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Abstract

We investigate the design of an expressive, purely-declarative, weighted logic
programming language, Dyna. Dyna is a decade-plus effort in pushing the boundaries
of declarative programming and “executable mathematics;” it instantiates an unusual
point in the design space, as it is both Turing-complete (unlike Datalog) and devoid
of a specified execution order (unlike Prolog). That is, it is designed to be, at once,
both highly expressive and rich in opportunities for automated optimization. This
thesis contains two major thrusts. We first consider both the denotational (§2.1.2
and §3.1.4) and operational aspects (§2.2 to §2.5, §3.2 to §3.6, and §4) of Dyna. In
particular, for operational semantics, we introduce (§2.2) and extend (through §2.5)
our EarthBound solver for finite circuits; §3 considers the generalization to logic
programs proper. We then turn our attention to the static analysis of this language,
considering mechanisms for reasoning both about abstract notions of well-formedness
of programs (§5.2) as well as more mundane concerns of realizability of programs in
actual computation (§5.3 and §5.4). Along the way we endeavour to place our work in
the context of the larger field of logic programming languages and present our current
thoughts on future avenues of exploration.

Primary Reader: Dr. Jason Eisner
Secondary Readers: Dr. Scott Smith, Dr. David Warren (Emeritus, SUNY Stony
Brook)
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Chapter 1

Introduction

“Begin at the beginning,” the King said, very gravely,
“and go on till you come to the end: then stop.”

Lewis Carroll, Alice in Wonderland

1.1 Motivation and Background
The Dyna programming language was born more than a decade ago in an effort to simplify
the lives of researchers working in the area of statistical artificial intelligence and natural
language processing [52, 51]. The effort having been found worthwhile, work began on
a second edition of the language, which is designed to overcome many of the expressive
limitations and implementation artifacts of the first [50]. This thesis is the culmination of
a decade of design work and presents core formalisms for efficient execution (§2 to §4) and
static analysis (§4.4 and §5) of these second-edition Dyna programs.

Fundamentally, Dyna is a language for specifying a deductive database [116], a
mutable data structure which does more than just store data for later retrieval: additionally,
it derives conclusions from its inputs. Such a structure is given a stream of updates (which
change the stored data) and queries (which are requests to retrieve stored data and/or the
conclusions drawn therefrom). The data structure responds by looking up or computing
the answers to queries. Queries may be for individual items of information or for sets of
related items (e.g., collections of rows within a table, in a traditional, relational database).

Dyna is a pure and declarative specification language. Programs written in Dyna
have no ability to initiate interactions with their environment. Permissible answers to a
query depend solely on the updates made prior to that query (and not, e.g., sensors of the
environment), and updates affect only the answers to subsequent queries (and not, e.g.,
actuators manipulating real-world state). Dyna programs do not specify how the queries
or updates are to be carried out. That is, a Dyna program does not explicitly specify
things like choices of data structures for particular pieces of data, loop orders for traversals,
or even the order in which computations are to take place. A Dyna program is, thus,
inert unless combined with a solver, a computational mechanism for carrying out the
computations described. Strategies ranging from the laziest (“store the update stream and
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scan it when queried”) to the most eager (“recompute all derived data upon every update”)
are all possible. This partition between specification and execution is well-studied and even
captured as a slogan of the logic programming community (of which Dyna is a small part):
“Algorithm = Logic + Control” [109].1 Over the years, many such language-and-solver
pairs have emerged, e.g., [6, 117, 192, 124, 190] to name but a few. When so combined,
the declarative program and solver form a reactive program, one that “maintain[s] a
continuous interaction with [its] environment... at a speed which is determined by the
environment” [19].2

Example 1: As a simple example, consider a priority queue that denotationally contains a
finite set of (key, value) items, where the values are interpreted as priorities. An update
will add or remove the item with a particular key, or change its value. A supported query is
to ask for the current maximum-value item (if any). The fact that this item is the correct
answer was not explicitly inserted by any update, but is rather the result of an eager or
lazy computation that supports the query; that is, “the maximum-value item” is, itself,
a (derived) item. Other queries might also be supported, e.g., for the collection of items
whose keys match some pattern.

This priority queue is, presumably, pure, in that it does not take it upon itself
to interact with the environment. It makes no use of a clock, random numbers, the state
of the weather, or whatever missiles might be attached to the computer upon which it
finds itself running. While a particular implementation of such a priority queue may be
expressed in a procedural language, the relationship between items inserted (and not yet
deleted) and the “maximum-value item” item, being a mathematical function, may be given
declaratively.3 ◊

Solving a Dyna program is nontrivial, both theoretically and computationally.
Beyond computation of derived items from input items, derived items may depend upon
other derived items. This dependence is permitted, in Dyna and other sufficiently expressive
languages, to be cyclic, which makes answers not necessarily well-founded and so there may
be zero answers to a program, exactly one, or more than one answer. Dyna does not, unlike
many of its brethren, seek to prohibit the “zero” or “more than one” case. Moreover, the
language specification does not concern itself with the number of answers to the program
at all; the solvers simply attempt to find an answer, should one exist. This loss of well-

1As with all slogans, there is some fuzziness, as one could imagine embedding a simulation of a control
algorithm within a sufficiently expressive logic. In some cases, e.g., Prolog [99], the control is standard and
implicit, imposed by fiat by the compiler; it is, nevertheless, not the focus of the program’s syntax, which
remains firmly rooted in the logical description of data interdependence. Other systems, such as Mercury
[124], have fixed aspects of their control but also attempt to derive others from static analysis of the program,
as we shall in §5.3.

2Admittedly, our solver may take time—possibly even vast stretches of time—to respond to a query (or
to be ready for the next update) from its environment. Nevertheless, the system is driven by events from
the outside world; on an arbitrarily fast computer, the solver’s work would always finish, and the computer
idle, before the next external stimulus.

3There are some algorithms which make use of random numbers internally and yet retain their “pure
interface.” Neglecting such real-world concerns as the number of CPU instructions or wall-clock time (or
power) taken to perform an operation, such algorithms are equivalent to corresponding algorithms that do
not avail themselves of randomness. We beg the reader’s indulgence as we sketch the notion of purity, which
is, admittedly, a subject of some contention within the field.
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a↦ 5 Input items (Iinp)
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q↦ 0

Update

Query Answer

Figure 1.1: The map-data-structure view of a weighted logic program solver. The solver algorithm runs the
loop within the box, which must compute the derived items requisite to answer the queries. A schematic
representation of possible communication with the driver program (i.e., update, query, and answer) is shown;
updates change the value of input items, while queries can look up the values associated with both input
and derived items.

foundedness is one reason that solvers for these expressive languages may not terminate.
More practical concerns are pervasive as well, even in absence of complex dependency
structure. The solver may gain an asymptotic increase in efficiency if it caches derived
items so that computational effort can be reused. However, computers have finite memory
and there are costs associated with cached values that must be modified in response to
updates, so the solver must juggle competing demands using some policy. Further, the
solver must schedule internal computations, notably the effects of updates and the order
in which (recursive) queries are to be resolved. In order to remain maximally flexible, the
solver strategies we have developed and which are presented in this thesis are, to the extent
possible, correct regardless of policies and schedules employed by the solver. While a lofty
goal, such effort was motivated by an overwhelming desire to bring machine learning to
bear within the solver, so that the solver can adapt its policies and schedules in a workload-
responsive way. (While such machine learning concerns are out of scope for this thesis, they
are very eagerly being pursued by other members of the Dyna project.)

Even so, a Dyna program within its solver is still a passive object. It will do
nothing (other than initialize itself, perhaps) absent some external stimulus. We refer to the
environment in which the solver finds itself as the driver program. It is this driver that is
responsible for interaction with the procedural, chronologically-measured environment and
the users therein; the driver issues updates and queries to the solver and uses the resulting
answers for its own ends. A schematic representation is shown in figure 1.1.

1.1.1 Logic Programming

Dyna is, additionally, a logic programming language. That is, it uses the vocabulary of logical
clauses to represent possibly infinite sets of theorems [83], which describe the relationships
between input and derived data. The most well-known logic programming language is
undoubtedly Prolog [99] and its numerous implementations, e.g., [29, 77, 192, 193]. Prolog
has formed the basis of many other logic languages [1, 124, 148], the most well-known of
which is a subset of Prolog termed “Datalog,” which, in turn, has numerous extensions [153,
195, 82, 36, 32, 13] and implementations [190, 117] of its own.

By way of example, the Prolog rule “a :- b, c” indicates that the fact a is
provable if the facts b and c are. (The syntax “:-” is meant to be mnemonic for ←.) More
generally, rules can contain variables (capitalized identifiers), as in “rs(X) :- r(X,Y),
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s(Y).” This rule says that, for any x, rs(x) is provable if there exists a y such that there
are proofs of both r(x,y) and s(y).4 The pair of rules “a :- b. a :- c” provide two
possible ways of proving a: from either b or c. The (single) identifier to the left of the
“arrow” “:-” is the head of the rule while one finds comma-separated subgoals to the
right, which collectively form the body. The curious reader is invited to peek ahead to §1.4
and the references given therein.

Dyna, being, in fact, a weighted logic language, extends this formalism to general
expressions, rather than logic clauses. Our rules look like “rs(X) ⊕= r(X,Y) ⊗ s(Y),”
which indicates that, for all x, each rs(x) is associated with the pairwise ⊗ of all r(x,y)
and s(y) for all y such that these items have values. The associative-commutative operator
⊕ is used to combine these multiple results, so that, for example, rs(1) would be assigned
the value (r(1,1)⊗ s(1)) ⊕ (r(1,2)⊗ s(2)) ⊕⋯.5

More generally, one can give recursive definitions within the logic program. A
simple example is a function which measures the length of a list. Herein, by “list,” we
often mean the LISP-style list structure, which is built from an “end” marker, pronounced
nil, and a structure to hold an element and “the rest” of the list, pronounced cons.6 A
particular instance of cons is written cons(e,l), where e and l represent the element and the
rest of the list, respectively. There are two cases to consider: length(nil) = 0 defines an
empty list to have length 0, and length(cons(H,T)) = 1 + length(T) defines the length
of a non-empty list to be one more than the length of its tail. More interesting recursive
examples include weighted transitive closure (e.g., minimum cost paths within a graph); we
defer treatment to “and/or Graphs” (in §2.1.2.1).

We have found these weighted logic rules to be a very powerful formalism for many
modern AI tasks, as shown in our position paper [50]. That paper shows off the rich surface
syntax of Dyna, which is designed with an eye towards making as many things as concise
as possible. In this thesis, we will use simpler, but more verbose, representations and will
focus on the language itself, rather than its use cases.

1.1.2 Reactive Programming

The execution model developed for the first edition of Dyna naturally incorporated a notion
of reactivity: the inputs to the program could be changed on the fly and the outputs
would update themselves correspondingly. This reactivity also goes by the names “view
maintenance” and “stream processing” [131]. While this kind of behavior is found in some
Datalog systems, it tends not to be native to Prolog solvers, though there is support for
programmer-directed reactivity in XSB Prolog [170]. Dyna’s reactivity is built-in, in the
same way as in languages supporting “incremental re-computation” or “adaptivity” such

4For readers familiar with databases, this is a one-column view of a join of the two-column r table’s
second column with the one-column s table’s only column.

5Assuming no other rules have rs(X) heads, anyway. If there were such, their contributions would have
to be included as well, and we would require that they also used the same ⊕ to combine contributions. In
the expression just given, we have performed the usual sleight of hand, using a name, such as s(1), to refer
to its value. Because we will manipulate both names and values in this thesis, we will use a formalism that
makes it clear which role we mean.

6The curious reader is directed to the definition within Common LISP; see Steele [168, §2.4].
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as that of Acar and Ley-Wild [4] or as in programs written using a “Functional Reactive
Programming” library [54, 37].

1.2 Contrasting Dyna to Existing Logic Languages
As just said, Dyna is another entry in the family of “Prolog-inspired logic languages” but
represents its own distinct point in the space. The design of Dyna borrows heavily from
standard Prolog, Prolog extensions, and Datalog derivatives with aggregation, but Dyna
also contains elements of our own design. We now highlight some of the key differences of
the semantic features of Dyna from those of earlier systems.7

Weights Prolog programs are, when viewed as maps, unweighted: if an item is asserted to
have a value, that value is from a singleton set. (The element of that set is often pronounced
“true” or, perhaps more properly, “provable”.) As such, duplicate answers are permitted and
are inconsequential from a logical semantics perspective. Prolog is thus sometimes said to be
an all-proofs system, where each answer within a stream represents a different, successful
proof of a subset of the query. Recall that computation of derived items is recursive; in
Prolog, these recursive calls need not finish enumerating their answer streams before a proof
of the original query is reported; the solver thus interleaves its two behaviors of 1 exploring
the space of all possible proofs of the queried items and 2 emitting found answers. There
may be proofs of overlapping subsets of the query or even multiple proofs of the same subset,
but the stream is monotonic: once an item is shown to be true, subsequent discoveries will
not change this fact. The duplicate work they represent is typically viewed as less than the
effort it would take to remove them (and, when Prolog is not being used “extra-logically,”
it may be desirable that the duplicate entries remain).

Once weights are more elaborate, in order to preserve the functional dependency
in which each item has exactly one weight associated with it, such overlap must be elimi-
nated by aggregation. Thus, the answer stream from a weighted logic program must not,
semantically, have duplicates, making it an all-answers stream. This functional depen-
dence makes weights non-monotonic:8 subsequent values discovered for an item combine
with earlier values, potentially invalidating observations made of those values. As a result,
the ability of the solver to interleave answers and search is restricted; in the most general
setting, no such interleaving will be possible and all recursive queries will have to termi-

7While we have designed the surface syntax of Dyna 2, the second edition of the Dyna language [50], to
be a suitable language for expressing programs for deductive databases, when this thesis works with logic
programs, it will do so almost exclusively in a simpler (though more verbose) core calculus, µDyna (which
will be introduced in §3.1). µDyna is suitable as an early intermediate representation within a compiler; in
particular, it has dispensed with almost all syntactic details while retaining the salient semantic features of
the language.

8The word “monotonic” is unfortunately overloaded in meaning in a weighted logic system such as ours.
There are “monotone functions”: those which map an ordering assertion of input values into an ordering
assertion of the corresponding output values (see Functions and Maps, page 10). There is also “monotonic
reasoning,” in which proven items are irrefutable: once a given item has been assigned a value, subsequent
reasoning will never, in the absence of updates from without the pure program, retract or modify that value.
Confusingly, the use of monotone aggregation functions does not ensure monotonic reasoning.
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nate before any answers can be reported. Prior weighted systems have wrestled with this
inherent non-monotonicity and come to differing conclusions, considered below.

Item Names and Values Dyna’s domain of discourse is shared with Prolog: tree-shaped
immutable objects. The name of its items and the values thereof are all chosen from a so-
called “Herbrand universe” [92], which we explain, more formally, later. Datalog restricts
its domain to flat terms, i.e., named tuples over some universe of atoms (e.g., “s(z),” but
not “s(s(z))”).

Program Non-Stratification Many Datalogs with aggregations (e.g., those of Ramakr-
ishnan et al. [153], Zukowski and Freitag [195], Greco [82], and Consens and Mendelzon
[36]) have continued, like Datalog, to require a stratified program, wherein the value of an
item may never cyclically depend upon itself, even through other items’ values. The Prolog
extension to support negation (developed by Clark [30]) requires stratification (at least) of
items whose negation is taken. Dyna 2 does not require program stratification, though as
mentioned before, this means that the solver may never terminate or that there may be
zero or more than one answers to a given program.

Weight Non-Isolation Other weighted systems, e.g., that of Cohen, Nutt, and Sere-
brenik [32] and the predecessor of the current effort, Dyna 1 [51], have relied on a strong
partition between the logical provability of items (i.e., whether or not an item has a weight
assigned) and the precise value of those items’ weights. Broadly speaking, these systems do
not allow the values of items to influence the data flow within (the same stratum of) the
program. While many useful scenarios, e.g., weighted transitive closure such as the shortest
path in a cyclic graph, are amenable to this restriction, it imposes an unnecessary distinc-
tion between weighted items and functions on weights. Dyna 2 does not enforce isolation
of item names and weights.

