CHERI: A Modern Capability

Micro-Architecture

Dr. Nathaniel Wesley Filardo

April 11, 2019

Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FAB750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the author(s)/presenter(s) and
should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government

1/25

Introductions

| am...

» a postdoc at Cambridge University, working on CHERI.
» not speaking on behalf of my employer.

» only one of many of us on CHERI:
Robert N. M. Watson, Simon W. Moore, Peter G. Neumann,
Hesham Almatary, Jonathan Anderson, John Baldwin, Hadrien
Barrel, Ruslan Bukin, David Chisnall, Nirav Dave, Brooks Dauvis,
Lawrence Esswood, Khilan Gudka, Alexandre Joannou, Robert
Kovacsics, Ben Laurie, A. Theo Markettos, J. Edward Maste,
Alfredo Mazzinghi, Alan Mujumdar, Prashanth Mundkur, Steven J.
Murdoch, Edward Napierala, Robert Norton-Wright, Philip Paeps,
Lucian Paul-Trifu, Alex Richardson, Michael Roe, Colin Rothwell,
Hassen Saidi, Peter Sewell, Stacey Son, Domagoj Stolfa, Andrew
Turner, Munraj Vadera, Jonathan Woodruff, Hongyan Xia, Bjoern
A. Zeeb

2/25

Introductions

This talk is. ..

» not a job talk.

» an experimental information sharing exercise.
» interruptable.
>

choose your own adventure!

3/25

Introductions

You. ..
» find your home in ECE? CS? Others?
» undergrad? graduate? postdoc? faculty?
» focus on (micro)Architecture? Kernel/OS? Security?
» have heard of “IAPX 432”7

4/25

Outline

» Fixed bits of the talk:

4
4
4

Motivation for CHERI
Project Status
CHERI ISA Overview

» Modular lecture components:

| 2

4
| 4
>
4
>
4

Tags in Memory and Caches

Capabilities as Threats to Pipelines

FreeBSD ABI for CHERI: syscall, libc, ... (ASPLOS'19)
Sealing and Controlled Amplification

Temporal safety and capability revocation

Why is CHERI not doomed to die? (“iAPX 432 again?")
Projects seeking students

5/25

Motivation

State of software security is “not great.”
Pretty sure that's not controversial.

6/25

Motivation

We keep having the same kinds of problems:
» Stack smashing (Ye Olde Buffere Overflowe, ROP)
» Heap smashing (malloc gadgets, JOP)
» Unintended, overt disclosures (Heartbleed)

» Covert disclosures (Spectre variants 1 — w)

7/25

Motivation

Many proposals to improve the world floating about:

>

vVvyVvyvVvyVYyYVvyyYy

Proof-Carrying Code

Heavy emulation of fake systems (JVM, JS, wasm)

Ever more layers of virtualization (“ring -1")
Hardware-assisted isolation and attestation (SGX)
Memory & pointer versioning (ADI, MTE)

Remove speculation entirely from hardware

Information flow tagging (PUMP)

Hardware that directly understands object model (CHERI)

8/25

Motivation

We think CHERI is a unique point in the space:

>
| 4
>

\{

directly conveys some high-level notions in hardware
scales better than current protection mechanisms

retains broad compatibility with

» languages (C)

> OSes (FreeBSD)

» applications (PostgreSQL)
new hardware, but “just” cores and caches
has a gradual software transition path,
with incremental gains to be had

exists, in FPGA, with large software stack
& encouraging results so far

9/25

Project Status

Pure cap.

Hybrid

FPGA

PostgreSQL | QTWebKit

libc
(varargs, malloc, linker)

LLVM

Kernel (FreeBSD 12!)
(ABI, VM, pager, execve)

clang
Ild

(cross)

CHERI MIPS CPU

Cache hierarchy

Tag cache

Commodity DRAM

Also
QEMU

10/25

Project Status

» Much of FreeBSD user space is pure capability.
» Everything from bash to OpenSSL.

» C++ support is WIP, focusing on QTWebKit.
» Self-hosting LLVM in the fullness of time.

» Lots of details in ASPLOS'19 talk next week!

11/25

Project Status

MiBench, SPEC CPU2006, and PostgreSQL (ASPLOS'19):

+80 TZZ7 instructions cycles A& 12cache misses

+70
+60
+50
+40
b
+30 K
+20 X 1
+10 IR R IS
0 - aﬁg I R |
‘o 17 PNR VAN NRI N ANK PR e N PR PR N
R & g &
ey & X & X 2 & & S S ¥ & &
S & S a & & & & @ng * i)
& > X N R A2 N
< .df} & -z)"ﬂo 5 e \Odb z&Q QU\\ e‘?él QQG {é'b
& 2 <€ < 8 @ K & & N
Ed K

12/25

ISA Overview

Motivation for CHERI
Project Status
» CHERI ISA Overview

Modular lecture components

13/25

ISA Overview
Why Capabilities?

