purpose capability registers:
I Kernel-mode-only “scratch” capability registers
I Program Counter Capability (PCC)
I Default Data Capability (DDC)

15 / 25

ISA Overview
Capability Coprocessor

CHERI MIPS running MIPS64 instructions:

I Program counter is indirected through PCC.

I MIPS64 load/store instructions indirected through DDC.

MIPS64 ld $1, 8($2)

CHERI cld $1, $2, 8($DDC)

I OK, so what is a capability?

16 / 25

ISA Overview
Capabilities

0xF...F

0x0...0

rights base limit addresstag

A memory capability is an evolved “fat pointer”:
I A current position, address.
I Bounds: base and limit, like fat pointer.
I A set of rights (R, W, X, LC, SC, . . .) and some flags.
I A tag attesting its validity.

17 / 25

ISA Overview
Capability Use

To use a capability, it has to be in a register (like pointer).

I DDC, PCC, or general capability register.

I Full parallel copy of MIPS load/stores + capabilities.
I store double: csd $sint, $offset, offset($cap)
I load capability: clc $tcap, $offset, offset($cap)

I Instructions fault if offsets take address out of bounds or
$cap’s rights do not authorize the operation.

Contrast other capability machines:

I No additional indirection: only via MMU/TLB.

I No capability resolution table or scan:
I Everything needed for TLB lookup is in registers.
I Nothing “out there” to speculate or silently cache.
I Principle Of Intentional Use:

Don’t use rights you have by mistake!

18 / 25

ISA Overview
Capability Use

To use a capability, it has to be in a register (like pointer).

I DDC, PCC, or general capability register.

I Full parallel copy of MIPS load/stores + capabilities.
I store double: csd $sint, $offset, offset($cap)
I load capability: clc $tcap, $offset, offset($cap)

I Instructions fault if offsets take address out of bounds or
$cap’s rights do not authorize the operation.

Contrast other capability machines:

I No additional indirection: only via MMU/TLB.

I No capability resolution table or scan:
I Everything needed for TLB lookup is in registers.
I Nothing “out there” to speculate or silently cache.
I Principle Of Intentional Use:

Don’t use rights you have by mistake!
18 / 25

ISA Overview
Capability Provenance

I Omnipotent capability in register(s) at power-on.
All (tagged) capabilities trace provenance to this root.

I Capabilities copied in registers & duplicated to RAM.
cmove $cd, $cs, csc $cs, 0($ct)

I Can change address:
Increment cincoffset $cd, $delta, $cs

Assign csetaddr $cd, $addr, $cs

I Can narrow bounds:
csetbounds $cd, $length, $cs (cd.base = cs.addr)

I Can remove rights (logical AND):
candperm $cd, $mask, $cs

I Invalid operations give rise to untagged values.
(Makes our architects happier than traps would.)

19 / 25

ISA Overview
Capability Provenance

I Omnipotent capability in register(s) at power-on.
All (tagged) capabilities trace provenance to this root.

I Capabilities copied in registers & duplicated to RAM.
cmove $cd, $cs, csc $cs, 0($ct)

I Can change address:
Increment cincoffset $cd, $delta, $cs

Assign csetaddr $cd, $addr, $cs

I Can narrow bounds:
csetbounds $cd, $length, $cs (cd.base = cs.addr)

I Can remove rights (logical AND):
candperm $cd, $mask, $cs

I Invalid operations give rise to untagged values.
(Makes our architects happier than traps would.)

19 / 25

ISA Overview
Capability Provenance

I Omnipotent capability in register(s) at power-on.
All (tagged) capabilities trace provenance to this root.

I Capabilities copied in registers & duplicated to RAM.
cmove $cd, $cs, csc $cs, 0($ct)

I Can change address:
Increment cincoffset $cd, $delta, $cs

Assign csetaddr $cd, $addr, $cs

I Can narrow bounds:
csetbounds $cd, $length, $cs (cd.base = cs.addr)

I Can remove rights (logical AND):
candperm $cd, $mask, $cs

I Invalid operations give rise to untagged values.
(Makes our architects happier than traps would.)

19 / 25

ISA Overview
Capability Provenance

I Omnipotent capability in register(s) at power-on.
All (tagged) capabilities trace provenance to this root.

I Capabilities copied in registers & duplicated to RAM.
cmove $cd, $cs, csc $cs, 0($ct)

I Can change address:
Increment cincoffset $cd, $delta, $cs

Assign csetaddr $cd, $addr, $cs

I Can narrow bounds:
csetbounds $cd, $length, $cs (cd.base = cs.addr)

I Can remove rights (logical AND):
candperm $cd, $mask, $cs

I Invalid operations give rise to untagged values.
(Makes our architects happier than traps would.)

19 / 25

ISA Overview
Capability Provenance

I Omnipotent capability in register(s) at power-on.
All (tagged) capabilities trace provenance to this root.