Answer Stream Elements Prolog execution systems tend to be based on SLD resolution
[110] (see §1.4 for more detailed discussion) which admits reasoning about sets of items
at once: if a program contains the rule “p(1,X,Y),” the query “p(A,2,B)” will return
“p(1,2,B)” as an answer, coding for the provability of the intersection of the rule’s assertion
and the query. The answer stream is thus a stream of sets of items.

While some Datalog algorithms do act on sets of items at once (e.g., DRed—
Delete and REDerive—[85]), the definition of Datalog ensures that all answer sets are finite,
permitting answer streams to be streams of individual items and their attendant values.

Dyna 2 adds a set-theoretic runtime type system to permit a richer vocabulary of
sets; this thesis details at length the requirements of such a system, starting in §3.3. See §4
for more discussion of the computational representation of sets of terms.

The task at hand, then, is to somehow get the best of all possible worlds, to design
a single framework that can handle set-at-a-time reasoning, in the presence of nontrivial
weights and non-stratified programs and with potentially complicated interplay between
weights and item provability.
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1.3 Mathematical Background and Notation
This work builds upon a number of different threads from different areas of mathematics
and computer science. Wherever possible, notation is taken from the most relevant field.
In this section, we introduce all of our notation not specific to Dyna itself. Readers are
invited to skim this section and refer back to it via the index (at the end of the document,
on page 191), should the need arise.

Quantifiers Throughout this document, we use consistent notation for quantification: the
quantifiers will be subscripted with their bound variables (and their domain constraints),
there will be no delimiter between quantifiers and expressions, and logical quantifiers scope
as far to the right as possible. That is, rather than “∀a ∈ α . ϕ(a),” we write “∀a∈αϕ(a),” in
keeping with other operators like ⋃a∈αϕ(a). (However, these other operators scope only to
the end of an expression, delimited by an operation such as = or ⊆.) Domains of quantified
variables will often be left implicit when clear from context (e.g., ∀iϕ(xi) takes i such that
xi is in scope).

Sets We adopt set- and bag- theoretic semantics throughout this thesis, relying on a well-
typed underlying theory. Sets are manipulated by the typical operators (e.g., {. . .}, ∪, ∩, ∈,
⊆, ∖). ℘ sends a set to its powerset; ℘fin sends a set to its set of finite subsets. ∣σ∣ denotes the
cardinality of σ; we take cardinalities to be limited to N∞

def= N∪{∞}.9 The partial operator
selt(σ) projects a singleton set to its element: selt({s}) def= s. We define the shorthands ⋃σ
def= ⋃s∈σ s and Nn1

def= {1,2, . . . , n} ⊂ N.

Bags We will use *. . .+ for bag literals. *s@m+ denotes a bag holding exactly m copies of
s, also said as s with multiplicity m ∈ N∞ (with 0 being identified with absence from the
bag). Multiplicities of 1may be suppressed: *s+ = *s@1+; @ is part of the bag notation (i.e., a
variable s cannot stand for “t@m”), so this abbreviation is unambiguous. *s1@m1, s2@m2+,
with s1 ≠ s2, denotes a bag holding exactly m1 copies of s1 and m2 copies of s2. Bag
multiplicities add, so *s@m1, s@m2+ = *s@(m1 +m2)+. As usual, comprehension notation
may be employed, quantifying over both elements and multiplicities, so *s@m ∣ s ∈ {a,b},m ∈
{1,2}+ is a set holding three copies each of a and b. Bag membership is indicated as s ⊏−≥m β
if s occurs in β at least m times, or as s ⊏−=m β when when β contains exactly m copies of s.
s ⊏− β def= s ⊏−≥1 β. Bag cardinality is the sum of all membership multiplicities. The traditional
symbols of set-theory with a plus sign superimposed will be used for bag operations: ⊎, ?,
F, etc., though we overload ∅ for the empty bag as well. ℘+β denotes the set of all sub-bags
of bag β. The underlying set of a bag β is Uβ def= {b ∣ b ⊏− β}. In the other direction, Ūmσ
is the bag whose elements are from the set σ, all with multiplicity m; if not specified, m = 1.

Tuples We assume our theory contains n-ary tuples, denoted ⟨ti⟩i∈Nn
1

def= ⟨t1, . . . , tn⟩; we
use t⃗ when n is clear from context. A pair is a tuple of length 2. ++ is the associative

9That is, naturals and only one infinity. The ⟨N,+,0, ⋅,1⟩ commutative semiring (see Algebraic Structures,
page 10) extends as might be expected: m +∞ def= ∞ for all m ∈ N∞. 0 ⋅ ∞ def= 0, and m ⋅ ∞ def= ∞ for m ≠ 0.
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tuple concatenation operator. The length of a tuple is denoted tlen(⟨t1, . . . , tn⟩) def= n; ⟨⟩ is
the tuple of length 0. We define a projection operator, denoted ⋅⇃⋅, to access components
of (nested) tuples. t⃗⇃k, for k ∈ Nn1 , means simply the k-th component of t⃗, i.e., tk. More
generally, we write t⃗⇃k1.k2.k3 to mean the k3-th component of the k2-th component of the
k1-th component of t⃗. The subscript k1.k2.k3 is called a path and can in general be any
tuple of positive integers; π denotes such a path. We may extend a path by prefix or postfix
concatenation, e.g., if π = 2.3 then 1.π.4 = 1.2.3.4. The set of positions within a nested
structure of tuples t is the set of paths π for which t⇃π is defined. Formally, we should
write, e.g., π = ⟨k1, k2, k3⟩ for paths and π ++π′ for concatenation, but the dot notation is
standard and more easily read (save a very minor risk of occasional conflation with real
numbers). Projection is, formally, defined inductively: t⇃⟨⟩

def= t (even for non-tuple t) and
⟨τ1, . . . , τn⟩⇃⟨k⟩ ++π

def= τk⇃π.
Pairs play a wide variety of roles in the formalisms in this thesis. It will be

convenient to have a corresponding variety of syntaxes for pairs, beyond just ⟨a, b⟩. We will,
therefore, often use infix pair constructors, namely ↦ (see Functions and Maps, below), ↩,
and ⇐, in different contexts as mnemonics for the role a given pair is playing. That is,
while (a ↦ b) = (a ↩ b) = (a ⇐ b) def= ⟨a, b⟩, the use of the different symbols should prove
easier to read, especially when nested inside other tuples, parentheses, and/or set braces.

Sets and Bags of Tuples It will be convenient to have several shorthands available to
build up and manipulate sets and bags of tuples without having to resort to comprehension
notation every time.

Projection is extended to allow its first argument to be a set or bag of tuples:
σ⇃π def= {s⇃π ∣ s ∈ σ} and σ⇃+π

def= *(s⇃π)@m ∣ s ⊏−=m σ+. Since restricting focus to a particular
path in a set of tuples may yield a smaller set, we have a bag-view projector as well:
σ⇃@π

def= *s⇃π ∣ s ∈ σ+.10 In addition to projection from sets, we will make extremely heavy
use of refinement, σ[τ/π] def= {s ∈ σ ∣ s⇃π ∈ τ}, which is a generalization of traditional
substitution in systems based on structures over variables, as opposed to our more set-centric
approach (see §4 for more discussion). After introducing some more vocabulary, we give
some lemmas about projection and refinement in Lemmas for Projection and Refinement,
below.

As we will often have sets described by tuples of elements sampled from other sets,
we introduce a product-forming tuple operator for n-ary Cartesian products:11

jσ1, . . . , σno def= {⟨s1, . . . , sn⟩ ∣ ∀i si ∈ σi}.

When all {σi ∣ i} are equal, we may write σn.
Dependent sums, a particular encoding of disjoint unions, are written Σs∈σ Ys

def=

10Our use of N∞ for multiplicities implies some small loss of information: {⟨2, r⟩ ∣ r ∈ R}⇃@1 = *2@∞+ =
{⟨2, n⟩ ∣ n ∈ N}⇃@1 as both of these sets are infinite (though not isomorphic to each other). However, later, we
will make heavy use of a cardinality of set subtraction operator, and we expect to be able to recognize that
∣R ∖N∣ = ∞ while ∣N ∖N∣ = 0 and ∣({a} ∪N) ∖N∣ = 1.

11Cartesian products of sets are also occasionally called “cross products,” but we avoid the term due to
risk of confusion with the vector space operation. In databases, the concept is also termed “cross join.”
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{⟨s, t⟩ ∣ s ∈ σ, t ∈ Ys}, where Y is a σ-indexed collection of sets.12 We may abbreviate
summation as ΣY when the domain is clear. Every set of pairs τ is a dependent sum of
some indexed collection: τ = Σt∈τ⇃1(τ[{t}/1]⇃2).13

Functions and Maps The set of total functions from set σ to set τ is denoted σ → τ . σ
is said to be the domain, and τ the codomain. A function f is total (and in σ → τ) iff
∀s∈σ ∃!t∈τ f(s) = t. (While often mistaken for a typographic error, iff is short for “if and only
if.”) The symbol “→” right-associates (as is typical for functional programming), meaning
that α → β → τ is α → (β → τ) and not (α → β) → τ . When the domain is a finite set, we
may use the word map interchangeably with “function.” When the codomain is potentially
dependent upon the input, we use the dependent product operator: Πs∈σ Ys where Y is,
as with Σ, a σ-indexed collection of sets. f ∈ Πs∈σ Ys iff ∀s∈σ ∃!ys∈Ys f(s) = ys.14 (σ → τ
is just the special case of a constant collection, i.e., ∀s∈σ Ys = τ .) When σ is clear from
context, we may abbreviate this to ΠY . The domain of a function f ∈ Πs∈σ Ys is denoted
dom(f) def= σ. Function evaluation always uses parentheses in this thesis, e.g., f(x), rather
than mere juxtaposition, e.g., f x, as would be traditional for functional programming.

The reuse of product notation for sets of functions is justified, or perhaps excused,
by the observation that jτ1, . . . , τno is isomorphic to Πi∈Nn

1
τi: “⟨f(1), . . . , f(n)⟩” can be read

as sending a function f ∈ Πi∈Nn
1
τi to a tuple or defining such a f from a tuple.15 We will,

therefore, sometimes use tuples of length k as (dependent) functions with domains Nk1.
When a function’s codomain is a subset of its domain (or all of its dependent

codomains are subsets of its domain), it is said to be an automorphism. Given an au-
tomorphsim f ∈ Πσ Y , σ′ ⊆ σ is closed under f iff {f(s) ∣ s ∈ σ′} ⊆ σ′. The notions of
automorphism and closure thereunder extend to functions of multiple arguments, so we
may, for example, speak of closure of a subset of R under addition in general, not just of
its closure under addition by a particular constant.

We may transform (via the covariant powerset (categorical) functor, ℘) functions
f ∈ σ → τ to functions ℘f ∈ ℘σ → ℘τ defined on sets of elements: (℘f)(α) def= {f(a) ∣ a ∈ α}.

12For readers who are unfamiliar with the notation and may be concerned by the apparent re-use of
numeric summation notation for something completely different, a worthwhile exercise is to demonstrate,
for all sets α and α-indexed collections of sets Y , that ∣(Σa∈α Ya)∣ = Σa∈α∣Ya∣, where the quantifier on the
left is our set-theoretic one and that on the right is the more traditional summation operator operating on
cardinalities. We avoid referring to objects Y as “functions” to stave off the question of their codomain (i.e.,
the set of all sets?); fortunately, we have no need to use these objects in any first-class capacity, so we may
keep them in the meta-language.

13Despite the reuse of the word “sum,” dependent sums are unrelated to the notion of the “direct sum”
of, e.g., groups. Notably, a “direct sum” requires that the sets being summed be equipped with a designated
“point” element, while no such point is required for dependent sums. Further, for any finite number of
objects, their direct sum corresponds with their direct (i.e., Cartesian) product; an infinite direct sum is
a proper sub-object of the corresponding infinite direct product. The curious reader is encouraged to see
chapter 8 of Hungerford [97]. Concretely, the direct sum of Z and R, equipped with their typical additive
group structures in which the 0 elements are the corresponding points, is (isomorphic to) jZ,Ro equipped with
the product of the additive group structures, while the dependent sum of σz = Z and σr = R is (isomorphic
to) Σi∈{z,r} σi = {⟨z, s⟩ ∣ s ∈ Z} ∪ {⟨r, s⟩ ∣ s ∈ R}. The conflict between different disciplines’ terminology is
unfortunate, but we shall not speak of direct sums again.

14There is no convenient set comprehension definition for a dependent product, thus this biconditional.
15Thus, as with Σ, ∣Πa∈α Ya∣ = Πa∈α∣Ya∣ relates functions and numeric product.
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Similarly, ℘+ transforms functions to take and return bags. Dependent functions f ∈ Πs∈σ Ys
transform to dependent functions ℘f ∈ Πα∈℘σ{{ya ∣ a ∈ α} ∣ ∀a∈α ya ∈ Ya}. Our extensions
of projection of terms—t⇃π—to act on sets—τ⇃π—and bags—σ⇃+π—are of this form (but
bag-view projection—σ⇃@π—is not); omitting ℘ in such projections reduces clutter.

Functions may be identified with sets of pairs obeying a functional dependence
between first and second projections (i.e., ∀a∈f⇃1 ∣f[{a}/1]⇃2∣ = 1). In this context, we will
use the infix pair constructor ↦, so that functions render as {s↦ t ∣ ⋯}, rather than {⟨s, t⟩
∣ ⋯}, where s stands for an element of the domain and t its corresponding element of the
(dependent) codomain. We also use this notation in quantification, e.g., {ϕ(s, t) ∣ s↦ t ∈ f},
to range over the domain of a function (so, e.g., dom(f) = {s ∣ s↦ t ∈ f}).

Functions can be constructed out of (well-typed) indexed collections and other
notation by use of an argument placeholder, “⋅”: e.g., if a is a jN,No-indexed collection
of objects then by “a⋅,3” we mean the function {n ↦ an,3 ∣ n ∈ N}. If multiple placeholders
appear in such a construction, they represent different arguments and apply left to right;
i.e., (a⋅,⋅)(x)(y) = ax,y. We will be more explicit when we need repeated use of arguments,
e.g., {n↦ an,n ∣ n ∈ N}.

Function composition is written as is typical, with (g ○ f)(x) def= g(f(x)) when
x ∈ dom(f) and f(x) ∈ dom(g). Function composition itself gives rise to two func-
tions, pre-composition (by g, i.e., ⋅ ○ g) and post-composition (by f , i.e., (f ○ ⋅)).
Combined with our view of tuples as equivalent to dependent functions, this means that
f ○ ⟨x1, . . . , xn⟩ = ⟨f(x1), . . . , f(xn)⟩, providing convenient notation for mapping a function
over a tuple, much as (℘f) maps a function across a set. We occasionally compose functions
made with placeholders; despite the repeated use of ⋅, the usual evaluation order applies:
(f⋅ ○ ⋅)(g)(x) = (f⋅ ○ g)(x) = (f⋅)(g(x)) = fg(x), not fg(x). Functions can also be combined
with the right-biased merge operator, ⊲: (f ⊲ g)(x) is g(x) if x ∈ dom(g) and is f(x)
otherwise.

To pass multiple arguments to a function, we generally prefer to use a curried
form: a higher-order function, e.g., α → β → τ . Occasionally, however, it will be useful to use
the uncurried form: jα,βo → τ . These sets of functions are isomorphic, and this generalizes
to any number n ∈ N of arguments. For any indexed collection Y , the isomorphism between
the dependent functions f ∈ Πn(Yn → τ) and g ∈ (Σn Yn) → τ is witnessed by (un)currying:
f(n)(y) ≡ g(⟨n, y⟩)

The use of dependent functions means that functions do not have a unique type.
Every f with domain σ has type Πs∈σ{f(s)}, of which f is the sole element; moreover, if
f ∈ Πσ Y , then f ∈ Πσ Y ′, when ∀s∈σ Ys ⊆ Y ′s . However, we will not allow our functions to
implicitly restrict their domains, so dom(f) is always well defined. However, a function
f ∈ Πs∈σ Ys can be upcast to another type by narrowing its domain: f ∣α, with α ⊆ σ, is in
Πa∈α Ya and is such that ∀a∈α f ∣α(a) = f(a).