» When reasoning about code, big gains if we can
rule out possible actions.
> Type systems for memory safety
» Object types for access control
» Separation logic for local pointer graph reasoning

14/25

ISA Overview
Why Capabilities?

» When reasoning about code, big gains if we can
rule out possible actions.

> Type systems for memory safety

» Object types for access control

» Separation logic for local pointer graph reasoning
» Integer pointers are terrible for this!

» Add any offset you like before dereferencing.

» Maybe the MMU, if there is one, will stop you?

» Any integer might be a pointer in disguise.
» “Pointers” can even transit the network.

14/25

ISA Overview
Capability Coprocessor

CHERI MIPS core has capability coprocessor.
» Exposes 32 general-purpose capability registers via new
“load /store via capability” instructions.
» Some special-purpose capability registers:

» Kernel-mode-only “scratch” capability registers
» Program Counter Capability (PCC)
» Default Data Capability (DDC)

15/25

ISA Overview
Capability Coprocessor

CHERI MIPS running MIPS64 instructions:
» Program counter is indirected through PCC.
» MIPS64 load/store instructions indirected through DDC.

MIPS64 1d $1, 8($2)
CHERI c1d $1, $2, 8($DDC)

» OK, so what is a capability?

16 /25

ISA Overview
Capabilities

OxF...F

tag | | rights | base | limit | address

0x0...0

A memory capability is an evolved “fat pointer”:
» A current position, address.
» Bounds: base and limit, like fat pointer.
> A set of rights (R, W, X, LC, SC, ...) and some flags.
> A tag attesting its validity.

17/25

ISA Overview
Capability Use
To use a capability, it has to be in a register (like pointer).
» DDC, PCC, or general capability register.
» Full parallel copy of MIPS load/stores + capabilities.

» store double: csd $sint, $offset, offset($cap)
» load capability: clc $tcap, $offset, offset($cap)

» |Instructions fault if offsets take address out of bounds or
$cap's rights do not authorize the operation.

18/25

ISA Overview
Capability Use
To use a capability, it has to be in a register (like pointer).
» DDC, PCC, or general capability register.
» Full parallel copy of MIPS load/stores + capabilities.
» store double: csd $sint, $offset, offset($cap)
» load capability: clc $tcap, $offset, offset($cap)
» Instructions fault if offsets take address out of bounds or
$cap's rights do not authorize the operation.
Contrast other capability machines:
» No additional indirection: only via MMU/TLB.

» No capability resolution table or scan:

» Everything needed for TLB lookup is in registers.
» Nothing “out there” to speculate or silently cache.
» Principle Of Intentional Use:

Don't use rights you have by mistake!

18/25

ISA Overview
Capability Provenance

» Omnipotent capability in register(s) at power-on.
All (tagged) capabilities trace provenance to this root.

19/25

ISA Overview
Capability Provenance

» Omnipotent capability in register(s) at power-on.
All (tagged) capabilities trace provenance to this root.

» Capabilities copied in registers & duplicated to RAM.
cmove $cd, $cs, csc $cs, 0($ct)

19/25

ISA Overview
Capability Provenance

» Omnipotent capability in register(s) at power-on.

All (tagged) capabilities trace provenance to this root.

» Capabilities copied in registers & duplicated to RAM.
cmove $cd, $cs, csc $cs, 0($ct)
» Can change address:
Increment cincoffset $cd, $delta, $cs
Assign csetaddr $cd, $addr, $cs

19/25

ISA Overview
Capability Provenance

>

>

Omnipotent capability in register(s) at power-on.
All (tagged) capabilities trace provenance to this root.
Capabilities copied in registers & duplicated to RAM.
cmove $cd, $cs, csc $cs, 0($ct)
Can change address:
Increment cincoffset $cd, $delta, $cs
Assign csetaddr $cd, $addr, $cs

Can narrow bounds:
csetbounds $cd, $length, $cs (cd.base = cs.addr)

19/25

ISA Overview
Capability Provenance

>

>

>

Omnipotent capability in register(s) at power-on.