I Capabilities copied in registers & duplicated to RAM.
cmove $cd, $cs, csc $cs, 0($ct)

I Can change address:
Increment cincoffset $cd, $delta, $cs

Assign csetaddr $cd, $addr, $cs

I Can narrow bounds:
csetbounds $cd, $length, $cs (cd.base = cs.addr)

I Can remove rights (logical AND):
candperm $cd, $mask, $cs

I Invalid operations give rise to untagged values.
(Makes our architects happier than traps would.)

19 / 25

ISA Overview
Capability Provenance

I Omnipotent capability in register(s) at power-on.
All (tagged) capabilities trace provenance to this root.

I Capabilities copied in registers & duplicated to RAM.
cmove $cd, $cs, csc $cs, 0($ct)

I Can change address:
Increment cincoffset $cd, $delta, $cs

Assign csetaddr $cd, $addr, $cs

I Can narrow bounds:
csetbounds $cd, $length, $cs (cd.base = cs.addr)

I Can remove rights (logical AND):
candperm $cd, $mask, $cs

I Invalid operations give rise to untagged values.
(Makes our architects happier than traps would.)

19 / 25

ISA Overview
Capability Provenance

I Capabilities live in regular memory.
I Inspectble with regular load/store instructions.
I Capability format, bits are not secret.

I Data stores to memory clear tag;
bits stop being a capability.

I Can neither synthesize nor corrupt a tagged capability.

20 / 25

ISA Overview
Confinement

Execution confined to transitive closure of capability registers.

I Ambient actions all monotone non-increasing in rights.

I Some capabilities are opaque (“sealed”):
I can be held
I immutable
I convey no authority until unsealed

I Controlled non-monotone changes to register file on
control transfers
I “(un)sealing rights” are capability-mediated
I Some registers only available to kernel
I Unseal some capability/ies by jumping to them

21 / 25

ISA Overview
CHERI Concentrate

Original, CHERI-256 capability format:
063

otype’24 p’31 s

l ’64

b’64

a’64

256 bits

otype: object type p: permissions s: sealed
l : object length b: base a: pointer address

I Direct encoding, so easily manipulated.

I Bulky and had to be aligned.

I Now have compressed format.
22 / 25

ISA Overview
CHERI Concentrate

CHERI Concentrate 128 format:
063

p’15 IE’1 s/L[19] T [18 : 3] TE’3 B[20 : 3] BE’3

a’64

p: permissions s: sealed a: pointer address
T : encoded limit B : encoded base ?E : exponent

I Smaller size and alignment requirements.

I Inspired by floating point representations.

I Doubles tag density to 1/128 bits (.8%).

I Not all bounds or (pointer,bounds) pairs are
representable.

23 / 25

Lecture Modules

Vote early, vote often!

I Tags in Memory and Caches

I Capabilities as Threats to Pipelines

I FreeBSD ABI for CHERI: syscall, libc, . . . (ASPLOS’19)

I Sealing and Controlled Amplification

I Temporal safety and capability revocation

I Why is CHERI not doomed to die? (“iAPX 432 again?”)

I Projects seeking students

24 / 25

Conclusion

I CHERI is a new and interesting architectural design.
I Hybrid of capability and pointer-based designs
I Largely compatible with existing languages, systems, and

applications.
I Large gain for comparatively modest changes?

I Hopefully whetted your appetite for more information.

http://cheri-cpu.org

I We’d love to hear from you.
I I am nwf20@cl.cam.ac.uk
I robert.watson@cl.cam.ac.uk software-leaning PI
I simon.moore@cl.cam.ac.uk hardware-leaning PI

25 / 25

http://cheri-cpu.org

Conclusion

I CHERI is a new and interesting architectural design.
I Hybrid of capability and pointer-based designs
I Largely compatible with existing languages, systems, and

applications.
I Large gain for comparatively modest changes?

I Hopefully whetted your appetite for more information.

http://cheri-cpu.org

I We’d love to hear from you.
I I am nwf20@cl.cam.ac.uk
I robert.watson@cl.cam.ac.uk software-leaning PI
I simon.moore@cl.cam.ac.uk hardware-leaning PI

25 / 25

http://cheri-cpu.org

Conclusion

I CHERI is a new and interesting architectural design.
I Hybrid of capability and pointer-based designs
I Largely compatible with existing languages, systems, and

applications.
I Large gain for comparatively modest changes?

I Hopefully whetted your appetite for more information.

http://cheri-cpu.org

I We’d love to hear from you.
I I am nwf20@cl.cam.ac.uk
I robert.watson@cl.cam.ac.uk software-leaning PI
I simon.moore@cl.cam.ac.uk hardware-leaning PI

25 / 25

http://cheri-cpu.org

CHERI Concentrate Regions

base

limit

Unrepresentable regions

Representable space

Dereferenceable region

1 / 1

	Introductions
	Outline
	Motivation
	Software Security Not Great
	Partial Proposals
	CHERI

	Project Status
	ISA Overview
	Why Capabilities?
	Capability Coprocessor
	Capabilities
	Capability Use
	Capability Provenance
	Confinement
	CHERI Concentrate

	Lecture Modules
	Conclusion
	Appendix