Algebraic Structures A semigroup ⟨σ,⊕⟩ consists of a set (σ; the semigroup is said to
be “over σ”) and an associative binary operator ⊕ ∈ σ → σ → σ (i.e., ∀a,b,c∈σ(a ⊕ b) ⊕ c =
a ⊕ (b ⊕ c)). A monoid ⟨σ,⊕, 0 ⟩ extends a semigroup to have a identity element 0 ∈ σ
such that ∀s∈σ 0 ⊕s = s⊕ 0 = s. A semigroup or monoid is commutative if ∀a,b∈σ a⊕b = b⊕a.

A semiring (or, less ambiguously, rig; see footnote 16, below) ⟨σ,⊕, 0 ,⊗, 1 ⟩
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consists of a set (σ), a commutative monoid over σ (⟨σ,⊕, 0 ⟩) and another monoid, also over
σ (⟨σ,⊗, 1 ⟩). Not any choice of monoids will suffice; the semiring must obey two additional
properties: 1 distributivity of ⊗ over ⊕, i.e., ∀a,b,c∈σ a⊗ (b⊕ c) = (a⊗ b) ⊕ (a⊗ c) (“right
distributivity”) and ∀a,b,c∈σ(a⊕b)⊗c = (a⊗c)⊕(b⊗c) (“left”); and 2 ∀s∈σ 0 ⊗s = s⊗ 0 = 0 ,
i.e., that the additive identity, 0 , is a absorbing element of ⊗.16 The ⊕ operator is said to
provide the “additive” aspect of the semiring structure, while ⊗ provides the “multiplicative”
aspect.17 A semiring is dubbed commutative if its multiplicative monoid is (additionally)
commutative.

Adding a notion of inverse, −s, of each element s of a monoid produces a group
⟨σ,⊕, 0 ,−⋅⟩ when inverses obey ∀s∈σ 0 = s⊕(−s) = (−s)⊕s. Similarly, augmenting a semiring
with additive inverse, i.e., promoting its additive monoid to a group, produces a ring and
introduces a notion of “subtraction,” with a − b being defined as a ⊕ (−b).18 When the
monoid operator is written ⊗ or is otherwise “multiplicative,” inverses are typically denoted
using “exponential” notation, e.g., as “s−1.”

A (weak) partial order, ⟨S, ⋅ ≤ ⋅⟩, on a set S is a reflexive, anti-symmetric, tran-
sitive, partial relationship between elements of S. Reflexivity is the condition that every
element relates to itself: ∀s∈S s ≤ s. Transitivity of ≤ means that it includes composition
with itself: ∀a,b,c∈S(a ≤ b∧b ≤ c) ⇒ (a ≤ c). Anti-symmetry means that no pair of distinct el-
ements mutually relate, or, equivalently, that two putative elements that do mutually relate
must be the same element: ∀s,s′∈S(s ≤ s′ ∧ s′ ≤ s) ⇒ (s = s′). Elements s, s′ ∈ S are compa-
rable (with regard to ≤) if either s ≤ s′ or s′ ≤ s; partiality means that, potentially, not all
pairs of elements are comparable. If, instead, all elements are comparable, the structure is
a total order, linear order, or chain.19

A (meet) semilattice ⟨S, ⋅ ∧ ⋅⟩ is a commutative semigroup whose meet operator,
∧, is also idempotent, i.e., ∀s∈S s ∧ s = s. Meet is sometimes called the greatest lower
bound operator.20 Semilattices give rise to partial orders: take s ≤ s′ whenever s = s ∧ s′.
Subset inclusion, ⊆, is a partial order among sets and corresponds to the semilattice formed

16Some authors reserve the word “semiring” for a pair of semigroups, i.e., ⟨σ,⊕,⊗⟩, over a common σ
and obeying distributivity. “Rig” is unambiguous, but, as we shall not avail ourselves of these structures
without identity elements, we shall follow the natural language processing community in assigning the term
“semiring” to rigs.

17The terms “additive” and “multiplicative” are standard and come from the fact that addition and
multiplication form a semiring on many classes of numbers, e.g., the natural numbers: ⟨N,+,0,∗,1⟩. However,
in some cases these terms simply instill confusion, as in the “tropical semiring” ⟨R∪{∞},min,∞,+,0⟩, where
the “multiplicative” aspect is addition [164]. When confusion is possible, we will either use the appropriate
operator symbol or refer to “semiring addition” (⊕) or “semiring multiplication” (⊗).

18Thus, we can explain the term “rig” as a “ring without negatives.” Some authors use “rng,” pronounced
“rung,” to mean “ring without multiplicative identity,” i.e., an additive group and multiplicative semigroup
⟨σ,⊕, 0 ,⊗⟩ obeying distributivity and additive-identity-absorption of ⊗. Thus, rigs are rngs are semirings
of footnote 16.

19One can, equivalently, think of the partial relation ≤ as a total function in S → S → {true,false,⋆}
where incomparable pairs ⟨s, s′⟩ are those for which s ≤ s′ = s′ ≤ s = ⋆. Otherwise, for comparable pairs, either
s ≤ s′ = s′ ≤ s = true or reversing the order must flip the truth result, i.e., {s ≤ s′, s′ ≤ s} = {true,false} A
total ordering is then a partial order for which ⋅ ≤ ⋅ ∈ S → S → {true,false}.

20A join semilattice defines a join operator, ∨, also called the least upper bound, but is identical in
all but name. A lattice has both a meet and a join commutative semigroup which, together, obey the
absorption laws, ∀s,s′ s∨(s∧ s′) = s and ∀s,s′ s∧(s∨ s′) = s. We do not use lattices in our theory, but may
occasionally discuss them for contrast.
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by set intersection, ∩.21

A function f ∈ σ → τ whose domain and codomain are both equipped with partial
orders is monotone from ⟨σ,≤⟩ to ⟨τ,≤†⟩ (though usually these are clear from context) if
f preserves ordering: ∀s,s′∈σ(s ≤ s′) ⇒ (f(s) ≤† f(s′)). In the special case that ≤ and ≤† are
the same relation (and defined at least on jσ,σo∪ jτ, τo), we may say that f is ≤-monotone.
In general, a function f ∈ σ → τ is a homomorphism of an algebraic structure if both σ and
τ are instances of that structure and if f preserves the salient attributes thereof. Monotone
functions could equivalently be called “partial order homomorphisms.” The tuple length
operator, tlen(⋅), is a monoid homomorphism from ⟨τ∗, ⟨⟩,++⟩ to ⟨N,0,+⟩, where by τ∗ we
mean jo ∪ jτo ∪ jτ, τo ∪⋯,22 because it preserves both the identity element, i.e., tlen(⟨⟩) = 0,
and the binary operator, i.e., tlen(t⃗++ s⃗) = tlen(t⃗) + tlen(s⃗).

Lemmas for Projection and Refinement Because our projection and refinement op-
erators are not often encountered in other documents, we pause here to record several
immediate facts about them. The reader should feel free to skip this paragraph if they feel
comfortable with the definitions.

1 Projection at a fixed path is ⊆-monotone: ∀π σ ⊆ τ ⇒ σ⇃π ⊆ τ⇃π.

2 A refinement of a set is a subset of that set: τ[σ/π] ⊆ τ .

3 Refinement at a fixed path is ⊆-monotone in both of its arguments: σ ⊆ σ′ ⇒ σ[τ/π] ⊆
σ′[τ/π] and τ ⊆ τ ′ ⇒ σ[τ/π] ⊆ σ[τ ′/π].

4 Multiple refinements commute: σ[τ/π1][α/π2] = σ[α/π2][τ/π1].

5 Refining before projecting at the same path is the same as refining and intersecting:
σ[τ/π]⇃π = σ⇃π ∩ τ . In particular, σ[τ/⟨⟩] = σ ∩ τ .

6 Multiple refinements intersect at the same path: α[β/π][β′/π] = α[β ∩ β′/π].

Properties of Functions of Bags Let S be a set of bags. A function f ∈ Πσ∈S Yσ is

● idempotent if the multiplicity of elements does not alter the result, i.e., if ∀σ,σ′∈S Uσ =
Uσ′ ⇒ f(σ) = f(σ′). (Yσ and Yσ′ are not required to be equal.) Union of sets is
idempotent, for example.

● selective if ∀σ Yσ ⊆ Uσ: the output is selected from the input. Minimization is selective
(and idempotent), for example. Set union, while idempotent, is not selective.

21Strictly, as we assume sets of elements to relate and meet, we should be careful that these constructions
take place within any set of sets S in our underlying theory, and not between arbitrary sets.

22τ∗ is the least fixed point of the equation τ∗ = jo ∪ {⟨t⟩++ s⃗ ∣ t ∈ τ, s⃗ ∈ τ∗}, by tuple-based analogy to
the Kleene star operator. It contains, exclusively, finite tuples whose components are elements of τ , and is
equivalently defined as the smallest set such that ⟨⟩ ∈ τ∗, jτo ⊆ τ∗, and ∀⃗s,t⃗∈τ∗ s⃗++ t⃗ ∈ τ∗.
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● an AC-reducer if ∀σ,σ′,σ⊎σ′∈S f(σ ⊎ σ′) = f(*f(σ)+ ⊎ σ′), wherein we assume that S
is suitably closed (∀σ,σ′,σ⊎σ′∈S*f(σ)+ ⊎ σ′ ∈ S). The primary use case for AC-reducers
are domains ℘+Ū∞τ , for some set τ , which are, intrinsically, so closed.23

Terms and Sets of Terms We construct a Herbrand universeHF from the underlying
collection of symbols F [92]; elements of HF are, interchangeably, called (ranked) trees or
(ground) terms. Explicitly, t ∈ HF is composed of a functor with fixed arity n, denoted
f/n ∈ F ,24 and a tuple of n terms: t = f⟨t1, . . . , tn⟩, where ti ∈ HF . These ti are called
immediate subterms of t, and f/n is called the outermost functor (or root functor)
of t. Trees ground out at leaves, for which n = 0. A non-ground term (synonymously,
type) is a subset of H.25 When F is clear from context, we will denote the corresponding
universe simply asH; unless otherwise stated, we assume “anonymous” functors of all arities,
letting us include arbitrary-length tuples of terms into the term universe. Non-ground term
products will be denoted like products of sets: fjτ1, . . .o def= {f⟨t1, . . .⟩ ∣ ∀i ti ∈ τi ⊆ H}.
Projection is extended, within its inductive definition, to work on trees and sets thereof by
ignoring any functors along the path: e.g., ⟨tjτ1, τ2o,N⟩⇃1.2 = τ2.

Well-typed Typesetting At many points in this document, we will need to discuss
several different sorts of objects at once. To provide a kind of mnemonic guide for the
reader, we will use different font faces and alphabets for these different sorts. Our notation
will tend to use s, t, a, b for base elements (very often, trees), σ, τ,α, β for sets of elements
(as typical when describing a programming language type system), and S,T,A,B for sets
of sets of elements. (In short, t ∈ τ ∈ T .) Tuples over sets of base elements will, naturally,
be rendered as σ⃗ = ⟨σ1, . . . , σn⟩. Rather than insisting upon lowercase Greek for all sets,
when contrast is important and, especially, when forming sets of tuples of sets, we will
use the Fraktur font (e.g., R, M). Fraktur also serves as something of a “grab bag” for
miscellaneous symbols, though we attempt to limit their scope. Not all lower-case Greek
letters are sets; notably, π will be used for paths.

Natural numbers and other elements of indexing sets will tend to be the lowercase
Roman letters n,m, i, j, k. Throughout, we will use r as an index into the program’s linear
order of rules, Ξ (so chosen simply because it resembles a program source’s horizontal line
after line).

23AC-reducers g̃ ∈ ((℘+Ū∞τ)∖{∅}) → τ which additionally obey ∀t∈τ g̃(*t+) = t are in bijective correspon-
dence with associative, commutative functions g ∈ τ → τ → τ : g̃ is a catamorphic image of g and, in the
other direction, g(a)(b) = g̃*a, b+. If g has an identity e ∈ τ , then g̃ can be extended so that ∅ ↦ e. Functions
g are also said to be idempotent (if ∀t∈τ g(t)(t) = t) or selective (if ∀s,t∈τ g(s)(t) ∈ {s, t}); these properties
are equivalent to their namesakes of g̃. Selectivity of an AC-reducer implies its idempotency.

24Yet again we encounter terminological difficulties. In the context of Prolog, “functor” means a symbol-
with-arity and is almost entirely unrelated to the categorical notion of “functor” meaning a homomorphism
between categories. We shall only rarely have reason to refer to the latter, and so will use “categorical
functor” to avoid confusion. Prolog functors are also sometimes called function symbols, though we
consider that terminology likely confusing. Readers familiar with Prolog literature may balk at our use of
f/n rather than the more traditional notation, f/n; the latter clashes too often with division for the author’s
comfort. One can think of ⋅/⋅ as yet another piece of pair-forming syntax, if desired.

25The identification of a non-ground term with its set of groundings is perhaps unusual. We contrast our
approach with the more usual representation involving explicit variables in §4.
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Smallcapital letters will be used for a variety of purposes, including special
symbols and mnemonics for common path prefixes.

In addition to fonts, this thesis uses color as a visual aid to help the reader relate
objects; as with fonts, coloration is merely assistive and will never carry essential semantic
content. Certain kinds of objects will be made to stand out by giving them consistent
coloration throughout the document, related objects within figures may share colors, and
grouping syntax (parentheses, braces, etc.) may be color-matched when deeply nested (e.g.,
{⟨⟨⟩, ⟨⟨a⟩, (b + c) ⋅ d⟩⟩}).

Certain regions of prose will have their ends denoted with symbols to the right of
the last line. Proofs will be so marked with “ ,” while examples will use “◊.”

Pseudocode Language Throughout this document, we write our algorithms in a simple,
imperative, strongly-typed, lexically-scoped procedural language with pattern matching. Its
syntax is indentation-sensitive and includes conditionals, loops, procedures, and imperative
data structures and references. Code blocks are occasionally explicitly denoted with braces
and use semicolons to separate statements within a block.26 When pattern matching, a value
may be discarded by use of an underscore (_). Evaluation order of arguments to procedures
is not specified; while the results of execution may not be identical across varying orders,
our listings will remain correct.

We will use special formatting for procedureNames, reserved words, and type an-
notations. Some procedures are Exported from their listings, and would be linked against
others as part of a real implementation, while other procedures are more local.

We will generally refer to lines with their containing listing, e.g., “line 3 of listing
1.2,” but, if clear from context, we may occasionally suppress the listing number and just
give the line number. Un-captioned listings within the main body of the prose are called,
and referenced as, “blocks;” such creatures are typeset in rough analogy with equations,
with a counter on the right, though we choose to place it at the top of the listing rather
than the middle.
Example 2: To give a feel for our pseudocode language, here is a simple example:

1 def Collatz(i ∈ N) ∈ N
2 s ← 0
3 while i ≠ 1 do
4 s ← s + 1
5 let ⟨q, r⟩ = divmod(i,2)
6 i ← if r = 0 then q else 3i + 1
7 return s

B. 1.1

This block would be cross-referenced as “block 1.1.” ◊

26The use of indentation sensitivity is inspired by Haskell’s two-dimensional syntax, which “desugars,”
i.e., is deterministically and mechanically translated, to a more explicit braces-and-semicolon syntax also
available to, but rarely used in, source files. The curious reader is directed to §9.3 of the Haskell 98 report
[142].
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1.4 Aside: Prolog and The Logic of Logic Programming
There is a long and storied history of using clausal logic to represent computer programs.
A full re-telling of the story is surely out of scope, but an excellent first-hand account of the
early efforts is Kowalski’s [111]. Perhaps the earliest work which proposes logic not just for
analysis, but rather construction, of computation is, unsurprisingly, by Alonzo Church, in
1957, discussing using “recursive arithmetic” to synthesize logic circuits [28].27 The effort
to synthesize programs from logic began in earnest in the late 1960s with Green [83]. Prolog
emerged in the early 1970s; an excellent retrospective by its designers, Alain Colemerauer
and Philippe Roussel, is available [34]. By 1974, the logical foundations of the core of
Prolog, including the notion of “selective linear definite clause resolution” (SLD resolution),
had been formalized in Kowalski [110] and Van Emden [179]. (These authors collaborated
to produce Van Emden and Kowalski [178] in 1976, which we use as inspiration for much
of the next several paragraphs.) SLD resolution was shown, in 1980, to be a sound and
complete resolution technique for Prolog programs [11].