All (tagged) capabilities trace provenance to this root.
Capabilities copied in registers & duplicated to RAM.
cmove $cd, $cs, csc $cs, 0($ct)

Can change address:
Increment cincoffset $cd, $delta, $cs
Assign csetaddr $cd, $addr, $cs

Can narrow bounds:
csetbounds $cd, $length, $cs (cd.base = cs.addr)

Can remove rights (logical AND):
candperm $cd, $mask, $cs

19/25

ISA Overview
Capability Provenance

>

>

>

Omnipotent capability in register(s) at power-on.
All (tagged) capabilities trace provenance to this root.
Capabilities copied in registers & duplicated to RAM.
cmove $cd, $cs, csc $cs, 0($ct)
Can change address:
Increment cincoffset $cd, $delta, $cs
Assign csetaddr $cd, $addr, $cs

Can narrow bounds:

csetbounds $cd, $length, $cs (cd.base = cs.addr)
Can remove rights (logical AND):

candperm $cd, $mask, $cs

Invalid operations give rise to untagged values.
(Makes our architects happier than traps would.)

19/25

ISA Overview
Capability Provenance

» Capabilities live in regular memory.

» Inspectble with regular load/store instructions.
» Capability format, bits are not secret.

» Data stores to memory clear tag;
bits stop being a capability.
» Can neither synthesize nor corrupt a tagged capability.

20/25

ISA Overview
Confinement

Execution confined to transitive closure of capability registers.
» Ambient actions all monotone non-increasing in rights.

» Some capabilities are opaque (“sealed”):
» can be held
» immutable
» convey no authority until unsealed
» Controlled non-monotone changes to register file on
control transfers
» “(un)sealing rights" are capability-mediated
» Some registers only available to kernel
» Unseal some capability/ies by jumping to them

21/25

ISA Overview
CHERI Concentrate

Original, CHERI-256 capability format:

63

otype'24

p'31

I'64

b'64

a'64

otype: object type p: permissions
b: base

I: object length

» Direct encoding, so easily manipulated.

» Bulky and had to be aligned.

» Now have compressed format.

256 bits

s: sealed
a: pointer address

22/25

ISA Overview
CHERI Concentrate

CHERI Concentrate 128 format:

63 0
p'15 Ie'l|s/L[19]| T[18:3] | Te'3| B[20:3] |Bg'3
a'64
p: permissions s: sealed a: pointer address
T: encoded limit B: encoded base 7g: exponent

» Smaller size and alignment requirements.
» Inspired by floating point representations.
» Doubles tag density to 1/128 bits (.8%).

» Not all bounds or (pointer,bounds) pairs are
representable.

23/25

Lecture Modules

Vote early, vote often!

>

vvyVvyVvVvyyvVyy

Tags in Memory and Caches

Capabilities as Threats to Pipelines

FreeBSD ABI for CHERI: syscall, libc, ... (ASPLOS'19)
Sealing and Controlled Amplification

Temporal safety and capability revocation

Why is CHERI not doomed to die? (“iAPX 432 again?")

Projects seeking students

24 /25

Conclusion

» CHERI is a new and interesting architectural design.
» Hybrid of capability and pointer-based designs
» Largely compatible with existing languages, systems, and
applications.
» Large gain for comparatively modest changes?

25/25

http://cheri-cpu.org

Conclusion

» CHERI is a new and interesting architectural design.

» Hybrid of capability and pointer-based designs

» Largely compatible with existing languages, systems, and
applications.

» Large gain for comparatively modest changes?

» Hopefully whetted your appetite for more information.
http://cheri-cpu.org

25/25

http://cheri-cpu.org

Conclusion

» CHERI is a new and interesting architectural design.

» Hybrid of capability and pointer-based designs

» Largely compatible with existing languages, systems, and
applications.

» Large gain for comparatively modest changes?

» Hopefully whetted your appetite for more information.
http://cheri-cpu.org
» We'd love to hear from you.

» | am nwf20Q@cl.cam.ac.uk
» robert.watson@cl.cam.ac.uk software-leaning Pl
» simon.moore@cl.cam.ac.uk hardware-leaning Pl

25/25

http://cheri-cpu.org

CHERI Concentrate Regions

Unrepresentable regions
limit

Representable space

Dereferenceable region

base

1/1

	Introductions
	Outline
	Motivation
	Software Security Not Great
	Partial Proposals
	CHERI

	Project Status
	ISA Overview
	Why Capabilities?
	Capability Coprocessor
	Capabilities
	Capability Use
	Capability Provenance
	Confinement
	CHERI Concentrate

	Lecture Modules
	Conclusion
	Appendix