Let us spend a little ink describing SLD resolution (a longer exposition can be
found in Van Emden and Kowalski [178, §3 to §4]). A grounding of a Prolog rule (without
negation or calls to extra-logical facilities) “h :- b1, …, bk” can be interpreted as a defi-
nite Horn clause, i.e., a disjunction with exactly one non-negated literal: h∨¬b1∨⋯∨¬bk.28

This gives the correct interpretation as an implication: if all bi are true, the clause can only
be satisfied by making h true as well, but if any bi is false, the clause is satisfied regardless
of the value assigned to h. The task at hand, then, is to decide whether some initial, goal,
query, a Horn clause containing only negated literals, ¬q1 ∨ ⋯ ∨ ¬qn, can be refuted by the
conjunction of a program’s rules’ groundings: (h1 ∨¬b1,1 ∨⋯∨¬b1,k1) ∧ (h2 ∨¬b2,1 ∨⋯)∧⋯.
If no {hi ∣ i} equals q1, there is no reason to believe that q1 is true, and so we cannot refute
the goal. On the other hand, suppose that q1 equals hi for some i (there may be several
such i). Then we may be able to refute our goal by (recursively) considering the refutation
of ¬bi,1 ∨ ⋯ ∨ ¬bi,ki ∨ ¬q2 ∨ ⋯ ∨ ¬qn, obtained by observing that the truth of ¬q1 = ¬hi is
implied by the refutation of the body corresponding to hi. This may not be refutable, so
we should ensure that we try all possible i. Axiomatic rules, i.e., those without bodies or,
equivalently, those whose clausal interpretation is just a positive literal, serve to shorten
the goal clause under consideration.29 A successful refutation is a series of resolution steps
that results in attempting to refute an empty goal clause: the empty disjunct is false, and
reading the resolver steps backwards gives a linear (the “L” in “SLD”) proof that the goal
clause is therefore also false.

It was not strictly necessary that we restricted our attention to the leftmost literal
in the goal clause; in fact, it would be logically coherent to pick any subset of the goal

27The “Historical Note” section at the end of Church [28] contains a number of early references which
discuss the use of logics and algebras to analyse circuits. While out of scope for the present document, it is
mentioned here as an attractive tangent for the historically-minded reader.

28A Horn clause is, in general, a disjunction with at most one non-negated literal. The class is named
after Alfred Horn, who recognized their significance in 1951 [96]. The “D” in “SLD” emphasises that its
program input is a conjunction of definite Horn clauses.

29Primitive arithmetic operations are handled as, essentially, an infinite collection of axiomatic literals
and so achieve the same shortening of the goal clause.
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disjuncts for resolution (though picking the empty set does not get one very far). However,
this selective (the “S” in “SLD”) attention makes the algorithm simpler to describe without
altering its ultimate conclusions. As presented, the goal clauses in fact form a stack, in
which we are always attempting to resolve the most-recently introduced literal. This, also,
is not fundamental to the algorithm’s operation, ∨ being associative and commutative.

The use of equality in the procedure given above is sufficient for the case of propo-
sitional logic without variables or for a grounded Prolog program, but Prolog actually
considers goal clauses and rules with variables. In set notation, the clausal form of a rule
is, as might be imagined, somewhat akin to a µDyna rule (§3.1): a union of sets of the
form {h⟨. . .⟩ ∨ ¬b1⟨. . .⟩ ∨ ⋯ ∣ ⋯}. Each clause within the set must have the same number of
literal terms; without loss of generality, we put the non-negated literal first. The resolution
step then merges the goal clause set γ and rule clause set ρ into the new goal clause set
{b⃗∨ g⃗ ∣ (¬h∨ g⃗) ∈ γ, (h∨ b⃗) ∈ ρ}, where we have taken the liberty of using b⃗ and q⃗ to represent
the rest of the string of disjuncts from the rule body and goal clauses, respectively.30 As
one often cares about the values of variables in irrefutable queries, one might imagine using
a union of sets of reversed definite Horn clauses, {¬q1⟨. . .⟩∨⋯∨¬qk⟨. . .⟩∨q0⟨x1, . . . , xk⟩ ∣ ⋯}
where x⃗ captures the variables in question. A successful refutation is then one in which the
goal clause is no longer empty but instead a set of positive q0/k standing alone.

Variables not negated have a different character than those under negation. The
Prolog rule “a(A) :- e(E)” is interpreted (by the above resolution procedure) as all ajHo
being true if there exists e ∈ H such that e⟨e⟩ is true (i.e., ¬e⟨e⟩ is refutable). Thus, the
goal (query) “f(X)” will yield a stream of α ⊆ H for which {¬f⟨a⟩ ∣ a ∈ α} were all refuted.
It is not, in this scheme, possible to have a subgoal that can be discharged only if all of
{¬f⟨a⟩ ∣ a ∈ H} can be refuted.

This procedural view is perhaps unsatisfying and, in any case, not obviously con-
nected to the fixed-point view of the meaning of our programs throughout this thesis (no-
tably, §2.5.1 and §3.1.4). The connecting insight is from Van Emden and Kowalski [178,
§6] and is that one can define, for a program P , an operator TP , which, given a set of true
items (i.e., literals, terms), computes the set of items which must be “immediately” true
due to the rules of P . Recast into our notation, TP reads as

TP (τ) = {h ∣ ∃ρ∈P (h ∨ ¬b1 ∨⋯ ∨ ¬bn) ∈ ρ,∀i bi ∈ τ}.

That is, h ∈ TP (τ) if there exists a rule ρ in the program which contains a ground instance
with head h and for which all subgoals are true in τ . The semantics of the program is then
taken to be the smallest τ such that τ = TP (τ), assuming it exists.31 Such a τ is called the
minimal Herbrand model of P . Readers curious about fixed-point semantics of logic
programs are encouraged to read Fitting [67].

30This generalizes the typical, variable-based notion of finding the most-general unifying substitution of
the goal literal q1 and head h and applying that substitution to the new goal clause. See §4.2.1 for more
discussion.

31Equivalently, without appealing to “smallest,” τ = ⋂T with T = {τ ′ ⊆ H ∣ TP (τ ′) ⊆ τ ′}, assuming T ≠ ∅.
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1.4.1 Non-monotonic Reasoning: Negation

Early in its life, Prolog added negated subgoals to rules. The programmer’s intent in the rule
“p :- q, \+ r, s”, wherein \+ denotes negation, is to prove p if q and s can be proven
and r cannot be. The procedural interpretation of such a subgoal is that it is successfully
satisfied (and the solver may move on to the next subgoal) if the solver fails to satisfy
the negated subgoal. Thus, it is given the name negation as failure (NAF) [30]. (The
analogous capability in Dyna is discussed in example 28, in §3.1.3.)

An awkward feature of NAF is that a free variable within a negated subgoal retains
its existential flavor, but is now scoped under a negation, and will not be refined. Thus,
“a :- \+ e(E)” constitutes a proof of a/0 if no e/1 item can be proven. If d/1 brings
its argument to ground, “a :- d(E), \+ e(E)” will behave as expected: it proves a/0 iff
there exists some e ∈ H such that d⟨e⟩ is true (i.e., ¬d⟨e⟩ can be refuted) and e⟨e⟩ is
not. However, “a :- \+ e(E), d(E),” which ought to be logically equivalent, yields fewer
proofs: the negated subgoal behaves as just described, only succeeding when no e/1 can
be proven. Going forward, we assume that every negated subgoal is ground so that the
procedural interpretation coincides with our intuition.

Even so assuming, the logical semantics of such negations were open until 1978,
when Clark [30], demonstrated a “program completion” transformation that rewrites a
Prolog program’s rules’ implications into a first-order formula with bi-conditionals: an item
is true if and only if there is a rule that proves it, justifying the use of exhaustive search
to prove the item’s negation [see 30, Theorem 2]. The resolution procedure so obtained
eventually came to be known as “SLD with Negation as Failure” (SLDNF).

Clark [30], additionally, shows that the database completion semantics describe a
constructive (“intuitionistic”) logic, in which the law of the excluded middle (i.e., the axiom
∀φ φ ∨ ¬φ where φ ranges over all propositions, including itself) is not justified; in practice,
this implies non-termination of certain programs under SLDNF, but, logically, it means that
there are terms neither assigned truth nor falsity by the program. Clark gives the example
of attempting to resolve p⟨a⟨⟩⟩ against a program consisting of “p(X) :- p(f(X))” (with
no other p/1-headed rules): SLDNF will fail to terminate (always with a single, ever bigger,
literal on its goal stack), while first-order logic refuses to demonstrate truth or falsity of
p⟨a⟨⟩⟩ given only the bi-conditional ∀x p⟨x⟩ ⇔ p⟨f⟨x⟩⟩ [adapted from 30, (13)].

Another, fundamentally unweighted semantics of negation, and possibly the most
well-known, is that of Gelfond [74], presented in 1987 and further developed as the “Stable
Model Semantics” [75]; this formulation of negation forms the basis of a different branch of
work in logic programming, termed “Answer Set Programming” (ASP).

However, while Prolog remains an unweighted language, in the sense used herein,
yet a different semantics for negation was given in 1985 [66], explicitly using a three-valued
logic, which designates predicates as true, false, or undefined. The “undefined” value cap-
tures both inconsistency (e.g., p iff not p) and tautology (e.g., p iff p, with no other assertions
about p). Other three-valued semantics emerged, including “Constructive Negation” [187]
and the “Well-Founded Semantics” [180]. The Well-Founded semantics has an efficient im-
plementation, using a resolution procedure called “Linear resolution with Selection function
for General logic programs” (SLG) [26, 27] and was even extended to work with aggrega-
tion [105]. More recently, when considering a variant of Datalog (a subset of Prolog) which
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allows one to not just test for negation but to explicitly assert negated heads, a series of four-
valued logics have been considered [119]. The utility of a larger space of values within the
semantics of logic programs provides, we feel, additional justification for persuing weighted
logic programs.

1.5 Aside: Inexact Values
Most of this thesis takes place in some abstract, ethereal plane where all computations are
exact, memory is infinite, time is of no issue, and any adversaries are precisely constrained
in their capabilities. The challenges addressed by this thesis remain interesting, even in
light of their idealized nature. However, we feel that we must at least nod in the direction
of some issues likely to be faced by those who will come after us, and who, following in the
footsteps of Prometheus, or perhaps of Icarus, would seek to wrestle mathematics into the
real world and onto carefully drawn lines in ultra-pure sand. Towards that end, we will
consider inexact values, quantities for which something as seemingly banal as equality is
a fuzzy notion.
Example 3 (Floating Point Approximations): A floating point numeric system is an ap-
proximation of the real numbers where one uses a fixed number of bits to represent each
of the “significand” (also called the “mantissa”) and “exponent” of a number. Very briefly,
every positive real number r ∈ (0,∞) ⊂ R can be normalized so that r = (1 + s) ∗ 2x for
some exponent x ∈ N and significand s ∈ [0,1) ⊂ R (that is, the unit interval inclusive of 0
and exclusive of 1). 17.125 (in base 10) is 10001.001 in base 2, and so admits normaliza-
tion with s, in base 2, being 0.0001001 (or 0.703125, in base 10) and x = 4. If we restrict
to using 6 bits for significand and 3 for exponent, however, we are forced to approximate
17.125 as either 17 or 17.25. The net effect of such an encoding is to give relatively fine
approximations near 0 and coarser approximations as magnitudes become larger.32 While
that is sensible enough, the result is that many properties we might depend upon in numeric
analysis are no longer true. Addition is not, for example, associative, as (17 + .125) + .125
is 17 (assuming we round down) while 17+ (.125+ .125) is surely 17.25. We do not wish to
conclude that .25 and .125 and 0 are equal quantities; so, we must abandon our notion of
strict, structural (i.e., bit-wise) equality when approximating real numbers this way. Thus,
addition on floating point numbers is not, properly, an AC-reducer, though it is convenient
to occasionally pretend that it is, but we must not allow such approximations within the
values computed by a program to adversely affect the solver algorithm itself.

Readers curious for more details of floating point systems are invited to read Bryant
and O’Hallaron [24, §2.4]; an exceptionally enthusiastic reader should be directed to the
IEEE-754 standards document [98], which specifies surely the most pervasive of machine
encodings of floating point numbers. ◊
Example 4 (Interval Arithmetic): Alternatively, one may approximate a real number by
giving bounds on its possible value; a typical mechanism is to specify an interval containing
the number. π (here, the ratio of a circle’s circumferance to diameter in Euclidean geometry,

32Within IEEE-754, even finer approximations near 0 are obtained by use of denormalized representations
where the leading 1 bit is no longer implied for the smallest possible exponent. There are also explicit
representations of (signed) infinity and “Not A Number.”
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not a path within a tree) is, for example, in [3.141,3.142]. One can work out an entire theory
of arithmetic for intervals (e.g., Warmus [188] and Moore [129]) or a generalization which
works with finite unions of intervals (e.g., Dreyer [45, ch. 2]).

Because an interval essentially behaves as an existential—the number intended is
somewhere within the given bounds—equality becomes an almost entirely one-sided notion.
Certainly [1,2] and [3,4] represent unequal quantities, but a number represented as [1,4]
might, but need not equal, a number represented by any of [0,5] (super-interval), [2,3]
(sub-interval), [2,5] (overlapping interval), or even [1,4] (identical interval). The only time
equality can be assured is when the interval represents a singleton: [2,2] is surely reflexively
equal. ◊

The introduction of such inexact values into the domains manipulated by the
solver algorithms of this thesis introduces a variety of subtle problems. We address these by
constraining the behavior of the solver (e.g., in §2.3.3.1 and §2.4.1) or by rejecting programs
which would necessitate the solver’s pondering of equality of inexact quantities (§5.5).33

33There is another proposal on the table, as well, which aims to address some of the challenges of inexact
values by relaxing the notion of functional dependence in some cases. In this design, there may be multiple
results for some expressions which use queries in “inverse modes;” that is, while there is only one value x/2
for each x, there may be multiple “y such that y ∗ 2 = x.” This author does not believe himself sufficiently
versed with the proposal to speak intelligently about it, but, in the interest of completeness, notes that it
has been proffered as another tool in the effort to manage inexact values.
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Chapter 2

Finite Circuit Inference and
Lightweight Extensions

[A]utomatic programming always has been a euphemism for programming with a higher-level
language than was then available to the programmer. Research in automatic programming is
simply research in the implementation of higher-level programming languages.

David Lorge Parnas. Software Aspects of Strategic Defense Systems, 1985 [140].

2.1 Arithmetic Circuits

2.1.1 Precursors

The first step in our gradual buildup to Dyna is to consider an extremely simplified design
of the core solver for Dyna programs. We will gradually add embellishments in this chapter
before turning our attention, in the next chapter, to extending our design to work with Dyna
itself. This section is little more than warm-up and formalization of well-established con-
cepts. Readers familiar with the notions of expression trees (and forests) may wish to skim
or skip over to the beginning of §2.1.2. Readers familiar with computational circuits more
generally may wish to skim all the way to the beginning §2.2, which reviews the algorithmic
machinery for solving circuits before introducing our own EarthBound algorithm.

2.1.1.1 Expression Trees

An expression tree is a tree whose collection of underlying functors-with-arity, φ, comes
equipped with a φ-algebra: a pair of a carrier set, χ, and an interpretation function,
e ∈ Πf/n∈φ(χn → χ).34 The interpretation of an expression tree under a given algebra is
denoted J⋅Ke (or just J⋅K when e is clear from context) and is done by bottom-up traversal:
all immediate subterms of t must have been interpreted before t itself can be. That is,

34Algebra interpretation functions are often given, instead, as the (dependently un-Curried) isomorphic
(Σf/n∈φ χ

n) → χ. We prefer the Curried form as the partial applications correspond to the interpretation of
particular symbols in φ.
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Jf⟨t1, . . . , tn⟩K def= e(f/n)(⟨Jt1K, . . . , JtnK⟩). Unpacking the recursion, the nullary nodes are
first interpreted as, e.g., e(f/0)(⟨⟩); then, nodes whose immediate subterms are all nullary
are interpreted, using the values from χ assigned to said subterms; etc.
Example 5: Suppose φ = {neg/1,add/2,mul/2} ∪ {n/0 ∣ n ∈ N}. One possible algebra for
this structure is a ring over χ = Z: e(neg/1)(⟨x⟩) = −x, e(add/2)(⟨x1, x2⟩) = x1 + x2,
e(mul/2)(⟨x1, x2⟩) = x1 ∗x2, and e(n/0)(⟨⟩) = n. The tree mul⟨add⟨1,neg⟨3⟩⟩,neg⟨2⟩⟩ would
then interpret to having value (1 + (−3)) ∗ (−2) = 4. ◊
Example 6: The Herbrand universe H itself is a carrier of an algebra with φ = F . The
function e is trivial: e(f/n)(⟨t1, . . . , tn⟩) = f⟨t1, . . . , tn⟩. That is, e builds a term from its
functor and immediate subterms, and is, in fact, when uncurried, witness to an isomorphism
between terms and the pair of functor and (tupled) subterms. This algebra is (up to
isomorphism) special; it is the initial F-algebra, as any other algebra on F can be obtained
from this initial algebra by suitable algebra homomorphism. We shall not dwell on the point,
but the curious reader is directed to section 2.2 of Pierce [145] for a gentle introduction
and/or to Meijer, Fokkinga, and Paterson [122] for the canonical text which brought such
categorical considerations to the attention of functional programmers. ◊

2.1.1.2 Expression Forests

Nothing fundamental to interpretation changes if we replace the trees above with nodes
in a directed, acyclic graph (DAG). Letting I denote the set of nodes (also called items),
an expression forest35 is a DAG wherein 1 a function ls⋅ ∈ I → φ labels each node with
a symbol (and arity); 2 for each j ∈ I, if lsj = f/n, then j has n in-edges; and 3 each
node j equips its set of n in-edges with a linear ordering, which we denote as a n-tuple,
P⃗j . Algebraic interpretation of this structure continues in the same vein as for trees: given
j ∈ I, JjK = e(lsj)(J⋅K ○ P⃗j) = e(lsj)(⟨Ji1K, . . . , JinK⟩) where i1 through in are the n nodes with
edges to j, ordered appropriately. The algorithmic order in which nodes become available
for interpretation (because all of their in-neighbors have been interpreted) is now called a
topological sort because it provides a linear ordering on I such that all edges point to
later-ordered nodes.

In this more general framework, we can envision shared sub-structure (i.e., nodes
with out-degree greater than one) as well as multiple heads (i.e., more than one node with
out-degree zero).
Example 7: Confined to trees, evaluating an expression of the form “(1 + 2) + (1 + 2)”
would necessarily involve three additions. However, an equivalent expression forest, per-
haps represented as “let x = 1 + 2 in x + x,” can be evaluated with two additions, by
reusing the intermediate result. This kind of transformation is wildly popular as part of
optimizing compilers’ operation, within “common subexpression elimination” [31] or “global
value numbering” [106] phases. ◊

35In some existing literature, notably that of parsing within natural language processing, starting with
[172], “forest” often implies a DAG with a single root but with the possibility of reused intermediates. Here,
we mean to allow many roots; in fact, disjoint expression trees, if considered together, form, in our taxonomy,
a perfectly acceptable expression forest.
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2.1.2 Arithmetic Circuits Proper

An expression forest as specified is a static structure: once specified, all that remains is to
compute the interpretation. However, in many cases, we will want to use the same structure
with different inputs (i.e., we may wish to vary the nullary nodes’ values while leaving the
rest of the structure intact); these inputs may, for example, represent the current values of
some physical state as it evolves through time (possibly under the influence of the leaves
of the computation). Towards that end, we reduce the domain of ls⋅ , removing some subset
of the nullary nodes, denoted Iinp and called input nodes; the remainder of the items we
call derived and denote as Ider. When we wish to interpret the resulting structure, we will
need a map which provides values to our input nodes, i.e., a map inp ∈ Iinp → χ.36 We call
the resulting structure—a forest missing its inputs—an arithmetic circuit [21].37

One may wonder if ls⋅ and φ are fundamental, as their only use within J⋅K is com-
posed with e. Indeed, we can divorce our notion of computation from the symbolic vocab-
ulary φ with which we started and simply associate every node j ∈ Ider

def= I ∖ Iinp with a
function χnj → χ where nj ∈ N is the in-degree of j; that is, we now take e ∈ Πj∈Ider(χnj → χ).
Equivalently, we take Ider itself as the set of symbols φ. We call nodes in Ider derived as
their values are the result of computation from other nodes’ values.

Relative Nomenclature Let E be the set of directed edges, with an edge e ∈ E from i (the
source of e) to j (the target of e) being denoted e = ⟨i, j⟩. Each item j has a set of parents,
Pj

def= {i ∣ ⟨i, j⟩ ∈ E} (i.e., j’s in-neighbors), and a set of children by Cj
def= {k ∣ ⟨j, k⟩ ∈ E}

(i.e., j’s out-neighbors). Transitive parents are called ancestors, and transitive children
are called descendants. Derived items with no children are, then, leaves; items, derived
or input, with no parents are roots.38

Solutions All told, then, the value assigned to an item is

JjK =
⎧⎪⎪⎨⎪⎪⎩

inp(j) j ∈ Iinp

e(j)(⟨Ji1K, . . . , Jinj K⟩) j ∈ Ider
(2.1)

where, as before, i1 through inj are the in-neighbors of j, ordered appropriately. We call the
function J⋅K, which extends inp from Iinp to I, the solution; it is guaranteed to uniquely
exist while the circuits remain finite and acyclic, as they will, up until §2.5.

36The partition of specifications—originally, of logic programs—into input and derived items appears to
have been first articulated within Reiter [156]. That and other literature uses the terms extensional and
intensional to refer to what we term input and derived, respectively.

37The word “circuit” in this context, while standard, ultimately comes from electrical engineering, wherein
one may discuss a “logic circuit” in referring to an arrangement of logic gates for carrying out a particular,
finite-depth, acyclic computation. Just as electrical circuits can be extended to execute cyclic computations,
so too can our arithmetic circuits; see §2.5.

38The literature varies as to whether input items are called roots or leaves, whether they are regarded
as ancestors or descendants, and whether they are drawn at the top or the bottom of a figure. The sole
standardized thing seems to be that roots are at the top and leaves at the bottom, which suggests a
somewhat distorted view of nature. Anyway, we treat inputs as roots and ancestors and draw them at the
top. Edges point and information flows downward in our drawings. As a result, “bottom-up” reasoning
(forward-chaining) actually proceeds from the top of the drawing down.
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1a : ● 2b : ● 3c : ●

2 f 3 max

7 ∑

Figure 2.1: An example arithmetic circuit with χ =
N, showing the function for each derived item (max,
∑, and f(⟨a, b⟩) = ba; for AC-reducers, the order
of parent items is immaterial) and the symbol ● for
each input item. Item values are shown in red, and
selected item names in blue. Ultimately, this circuit
computes ∑*ba,b,max*b,c++ = ∑*2,2,3+.

Example 8: Figure 2.1 shows a small arithmetic circuit, with three input nodes and three
derived nodes. This circuit uses N as its space of values, χ. Two of the derived nodes therein
use different AC-reducers (recall “Properties of Functions of Bags,” in §1.3) while one does
not, as a demonstration that arbitrary functions may be used as well. ◊

2.1.2.1 Special Cases

and/or Graphs A Datalog program [25, 72] can be regarded as a concise specification of
a boolean circuit, which is the special case where χ is a doubleton set, say, {true, false}.
The items I correspond to propositional terms of the logic program and conjunctions
thereof, and clauses of the logic program describe how to discover the parents or chil-
dren of a given item (on demand). Specifically, each grounding of a clause corresponds to
an and node whose parents are the body items’ corresponding or nodes, and whose child is
an or node corresponding to the head item. This kind of circuit is called an and/or graph,
and the and and or functions are defined on χ in the standard way: and is true iff all of its
inputs are true, and or is true iff any of its inputs are true. Datalog is sometimes extended
to allow limited use of not nodes as well.
Example 9: A simple Datalog program might compute a traditional database join and pro-
jection of two relations. For example, the Datalog rule “rs(Y,Z) :- r(J,X,Y), s(J,Z)”
can be read as specifying entries in the rs/2 relation by joining r/3 with s/2, equating the
first columns of both (by reusing the variable J), and discarding—projecting away—the
second column of r and the first columns of both relations (the variables J and X appear
only in the body). We can give a circuit interpretation of this rule thus:

1 Every potential row of the r/3, s/2, and rs/2 relations are made manifest as items. If,
for example, all columns range over the finite set N10

1 : {r⟨j, x, y⟩ ∣ j, x, y ∈ N10
1 } ⊆ I,

{s⟨j, x⟩ ∣ j, x ∈ N10
1 } ⊆ I, and {rs⟨y, z⟩ ∣ x, y ∈ N10

1 } ⊆ I. All r/3 and s/2 items are input
(and so are in Iinp, not just I) and all rs/2 items are derived (in Ider).

2 Additionally, we create derived items {join⟨j, x, y, z⟩ ∣ j, x, y, z ∈ N10
1 } ⊆ Ider.39 These

items are intended to represent the availability of a row in the join of the two relations,
and as such we add edges to the item join⟨j, x, y, z⟩ from both the items r⟨j, x, y⟩ and
s⟨j, z⟩. The function associated with each join/4 item is logical and: the item only
represents a row in the join if there are corresponding rows in both source relations.

39Really, here, join/4 stands for a symbol not otherwise used in the program. If there are multiple rules,
they must each be given a different set of and nodes.
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3 Last, we draw edges from each join⟨j, x, y, z⟩ to rs⟨y, z⟩ and set the function at each
rs/2 item to be logical or: a row exists in the result of the projection of the join if
there was some row in the join that projects appropriately.

The edges of this graph are described by taking advantage of structural naming within I;
the variables j, x, y, and z correspond to the Datalog variables of the same name.

If we suppose that the input items r⟨1,2,3⟩ and s⟨1,4⟩ are given the value of
logical true, then we see that join⟨1,2,3,4⟩ will have value true (being the and of its
parents’ values) and that rs⟨3,4⟩ will as well (by or). ◊

Semiring-weighted Circuits Directly generalizing and/or graphs, one can use an ar-
bitrary semiring for χ, using its multiplication operator for and and addition for or. The
resulting family of structures are well-studied in parsing [79, 84] and form the basis of the
first version of Dyna [52, 51, 48].

AC-reducing nodes Often, the functions at some (or even all) items of a circuit are
AC-reducers, and, as such, have no need to order their parents. That is, these nodes are
content to obtain a bag of their parents’ values. The formalism herein will address the more
general case, in which the child cares about which parent has what value, but awareness
of AC-reducers is a possibly useful optimization (e.g., §2.3.3.1 takes advantage of such to
dynamically transform the circuit).

In the early sections of this chapter, we consider only a full recomputation of an
item’s value in light of any change from any parent. For exact values, no additional work
is necessary. When one wishes to act on inexact values (§1.5), ensuring that AC-reduction
behaves as a function often requires extra processing. One such mechanism would be to
sort the bag of parents’ values and then reduce them in sorted order, thereby ensuring that
every invocation of the reduction function obtains the same result. However, supporting
efficient revision of these aggregates is likely to require keeping the association of parents
and values in the case of inexact values; see §2.4.1.

2.1.2.2 The Hypergraph Perspective

A different, but isomorphic, graphical notation for arithmetic circuits comes from consid-
eration of semiring-weighted circuits in which the additive operator is AC-reducing. We
present this B-hypergraph structure here to orient readers already familiar with it and be-
cause we find it a more natural presentation for generalized arithmetic circuits (§2.5) and
the further generalization to weighted logic programs (§3.1).

A directed hypergraph (properly, directed hypermultigraph or hyperquiver)
⟨N,E, src, targ⟩ is a generalization of a graph in which edges may have multiple sources
and targets (the “hyper-” prefix) and in which there may be multiple hyperedges between
the same sources and targets (as in a multigraph). Formally, a directed hypergraph is
composed of a set of nodes, N and an indexing set for hyperedges, E, with functions src
and targ mapping e ∈ E to the source set and target set, respectively. For the purposes of
this document we work exclusively with directed B-hypergraphs [73] with ordered, finite
source collections; that is, each e ∈ E identifies a single target node, targ(e) ∈ N, and a
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1 def Compute(j ∈ Ider) ∈ χ
2 return e(j)(Lookup ○ P⃗j)
3

4 def Lookup(j ∈ I) ∈ χ
5 v ← M(j)
6 if v = unk then v ← Compute(j)
7 maybe M(j) ← v
8 return v

Listing 2.1: Internals of basic backward-chaining with
optional memoization. M stores values for input items
and initially stores unk for derived items. “maybe
⟨block⟩” indicates that “⟨block⟩” may or may not be
executed, arbitrarily, according to some external pol-
icy.

finite tuple of source nodes, ∀e ∃n∈N,n>0 src(e) ∈ Nn. For brevity, we leave “directed” implied
throughout.

The notion of irreflexive path reachability in a graph may be extended to hyper-
graphs. A node i ∈ N can irreflexively reach a node k ∈ N if either 1 there exists a hyperedge
e ∈ E with i ∈ src(e) and k = targ(e), or 2 there exists both a hyperedge e ∈ E and node
j ∈ N such that i ∈ src(e), j = targ(e), and j can (irreflexively) reach k. A hypergraph is
acyclic if there is no node that can irreflexively reach itself. While, for present purposes of
considering arithmetic circuits, we restrict to acyclic hypergraphs, we note for future use
that the hypergraph formalism also allows self-loops in which i is both the target and a
source of some edge e.

Extending arithmetic circuits over to this B-hypergraph formalism, we require
that every node has in-degree of either zero (Iinp) or one (Ider). (That is, all expressions
are captured within the hyperedges; common expressions are manifest as Ider items with
out-degree greater than one.) The graph must, as stated, be acyclic. The interpretation
function continues to work only on items; for the moment, hyperedges are merely decorative
and are not assigned evaluation functions; JjK is defined as in equation (2.1), where, for the
recursive case, take e ∈ E be the unique hyperedge index such that targ(e) = j and take
⟨i1, . . . , inj ⟩ = src(e). The relative nomenclature continues to apply: given a hyperedge e,
the target targ(e) is a child of each source {src(e)⇃n ∣ n ∈ N}. Formally, Cj = {targ(e) ∣ e ∈
E,∃n j = src(e)⇃n}. Letting P⃗j = src(e) when e is the unique e ∈ E such that targ(e) = j, the
parents of j are Pj = {P⃗j⇃n ∣ n ∈ N}. Because ordering of parents is important, P⃗j is the
more useful quantity in the following.

2.2 Finite Circuit Inference

2.2.1 Backward-Chaining

We begin with some basic strategies for querying an item’s solution value JjK, based on
backward-chaining from the item to its ancestors. Backward-chaining is so called because
it begins reasoning at a query—an item (or, later, set of items) whose values are of interest—
by moving backwards towards ancestors, and ultimately roots, whose values are known. We
construct a mapM from items to their solution values. M is known as the memo table
or chart. For each input item i ∈ Iinp, we initializeM(i) to inp(i) (= JiK). For each derived
item j ∈ Ider, the solution value JjK is initially unknown, so we initializeM(j) to the special
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object unk /∈ χ. We may regard the mapM ∶ I → χ ∪ {unk} as a partial map I ⇀ χ that
stores actual values for only some items—initially just the input items.

We define mutually recursive functions Lookup and Compute as in listing 2.1. A user
may query the solution with Lookup(j). This returns M(j) if it is known, but otherwise
calls Compute(j) to compute j’s value using e(j), which in turn requires Lookup-s at j’s
parents. Line 2 of listing 2.1 maps Lookup over P⃗j as if Lookup were a function, rather than
an imperative procedure; we trust the reader forgives us our shorthand, as the algorithm is
correct regardless of the actual sequence of procedure calls used.

Pure Backward-Chaining The simplest form of backward-chaining simply always re-
curses through ancestors until Lookup reaches the roots, and never memoizes any derived
values. That is, line 7 of listing 2.1 always declines its option to execute, soM never changes
and derived items remain as unk. Clearly, Lookup(j) returns JjK.

Unfortunately, pure backward-chaining can have runtime exponential in the size
of the circuit. Each call to Lookup(j) will in effect enumerate all paths to j. For example,
consider a circuit for computing (a finite prefix of the) Fibonacci numbers, where each item
fib⟨n⟩ for n ≥ 2 is the sum of its parents fib⟨n − 1⟩ and fib⟨n − 2⟩. Then Lookup(fib⟨n⟩)
has runtime that is exponential in n, with fib⟨n − t⟩ being repeatedly computed fib⟨t⟩
( ∈ O(((1 +

√
5)/2)t)) times during the recursion.

Optional Memoization To avoid such repeated computation, a call to Lookup(j) can
memoize its work by caching the result of Compute(j) inM(j) for use by future calls, via
line 7 of listing 2.1. This is the backward-chaining version of dynamic programming. It
generalizes the node-marking strategy that depth-first search uses to avoid re-exploring a
sub-graph. However, the maybe keyword in line 7 of listing 2.1 indicates that the memo-
ization step is not required for correctness; it merely commits space in hopes of a future
speedup. Lookup(fib⟨n⟩) can even achieve O(n) expected runtime without memoizing all
recursive Lookup-s: instead it can memoize Lookup-s on a systematic subset of items. For
another example, Zweig and Padmanabhan [196] use systematic, structured memoization of
a dynamic subset of items to solve the arithmetic circuit for the forward-backward algorithm
(see, e.g., Rabiner and Juang [150]) in O(logn) rather than O(n) space, while increasing
runtime only from O(n) to O(n logn).

2.2.2 Reactive Circuits: Change Propagation

Our goal is to design a dynamic algorithm for arithmetic circuits that supports not just
queries but also updates to the input. It must handle a stream of operations of the form
Query(j) for any j, which returns JjK,40 and Update(i,v) for i ∈ Iinp, which modifies inp(i)

40One could imagine relaxing the universality of the Query interface, so that only some items’ values
may be demanded. It is possible that such a relaxation could allow for more efficient solvers, especially in
the case of streaming inputs: the solver would not need to memorize the stream, merely ensure that it could
respond to any of the summary statistics computed by the circuit. Such a change would even allow our
finitely-minded solvers of this chapter to work on arbitrary-length streams: despite the infinite nature of the
circuit (to accommodate the unknown stream length), only finitely many nodes would be relevant at once.
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Message Mnemonic Section
^ v Replacement
^ Refresh
⊕d Delta §2.4.3

^ unk (abbr. ^) Invalidation §2.2.3.3
^;was v Replacement §2.4.1
^;⊕d Pure Delta

^;was v;⊕d Fully-informative Delta
σ ^ or σ ^;⊕d Partially propagated §2.4.2

§2.2.3

§2.4.3

U
pd

at
es
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ot
ifi
ca
tio
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Table 2.1: The forward-chaining messages of this chapter. For each, we give the graphical notation, the
textual mnemonic, and section of prose introducing this message type. The notation is designed to mesh
with figures 2.1 and 2.2; the over-/under-line in the message corresponds to the line shown with each item.
As information flows down the page, an update, i ∶^, has yet to apply to the value of its associated item,
i, while a notification (to be introduced first in §2.2.3.3), i ∶^, has already been applied to i’s value but is
now poised to influence the values of i’s children.

to v ∈ χ. (In §2.4.3, we show how to manage incremental, “delta” revisions to input items,
such as “increase by 1,” as well.)

In the case of pure backward-chaining, we only have to maintain the stored input
data, as derived values are not stored, but are derived from the input data on demand. In
our terminology from above, Update(i,v) can just set M(i) ← v, and Query(j) can just
call Lookup(j). However, handling updates is harder once we allow memoization of derived
values. The memos inM grow stale as external inputs change, yet Lookup would continue to
return outdated results based on these memos. That is, updating i may make its (derived)
descendants inconsistent; this must be rectified before subsequent queries are answered. We
therefore need some mechanism for restoring consistency inM, by propagating changes to
memoized descendants.

Formally, we say that j ∈ Iinp is consistent iff Lookup(j) = JjK = inp(j), and
that j ∈ Ider is consistent iff Lookup(j) = Compute(j). Notice that un-memoized derived
items (those with M(j) = unk) are always consistent. We call M consistent if all items
are consistent—in this case Lookup(j) will return the solution JjK as desired. Equivalently,
the memo table M is consistent iff each input memo is correct and each derived memo is
in agreement with its visible ancestors. Here i and k are said to be visible to each other
whenever there is a directed (hyper)path from i to its descendant k that goes only through
un-memoized (unk) items. Thus, calling Compute(k) eventually recurses to Lookup(i) at
each visible parent i.

2.2.3 Pure Forward-Chaining

An alternative solution strategy, forward-chaining, reasons forward from ancestors that
are known towards descendants that are not. It does so by applying updates until all items
(or, at least, all items of interest) know their values. We will use it in §2.2.4 to solve the
update problem and will iteratively increase the expressive power of our forward chaining
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1 def RunAgenda()
2 until A = ∅
3 pop i ∶ ^ v from A
4 if v = unk then v ← Compute(i)
5 if v ≠M(i) then % else discard
6 M(i) ← v
7 Apply(i)
8

9 def Apply(i ∈ I)
10 foreach j ∈ Ci do
11 w ← unk
12 maybe w ← Compute(j)
13 Update(j, w)
14

15 def Update(j ∈ I, w ∈ χ ∪ {unk})
16 delete A(j)
17 if w ≠M(j) then % else discard
18 A(j) ← ^ w

Listing 2.2: The core of an agenda-driven, item-at-a-
time variant of the traditional forward-chaining algo-
rithm. M is initialized to an arbitrary but total guess
and remains total (no unk values) thereafter. Hence,
though Compute (not shown, but as in listing 2.1) calls
Lookup, Lookup never reenters Compute.

^32 ● ^53 ●

6 ∗ 3 =

^32 ● 5 ●

^106 ∗ ^3 =

Figure 2.2: An example iteration of the loop in
RunAgenda. We apply the update ^ 5 to the right
parent, making its children inconsistent with their
parents, and enqueue new updates that will fix the
inconsistencies. The thick hyperedge is used to
Compute the new value in the replacement update:
10 = 2 ∗ 5.

algorithms. Table 2.1 shows the full taxonomy of the internal messages used within the
several forward chaining algorithms we develop; it may be helpful to refer back to this table
throughout the next few sections. First, however, we present forward-chaining in its pure
form.

Pure forward-chaining eagerly fills in the entire chartM, starting at the roots and
visiting children after (a subset of) their parents. EventuallyM converges to J⋅K. Forward-
chaining algorithms include natural-order recalculation in spreadsheets [194] and semi-naïve
bottom-up evaluation for Datalog [175]. We use the “item-at-a-time” (sometimes also called
“tuple-at-a-time”) semi-naïve algorithm of listing 2.2. It uses an agenda A that enqueues
future updates to the chart [104, 51]. A contains at most one update for each item i,
which we denote A(i), and supports modification or deletion of this update.41 A is also a
priority queue, supporting a pop operation, which selects and removes an arbitrary update.
Priorities are implicit in the algorithms we describe here; we presume some orthogonal
mechanism is computing the relative utility of scheduled work (as discussed in, e.g., Vieira
et al. [183]). The algorithms herein remain correct regardless of prioritization, so long as
every update stored into A is either returned by some pop operation or explicitly deleted

41The agenda can be implemented as a simple dictionary. However, using an adaptable priority queue
[80] can speed convergence, if one orders the updates topologically or by some informed heuristic [107, 53].
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in the solver code shown. The return value of the pop function applied to A is a pair of
an update message u at an item i ∈ I, previously enqueued by a statement of the form
A(i) ← u; we write this pair as i ∶ u rather than ⟨i, u⟩.

Our updates are replacement updates of the form i ∶ ^ v (where i ∈ I and v ∈ χ).
Iteratively, until the agenda is empty (the initial conditions will be discussed momentarily),
our forward-chaining algorithm pop any update i ∶ ^ v from the agenda, and applies it
to the chart by setting M(i) ← v. The algorithm then creates updates at i’s children, by
pushing (enqueuing) an appropriate update j ∶ ^ w onto the agenda, by calling Update on
line 13 of listing 2.2. This push operation overwrites any previous update to j, so we delete
any pending update before pushing (see line 16 of listing 2.2). This iteration back and forth
between popping and queueing updates is what makes our algorithm “semi-naïve:” it will
potentially recompute some item only given reason to do so. By contrast, a “fully-naïve”
algorithm recomputes all items until they have all stopped changing.

The new value w is obtained by Compute(j), meaning it is recomputed from the
values at j’s parents (including the changed value at i). IfM(j) already had value w, the
update is immediately discarded and no updates are enqueued at the children of j (though
these children may already have updates pending). Ordinarily, w is Compute-ed in line 12
of listing 2.2 when the update is constructed and pushed. But if that line is optionally
skipped, the update specifies w as unk, meaning to compute the new value only when the
update is popped and actually applied (line 4 of listing 2.2). Such a refresh update j ∶ ^
simply says to refresh j’s value so it is consistent.

Both kinds of updates have potential advantages. Refresh updates ensure that j
is only recomputed once, even if the parents change repeatedly before the update pops. On
the other hand, ordinary updates have the chance of being discarded immediately, which
avoids the overhead of pushing and popping any update at all; and if they are not discarded,
their priority order can be affected by knowledge of w. Later algorithms in this paper cache
item values temporarily, with the result that the cost of computing w may vary depending
on when Compute(j) is called.

Figure 2.2 shows one step of pure forward-chaining. In our visual notation for
circuits, we draw the state of item i, with no pending update, as M(i)i : e(i), where i
(if present) names the item, e(i) is the item’s function (or ● if i ∈ Iinp), and M(i) is the
current memo if any. If an update to i is waiting on the agenda, we display it over i’s line as

^vM(i)i : e(i), omitting the new value v if it is unk. Since information flows downward in
our drawings, being above i’s line indicates that the update has yet to be applied toM(i).
Our textual update notation i ∶ ^ v is intended to resemble the drawing.

In any case, the system enforces a straightforward invariant:
Invariant 1 (Pure Forward-Chaining): An inconsistent item always has an update pending
on the agenda.

This update ensures that the inconsistent item will eventually be made consistent.
(This is not a biconditional; a consistent item might also have an update pending, e.g., a
refresh that is not yet known to be unnecessary.)

The process can be started from any total (i.e., unk-free) initial chartM, provided
that the initial agenda A is sufficient to correct any inconsistencies in thisM. Totality of
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M ensures that the calls to Compute in listing 2.2 will never extend upwards in the circuit
beyond Lookup of parent values: the test for v = unk on line 6 of listing 2.1 is always false,
and so Lookup never calls Compute. This ensures that the algorithm need not consider the
question of the value of an un-memoized item that has a pending update; this is, in some
sense, the key challenge of mixed chaining, which we address in §2.2.4.

Returning to the case of pure forward chaining, A is always sufficient if it updates
every item: so the conservative initialization strategy defines each A(i) to be ^ inp(i)
for input i ∈ Iinp, and either j ∶ ^ Compute(j) or ^ for derived i ∈ Ider. However, just as
listing 2.2 discards unnecessary updates (at line 17), we can also omit as unnecessary any
initial updates to items that are consistent in the initialM. So we may wish to choose our
initialM to be mostly consistent. For example, under the null initialization strategy,
we initializeM(i) to a special value null ∈ χ for all i ∈ I. Provided that each function e(j)
outputs null whenever all its inputs are null, each derived j is initially consistent and
hence requires no initial update. Emphasizing the “logic” in “logic programming,” updating
M(j) from null to non-null v may be regarded as “proving j to have value v.”

The user method Query(j) is now defined as RunAgenda(); return Lookup(j).
This runs the agenda to completion and then returns M(j). As for the user method
Update(i,v), the user is permitted to call the generic Update of listing 2.2 for input items
i and with v ∈ χ (i.e., v ≠ unk), thereby pushing a new update onto the agenda. Forward-
chaining processes all such updates at the start of the next query. This does not require
recomputing the whole circuit, though it will potentially visit items irrelevant to that query.
Running the agenda to completion is a deficiency we shall correct by stages in §2.2.4.4
and §2.4.2. Moreover, we shall endeavor to opportunistically shed work from the agenda
whenever possible; see §2.2.4.3, §2.3.5, and §2.5.4.

2.2.3.1 Aside: Connecting Back to Logic

We can connect the boolean and/or-circuits derived from a Datalog program P (recall
“and/or Graphs,” in §2.1.2.1) back to the logical semantics of (Prolog) programs discussed
in §1.4. While we could use any two distinct values in χ to represent truth or non-truth of
an item, we will use true and null, respectively. In light of the null initialization strategy
above, the use of null for one of the boolean values is convenient as both and and or have
the requisite property: given only non-truth inputs, both return non-truth, and given only
truth inputs, both return truth. We break the symmetry and interpret null as non-truth
so that the system initializes and behaves as Datalog and Prolog, initially assuming all
derived items are not true.42

In particular, using the TP operator, we view our circuit as computing j ∈ TP ({i ∈
Pj ∣ Lookup(i) = true}) at each item j with parents Pj . When forward chaining terminates,
{i ∈ I ∣ Lookup(i) = true} will be a fixed point of TP . Under the null initialization strategy
for a cyclic circuit, our solver can be thought of as computing TP (TP (⋯TP (Iinp)⋯)).

42We avoid the term “false” to leave the door open for three-valued logics which carry not only explicit
proofs of truth but also explicit proofs of falsity, and so may have items which have not yet been proven
either way; in such a system, null would represent this lack of a proof either way. Recall §1.4.

30



2.2.3.2 Aside: Storage of M

It may be instructive at this point to contemplate the physical storage of the mapM ∶ I →
χ ∪ {unk} (where null ∈ χ). A large circuit may be compactly represented by a much
smaller logic program (as will be introduced in detail in §3.1). In this case one might also
hope to store M compactly in space o(∣I∣), using a sparse data structure such as a hash
table. The “natural” storage strategy is to treat unk as the default value in the case of
backward-chaining, but to treat null as the default value in the case of forward-chaining.
In each case this means that initialization is fast because derived items are not initially
stored. Backward-chaining then adds items to the hash table only if they are queried (and
memoized), while forward-chaining adds them only if they are provable. The final storage
size of M may differ in these two cases owing to the different choice of default. It can be
more space-efficient—particularly in our hybrid strategy below—to choose different defaults
for different types of items, reflecting the fact that some type of item is “usually” unk or
null (or even 0). One stores the pair (i,M(i)) only when M(i) differs from the default
for i. The datatype used to store M(i) does not need to be able to represent the default
value.

2.2.3.3 Updates vs. Notifications

The algorithm of §2.2.3 ensures that, when an update to an item i is popped, an update is
(considered for) pushing to the agenda for each of i’s children, immediately after i’s memo
table entry is modified. (Changes to i’s value that cause its child j’s Compute-d value to
match its memoized value can, in fact, discard updates from the agenda and will not cause
an update to be pushed; recall the behavior of Update.) We say that updates (at i) have
a pop-time effect on the memo table (specifically, at M(i)). However, the immediacy
of propagation, i.e., of creating updates at child items, is not fundamental to forward-
chaining, so long as it, like the updates it spawns, eventually happens. Zooming in on the
act of propagation itself, the loop at line 10 of listing 2.2 acts to provide notifications to
each child j that i’s value has already changed; these notifications result in updates being
queued at child items (line 13 of listing 2.2). We may instead queue these pre-propagation
notifications, too, just as we queue updates. From the perspective of the memo table,
notifications are seen to have a push-time effect: the value changes at the same time as a
notification is pushed to the agenda.

Little of significance changes if one rephrases the pure forward chaining algorithm
in terms of notifications, rather than updates; pseudocode is given in listing 2.3. The
system’s invariant would be:
Invariant 2 (Pure Forward-Chaining with Notifications): Inconsistent items always have
at least one parent with a notification pending on the agenda.
Thus, when a notification at i is popped, each child of i will re-Compute its value and, if this
differs from its current memoized values, will update the memo table and queue notifications
to their children. This variant of forward-chaining keeps the most recent value for any
item in the memo table (and available for Lookup), unlike the update-based machinery
discussed earlier. The approaches have a computational trade-off here, just as there was
between replacement and refresh update messages earlier. If propagate-ion from an item i is
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1 def RunAgenda()
2 until A = ∅
3 pop i ∶ ^ from A
4 foreach j ∈ Ci do Update(j)
5

6 def Update(j ∈ I)
7 v′ ← Compute(j)
8 if v′ ≠M(j) then Apply(j, v′)
9

10 def Apply(j ∈ I, v′ ∈ χ)
11 M(j) ← v′

12 A(j) ← ^

Listing 2.3: An alternative presentation of forward-
chaining, now using notifications rather than the up-
dates of listing 2.2. While that algorithm invokes
Apply on the popped item i and Update on each of
its children, here, both Update and Apply are invoked
on the children of the popped item.

expensive (e.g., i has many children), it may be advantageous to leave a notification pending
while allowing children to see these up-to-date values, in hopes that when propagate-ion does
happen, a large fraction of children will not change their values. On the other hand, because
children may have seen any memoized value for an item, once enqueued, a notification cannot
be removed except by propagate-ion, unlike updates, which can be removed when they are
observed to make no change to their item’s value.

As might be expected, one need not pick sides. The agenda A now contains two
kinds of messages: an update to j or a notification from j. In fact, each item j may, in
general, have up to one of each kind of message pending.43 Recall that an update to j is
graphically displayed above the line: j ∶ ^ v. A notification from j is drawn as j ∶ ^, with
the change displayed below the line to indicate that it has already descended through item
j. (For the moment, we restrict ourselves to notifications without additional metadata,
which merely convey that their item’s value has changed, though other options will become
available in §2.4.) Unlike updates, notifications do not carry the current (i.e., newer) value;
if the system is caching it, it will be in the memo table.44 Were we to permit notifications to
carry old values, we would have to modify backward-chaining to check two places (namely,
the agenda, for a notification, and the memo table). Even though we will find, in §2.2.4.2,
that backward-chaining must probe the agenda for notifications, the possibility of values
being cached in two places still seems of little gain. Later, §2.4.1 and §2.4.2 will introduce
additional machinery and will, indeed, have backward-chaining optionally look for values
in notifications, but these values are intended to be ephemeral within operations of the
forward-chaining components of the system.

Logically, there is a kind of strict alternation between updates and notifications:
a notification dispatched from an item propagates to become updates at its children, which

43The restriction to at-most-one message of each sort avoids concerns about messages (of the same type
and at the same item) re-ordering on the agenda. See §2.4.4.

44In an implementation, however, one may wish to augment a notification during propagation (but not
during storage on the agenda) with the current value, if known. That is, it may be lower overhead, com-
putationally, to inform children of the new value of their parents rather than to make them call back to
Lookup their values. Further, an implementation is free to conflate the actual storage of M and A, if that
is useful; some items may have memoized values only when they also have messages on the agenda.
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then each propagate through their items to become notifications. Either of these phases may
be done eagerly (i.e., skipping being queued on the agenda) at any point: updates can apply
and propagate to become updates (while updating the parent value, as in listing 2.2) and
notifications can propagate and apply to become notifications (while updating the children
values, as in listing 2.3).45 The pure forward-chaining algorithms above emerge as universal
policies to always eagerly perform one or the other.

If a solver uses both kinds of messages (but still keeps M total), its correctness
invariant becomes a disjunct of the two we have given for the systems using just one or the
other. Specifically:
Invariant 3 (Pure Forward-Chaining with Both Updates and Notifications): Any incon-
sistent item j has at least one of an update pending (at j) or a parent with a pending
notification.
Having both an update at j and a notification at its parent i is a little redundant, but not
incorrect. In the following development of a mixed-chaining solver with selective memoiz-
ation, we shall discover that we must use both kinds of messages if we wish to be able to
remove arbitrary entries from the memo table.

2.2.3.4 Aside: Continuous Queries and Snapshots

A continuous query of item i in an arithmetic circuit is a request to be notified (e.g., via
callback) whenever Update-s have caused Query(i) to change. Essentially, they are requests
by the driver program that it be treated as a child of i. Continuous queries are also used
in databases and in functional reactive programming [54, 37]. Some users may also like to
be notified of any updates that reach i as our algorithm runs, allowing them to peek at
intermediate states ofM(i).

A snapshot is a view of the arithmetic circuit that will not be modified by sub-
sequent Update-s to input items, but which is guaranteed to (eventually) converge to a
solution consistent with all updates made up to the point at which it was taken. There
are several open challenges associated with snapshots, including an efficient mechanism for
specifying exactly what updates are or are not to be considered when acquiring a snapshot
(i.e., “What time is it, anyway?” in a potentially distributed system) and a notion of sta-
bility of answers when there exists more than one solution (as there may be after we allow
circuits to be cyclic in §2.5).

A solver may offer various levels of support for snapshots. The most primitive
offering is none: the onus is on the driver program not to issue updates until it has queried
all that it might wish to know. An intermediate offering might be the ability to maintain
several snapshots, representing points in a linear timeline of updates. In this scheme, Query-
s would be issued against an existing snapshot or the current state, Update-s would apply
to the current state, and there would be a MakeSnapshot procedure which snapshotted the
(singular) current state, yielding a snapshot handle. A rather sophisticated offering would

45Because the propagation and application of a notification yielding another notification at a child item
does indeed update said child item’s value, “notifications,” especially those handled in this eager way, were
sometimes called “push-time updates” in our earlier work, Filardo and Eisner [60]. We have come to view
this as a confusing term and avoid this phrase, as well as its counterpart “pop-time update,” for which we
now just use “update.”
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be to allow a forked timeline, in which any snapshot can be extended by Update-s, yielding
a new circuit state, any of which may themselves be converted into additional snapshots.
This sophisticated interface would be useful for counter-factual exploration on the part of
the driver program.

2.2.4 Mixed-Chaining With Selective Memoization

Both pure algorithms above are fully reactive, but sometimes inefficient. Backward-chaining
may redo work. Forward-chaining requires storage for all items, and updates fully before
answering a query. Yet each has advantages. Backward-chaining visits only the nodes that
are needed for a given query; forward-chaining visits only the nodes that may need updating.

A hybrid algorithm should combine the best of both, visiting nodes only as neces-
sary and using M to materialize some useful subset of them. Our core insight is that the
two directions of chaining have dedicated roles in the system:

● Backward-chaining computes values for which the memo is missing (unk).

● Forward-chaining refreshes any memos that are present but potentially stale.

Our pure strategies emerge, then, as consequences of universal memoization policies:

● Pure backward-chaining is the case where all derived memos are missing. So a query
triggers a cascade of backward computation; but forward-chaining is unnecessary (no
stale memos).

● Pure forward-chaining is the dual case where all memos are present. So an initial or
subsequent update triggers a cascade of forward computation; but backward-chaining
is unnecessary (no missing memos). We regard the arbitrarily initialized chart of
§2.2.3 as a complete but potentially stale memo table.

We develop a hybrid algorithm that can memoize any subset of the derived items. This
subset can change over time: memos are optionally created while answering queries by
backward-chaining, and can be freely created or flushed at any time. Computing only
values that are needed to answer a given query can reduce asymptotic time and space
requirements, a fact exploited by the magic sets technique [152] (see §2.2.4.3).

The essential challenge here is to make forward-chaining work with an incomplete
memo table M. Intuitively, we merely need to propagate updates as usual down through
un-memoized regions of the circuit, so that they reach and refresh any stale memos below.
However, if an item j is not memoized, it is no longer sensible to speak of a pending update
to its value! Any attempt to invoke Lookup(j) will by supposition recurse to Compute and
therefore see the effect of this update. Thus, we have another invariant of our algorithm:
Invariant 4 (Mixed-Chaining Updates): Updates exist only at memoized items.
Notifications, however, may be pending at both memoized and un-memoized items. How-
ever, the implicit change to j must still be propagated to its (visible) descendants, which will
be done by propagating these notifications through regions of un-memoized items. When
a notification propagates to a memoized item, it will, at least logically, become an update
and repair the inconsistency. All told, our solver’s primary invariant must be revised once
more:
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aa : ● bb : ● cc : ● dd : ●

ab : + cd : +

xabcd : +

Figure 2.3: An example circuit showing a pictorial in-
terpretation of Invariant 5. If the item abcd is incon-
sistent (i.e., the values returned by Compute(abcd)
and Lookup(abcd) are not equal, or, equivalently,
(a + b) + (c + d) ≠ x), then Invariant 5 states that
the green circled locations must contain at least one
agenda message. Invariant 4 prohibits updates at the
un-memoized ab and cd items.

Invariant 5 (Mixed-Chaining): Any inconsistent item j has at least one of an update
pending (at j) or a visible ancestor with a pending notification.
This invariant has a convenient pictorial interpretation, as shown in figure 2.3: if j is
inconsistent, a message must exist somewhere within j’s visible region of the circuit, which
spans the slots for an update above its line, for notifications below the lines of its memoized
visible ancestors, and for any messages at un-memoized visible ancestors (but we restrict
to using only notifications, as per Invariant 4).

2.2.4.1 A Mixed-Chaining Solver with Selective Memoization

The core of our mixed-chaining algorithm, which we call EarthBound (“Encompassing
Algorithm for Reactive Truth-maintenance, Homogenizing Backward-chaining, Optional-
storage, Updates, and Notifications, as Desired”),46 is shown in figures 2.4 and 2.5. The
listings of EarthBound will use a maybe construct to expose multiple strategies; read maybe
as a conditional statement whose outcome (executing the block or not) depends on some
implicit or external components of the implementation. In general, the merits of executing
such optional code—that is, the memory requirements and computational latency of the
current operation and future operations—depends on the solver’s current state and the
future workload. In practice, we envision using an adaptive policy for making each maybe
decision required by the solver; see Vieira et al. [183] for more details. Before getting bogged
down in detail, let us provide a high-level synopsis:

● The two listings in figure 2.4 contain the functions used for forward-chaining. Were
M total, these listings would describe a forward-chaining solver using both updates
and notifications, as per §2.2.3.3.

● Listing 2.6 shows the backward-chaining core, a generalization of listing 2.1 to mixed-
chaining. Lookup and Compute remain mutually recursive, but we now distinguish
between Lookup-s, which begin their work at the item in question, while Compute more
properly visits each item with a lookupFromBelow, which includes a check to see if any

46“Truth-maintenance” is another name for reactive solving of (boolean) circuits; similarly, the database
literature refers to “view maintenance” for circuits defined using relational calculus (see, e.g., Ahmad et al. [6]
and Koch, Lupei, and Tannen [108]). While a reasonable acronym unto itself, the name EarthBound was
inspired by Pink Floyd’s Learning to Fly from A Momentary Lapse of Reason [146], because our algorithm
spends much of its time calling lookupFromBelow, unable to “keep [its] eyes from the circling skies.” The
identity of the first-person referent of “Tongue-tied and twisted, just an earthbound misfit, I” is left to the
reader’s interpretation.
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1 % Enqueue update or notification
2 def Update(j ∈ I, w ∈ χ ∪ {unk}) ∈ ⟨⟩
3 % Update messages only possible if
4 % existing memo (Invariant 4)
5 % & no notification (Invariant 6)
6 if (M(j) ≠ unk) ∧ (A(j) ≠^) then
7 % optionally, apply now
8 maybe
9 delete A(j)

10 if (w = unk) ∨ (M(j) ≠ w) then
11 A(j) ← ^ w
12 % else update made no change
13 return
14 % else fall through
15 % (promote update to notification)
16 Apply(j, w)
17

18 % Apply update, create notification
19 def Apply(j ∈ Ider, w ∈ χ ∪ {unk}) ∈ ⟨⟩
20 M(j) ← w
21 A(j) ← ^
Listing 2.4: Forward-chaining internals. Update and
Apply will be called by the agenda loop (listing 2.5).

1 def RunAgenda()
2 until A = ∅
3 FreelyManipulateM()
4 peek u from A
5 case u of
6 i ∶ ^ → propagate(i)
7 _ ∶ ^ _ → handleUpdate(u)
8

9 % Convert update to notification
10 def handleUpdate(i ∶ ^ v)
11 delete A(i) % clear old message
12 vcur ← M(i) % will not be unk
13 maybe v ← unk % in-line Flush
14 maybe ⟨v,_⟩ ← Compute(i)
15 if v ≠ vcur then Apply(i, v)
16

17 % Route notification to children
18 def propagate(i ∈ I) ∈ ⟨⟩
19 foreach j ∈ Ci do
20 w ← unk
21 maybe ⟨w,_⟩ ← Compute(j)
22 Update(j, w)
23 delete A(i) % finished propagating

Listing 2.5: Agenda loop. Notifications persist on
the agenda during propagate-ion so that depen-
dencies amongst child items are marked correctly
(§2.2.4.2).

Figure 2.4: The forward-chaining components of the first version of EarthBound, our mixed-chaining
solver. At this point in the development of the algorithm, the only form of notifications used within the
system are ^; the remainder of table 2.1 will be introduced in §2.4 and will necessitate a few changes
throughout these listings.

notification is pending at this parent. This check is necessary for reasons we study in
detail shortly (§2.2.4.2).

● Listing 2.7 contains the functions, in addition to Update of listing 2.4, exposed to the
user of the solver. As before, Query is used to look up the value of an item. A user
may call Update(j,w) so long as j ∈ Iinp and w ∈ χ. Flush is used to remove an entry
from M. FreelyManipulateM is not, by itself, a very useful function, but it serves to
emphasize that the solver will remain correct under arbitrary memoization policies,
including arbitrary removal of memos between other calls into the solver.

Inspection of the possible flows of control within listings 2.4 to 2.6 will reveal
that EarthBound is primarily a forward-chaining one. Forward-chaining is a consumer of
backward-chaining when constructing update objects (see line 21 of listing 2.5 and line 14
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1 % Derive j's value from parents
2 def Compute(j ∈ Ider) ∈ jχ,boolo
3 foreach i ∈ Pj do
4 ⟨vi,mi⟩ ← lookupFromBelow(i)
5 return ⟨e(j)(v⋅ ○ P⃗j),⋁i∈Pj

mi⟩
6

7 % Interaction with forward-chaining
8 def lookupFromBelow(i ∈ I) ∈ jχ,boolo
9 ⟨v,m′⟩ ← Lookup(i)

10 m ← (A(i) =^)
11 return ⟨v,m ∨m′⟩
12

13 % Get i's memo or derive from parents
14 def Lookup(i ∈ I) ∈ jχ,boolo
15 if M(i) ≠ unk then
16 return ⟨M(i), false⟩
17 ⟨v,m⟩ ← Compute(i)
18 maybe
19 M(i) ← v
20 % Preserve Invariant 5
21 if m then A(i) ← ^
22 return ⟨v,m⟩
Listing 2.6: Backward-chaining internals. Unlike
their counterparts in listing 2.1, these return pairs.
The first element of these pairs are the values as
expected; the second component is used to man-
age “premature visibility” of values obtained having
crossed notifications; see §2.2.4.2.

1 def Query(i ∈ I)
2 RunAgenda()
3 % Agenda is empty, so no mark on v
4 ⟨v, false⟩ ← Lookup(i)
5 return v
6

7 def Flush(j ∈ Ider)
8 M(j) ← unk
9 % Preserve Invariant 4

10 if A(j) =^ _ then A(j) ← ^
11

12 def FreelyManipulateM()
13 done ← false
14 until done
15 foreach i ∈ Ider do
16 maybe _ ← Lookup(i)
17 maybe Flush(i)
18 maybe done ← true

Listing 2.7: User interface methods. Update, from
listing 2.4, applied only to items in Iinp, is also avail-
able to the user. FreelyManipulateM is called
from within the earlier solver listings, as well.

Figure 2.5: EarthBound backwards-chaining components and external functions. Like figure 2.4, these
listings will be revised in §2.4.

37



of listing 2.5), while backward-chaining never, even indirectly, re-enters forward-chaining.
Our algorithm also takes the opportunity to exploit notifications even for memoized

items. In the old listing 2.2, Update(j,w) always enqueued j ∶ ^ w for later. Our new
Update(j,w) in listing 2.4 can still choose that option provided that j is memoized (line 6
of listing 2.4), but its default is to Apply the update immediately (line 16 of listing 2.4). If
so, it pushes only the notification j ∶ ^ and there is no need to Apply any change to j when
this pops from the agenda. What does still happen at pop time is propagation: it is not
until we pop an update or a notification to j (line 5 of listing 2.5) that we visit j’s children
(line 19 of listing 2.5).
Invariant 6: Merely for simplicity of exposition, and not out of any correctness concerns,
our algorithm as presented enforces that items have at most one of an update or a notification
pending. (Before, in §2.2.3.3, we permitted at most one message of each type; we are now
strengthening our requirements.)

Thus, our agenda stores at most one message of any type for any given item.
Update only creates an update at line 11 of listing 2.4, gated by a check that there is no
notification pending at line 6 of listing 2.4, as well as the check to ensure that a memo
exists as per Invariant 4. If either check fails, Update defaults to invoking Apply to create a
notification.

As might be expected, there are reasons to prefer notifications or updates in dif-
ferent situations. Updates, and their attendant memos (recall Invariant 4) serve to isolate
descendant regions of the graph from ancestral regions; thus, they may serve to hide churn
in parents’ values from children. Any Lookup(j) of an item with a pending update necessar-
ily returns a known-to-be-stale value, and so any created descendant memos are necessarily
out of date with respect to their ancestors (above their visible ancestors). On the other
hand, notifications ensure fresher lookup results as M(j) has already been updated to a
new value (or invalidated, set to unk). (However, to ensure correctness in all cases, there is
a need to “mark” these prematurely-seen values; we discuss the point in detail in §2.2.4.2.)

What happens if line 21 of listing 2.5 is optionally skipped (so that w = unk)?
Then the resulting Update is a refresh update as before (§2.2.3). However, if processed at
push time to create a notification (i.e., if control flow reaches line 16 of listing 2.4), it is
an invalidation that deletes a memo instead of correcting it. Propagating invalidations
as such (i.e., without invoking Compute during their handling) can clear out stale portions
of the chart at lower computational cost than computing the new values. Separately, the
Flush method can also be called by the user or by FreelyManipulateM to delete individual
memos without the need to propagate. Flush preserves Invariant 4, that updates exist only
at memoized items, by promoting any update to a notification at flush time.

Like the forward-chaining algorithm, the hybrid algorithm may start from any
initial chart M—but derived items j now have the option of M(j) = unk. The initial
agenda does not contain any notifications, but as before, it must include sufficient updates
to correct any inconsistencies in the initial chart. Since un-memoized, derived, unk items
are always consistent by definition (§2.2.2), the initial agenda never needs to have updates
for them. For example, the unk initialization strategy initializes just as in backward
chaining (§2.2.1), with input items set correctly and everything else initially unk, and so
may use an empty initial agenda.
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^21i : ● 4i′ : ●

j : +

5k : = k′ : =

^2i : ● 4i′ : ●

j : +

5k : = k′ : =

^2i : ● 4i′ : ●

^6j : +

5k : = k′ : =

Figure 2.6: Backward-chaining may need to enqueue notifications (§2.2.4.2). After the top left update (at i)
is applied, it becomes a notification ^. After this occurs, Lookup(j) is called, perhaps as part of backward
chaining k’ or in response to a user Query, and chooses to memoize an up-to-date result of 6. Because
backward-chaining encountered a ^, the memoization enqueues another ^ at j, which ensures that its
child, k, will later be updated from 5 to 6. Were this notification not enqueued at j, there is risk that k
would remain forever inconsistent, because the propagation of the notification from i may be discarded as
it does not revise the memoized value of j, 6.

2.2.4.2 Premature Visibility, or, Marked Results from Backward-Chaining

We noted before that forward-chaining is a consumer of backward-chaining, and that
backward-chaining never dequeues from the agenda. However, careful readers may have
noted that Lookup will, on occasion, enqueue to the agenda (at line line 21 of listing 2.6)
based on the somewhat mysterious second components of the tuples being returned. Let
us now explain the mystery. Suppose that the item i processes an update and queues a
notification at itself, thus making its visible descendant k inconsistent, and that j is an
initially un-memoized intermediate item on an i-to-k path.

In the course of the solver’s execution, it may invoke Lookup(j) and that may
memoize (at line 19 of listing 2.6) this result, all before the notification from i. In such a
case, subsequent handling of the notification from i may Compute j’s new value and compare
it to the memo, either when the notification from i is propagate-d to j (line 21 of listing 2.5)
or when a (refresh) update at j pops and is fed to handleUpdate. This call to Compute(j)
will observe the same answer as the Compute(j) that computed the memo, earlier. That
is, the memo M(j) was not stale but already reflected the change to i. This causes a
subtle bug: forward-chaining will discard the apparently unnecessary update, rather than
propagating it on downward to k. Thus, k may remain inconsistent forever.

To prevent this bug, memoizing j must also enqueue a notification that the value
at j has been brought into consistency with its visible ancestors. The correct behavior
is illustrated in figure 2.6. This notification reflects the past update to i; it restores the
solver’s consistency invariant (Invariant 5), and it will propagate down to k as desired. Such
a notification must be enqueued when memoizing any item j such that Compute(j) (possibly
through recursion) called Lookup on some item that had a notification on the agenda. The
functions in listing 2.6 return (as the second element in the tuple) a mark that is true if this
condition holds, and enqueue the required notification at line 21 of listing 2.6. Specifically,
lookupFromBelow(j) consults the agenda to test for the existence of a notification at j,
ensuring that the flag is set in its return if it finds one. Lookup returns false if it encounters
a memo or, otherwise, simply passes the flag through from Compute. Compute returns the
logical or of all parent’s marks. We call a result from backward-chaining whose associated
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mark is true a marked value.
A careful reader will note that, within handleUpdate, the solver may re-Compute the

value carried by an update, even when that value is not unk, at line 14 of listing 2.5. This
is not essential to the system’s operation, but is a possible optimization, exposing a newer
value to the children of the item being updated i, by incorporating notifications pending at
its visible ancestors. Because at this point the solver is constructing a notification anyway,
whether or not the result of Compute-ation is marked is irrelevant. Similarly, marks are
discarded during construction of updates, at line 21 of listing 2.5.

2.2.4.3 Efficiency: Obligation

Our hybrid algorithm naturally addresses the challenge first given in §2.2.2: backward-
chaining with optional memoization was a promising algorithm, but did not work when
the input could be Update-d. Left to its own devices, forward chaining will materialize
(and maintain, in the presence of updates) all memos, which may require much more work
than just answering the questions the user wishes to know. This could be a large, and
unnecessary, expense.

For example, if no derived items have been memoized, then change propagation
should be completely unnecessary—this is the pure backward-chaining case of §2.2.1—and
yet our algorithm will visit all descendants of an Updated item! Moreover, while pure
forward-chaining, can stop propagating (discard the update) at a child whose value is un-
altered, for an unk child the former value is unknown, so we must, conservatively, keep
propagating. This possibility of useless propagation (to descendant-closed segments of the
circuit that contain no memos) suggests maintaining some summary information of the
descendants of a given item that could inform propagate of its responsibilities.

A well-known approach for obtaining hybridized behavior in circuit solvers is to
emulate backward-chaining within a forward-chaining system. (The asymmetry is not arbi-
trary: forward-chaining is complete for a larger class of circuits than backward-chaining, as
we will see in §2.5.) The technique used is called “magic sets” [16] (subsequently generalized
to “magic templates” [152]). Given our circuit formalism, we view magic sets as doubling
the size of the circuit and reversing the arrows in the added copy (and assigning different
functions to these copied items; we defer details momentarily). This second copy of the
graph models information flowing backwards in the original circuit and will be used to track
whether items are needed (“charmed,” in the original language of magic sets). To make a
query of a node, one would assert that it was needed (i.e., change the input item correspond-
ing to need of the query) and then use forward-chaining to compute, within the copy of the
circuit, the set of ancestors that must, certainly, also be needed. Then, forward-chaining
again would flow values from ancestors to descendants, but would not consider updating
items that are not needed.47

47The original discussion of magic pertained to Datalog programs (and was later extended to Prolog),
which can be, for present purposes, thought of as circuits having the and/or structure mentioned in §2.1.2.1.
In particular, the items j of a Datalog program have structure to their valuation functions e(j): for and
nodes, if any Pj is assigned the value null, then so is j. When marking items as needed, then, one could
mark only the first parent of a needed and item as needed (as well as all parents of a needed or item). If
forward-chaining discovers that this first parent is true (or, more generally, non-null), then one considers
the second parent needed and replays the upward pass of marking more items as needed, before continuing
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Generalizing this notion to be reactive gives a measure of obligation within our
solver. We define a function of a parent-child edge, obl(i, j), which is true when item i is
obligated to propagate a notification to its child j ∈ Ci. We replace the foreach on line
19 of listing 2.5 with “foreach j ∈ Ci where obl(i, j) do,” using this (temporarily) oracular
function to guide propagate-ion’s hand. It is conservatively safe to define ∀i,j obl(i, j) = true;
this is potentially inefficient, but certainly not wrong.

As an initial position, we might limit propagation along edges to cases when the
message so sent may eventually reach a memoized descendant.48 Certainly, any messages
sent from an item with no visible, memoized descendants achieve no effect. Thus, we could
imagine constructing, for a given circuit C, its obligation circuit, Cobl, a boolean circuit that
determines presence of visible, memoized children. Roughly speaking, Cobl has the same
topology as C but with the edge direction reversed: the item i, in Cobl is true ifM(i) ≠ unk
or if some j ∈ Ci is, in Cobl, true (i.e., the children of i in C are some of the parents of i in
Cobl; essentially,M(i) is also a parent of i).

Transitive closure, however, is not quite the whole story. We can be even more
precise about determining obligation, should we wish. Specifically, in the recursive defini-
tion, i is not obligated to its child j if there is a refresh update at (memoized) j. In this
case, j and its descendants are guaranteed to get refreshed anyway (if they are found to be
stale when the refresh pops from the agenda), so it is not necessary to propagate messages
to j from i or its ancestors. Below the line, if there is a notification pending at i, then i is
not obligated to any of its children: any changes to i before the notification propagates will
be taken into consideration by children automatically. These changes are easily reflected in
Cobl, by adding {A(i) ∣ i} as input items and wiring them in appropriately.
Example 10: Consider the (admittedly artificial) case of a circuit formed of a (finite) chain
of items {xi ∣ i ∈ Nn1} ∪ {x0}, in which each xi+1 (i ≥ 0) has xi as its sole parent and each xi
(i > 0) simply copies its parent’s value. Take x0 ∈ Iinp. If no {xi ∣ i > 0} is memoized, then a
driver-induced change to the value of x0 need not do any computation, as x0 is not obligated
to x1. If, on the other hand, k is the largest Nn1 such that xk is memoized, the solver must
push changes at least as far as the memo for xk, and may then stop (as no further memos
can change); each xi is obligated to xi+1 when i + 1 ≤ k. However, suppose that some xj ,
with 0 < j < k, while memoized, has a refresh update pending. The solver, now, need only
propagate changes as far as xj′ , the child-most item between (exclusively) 0 and j with xj′
memoized. While there are memos “beyond” xj′ (at xj , in particular, but possibly others
as well), they are certain to be refreshed, if necessary, when the update at xj is popped and
processed and (possibly) results in a notification at xj to be further considered. That is,
xj′ is not obligated to xj′+1 (due to the refresh update at xj and the lack of memos between
xj′ and xj), even though xj may be obligated to xj+1 due to the memo at xk (but may also
be relieved of its obligations by other messages on the agenda). ◊

Relative to the magic sets approach, despite the increased workload of maintaining
Cobl, our mixed solver is potentially more economical with space. Magic sets materializes

to forward chain on the, now larger, set of needed items. One would propagate an update to a needed item
only after all of its parents have been shown to be needed by this procedure.

48Strictly, memoized or with an active continuous query à la §2.2.3.4; let us, for present purposes, assume
that all continuous queries always ensure that the queried item is memoized.
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the sets of needed items for the entirety of a computation. We directly perform backward
chaining with a depth-first stack, eliminating the need to store these sets beyond their use.

Speaking of maintaining Cobl, we could maintain it exactly using (Cobl)obl, or by
falling back to a cheaper obligation tracking strategy. Recall that overestimating obligation
will not lead to errors, merely inefficiency, so we can tolerate, in Cobl, unlike in C, one-sided
error. Perhaps we simply assume that all obligation relations are true unless we explicitly
store that they are not, so upon finding an unk in the memo table of Cobl, we do not
recurse but return true. Another possibility is to uses a memoization and flushing policy
such that the memoized items always have memoized parents, so that there is no need for
the recursive rules in Cobl. It may also be possible to find coarser approximations of Cobl,
wherein one item (safely) approximates several obligations. There seems to be a rich space
of options here.

We note, in passing, that it may even be possible to tolerate two-sided error in
obligation, so long as one is assured of coming to recognize the erroneous beliefs of non-
obligations. While we are unsure what sufficient preconditions could ensure this eventuality,
the eventual fix would be charmingly simple: queue a refresh update at the child which may
have missed messages and let the existing machinery take care of the rest.

2.2.4.4 Responsiveness: Selective Propagation and Convergence

Our current algorithm calls RunAgenda at the start of every Query, which brings all stale
memos—including those that are not relevant to this query—up to date. This can be
especially inefficient for cyclic or infinite circuits. We would prefer to propagate only the
currently relevant updates, as in Kangaroo [135].

As a first definition, an item is converged with respect to the current state of the
input items if it and all of its ancestors do not have messages pending on the agenda. In
such a state, an item can be safely Query-ed, even if there are other messages still pending
on the agenda. Beyond passively detecting convergence, we could selectively pop messages
on the agenda until our target Query was converged. Because this may involve queueing
messages to many items which are not ancestors of our target Query, this strategy may not
represent as large of an improvement to responsiveness as one might wish.

We can be more precise in our definition of convergence by observing that only
obligated ancestors actually matter. If an item j has released its parent i from obligation,
then a message pending at i must not influence its value. We will be further able to
refine this definition in §2.4.2, and in so doing, recover the desired, but at present missing,
efficiency gains mentioned in the last paragraph.

2.2.4.5 Responsiveness: Towards Concurrent Solving

The algorithm we have presented so far is single-threaded, with an event dispatch loop
structure built around the agenda. However, we would like to be able to dispatch multiple
separate Compute-ations or propagate-ions at once.49

49For realizability on modern hardware, one hopes for a SIMD-style relation between the work units
grouped together. Our work in §3 may be realizable this way.
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In general, one could imagine using Software Transactional Memory to ensure that
multiple threads executing our mixed solver made coherent updates to the memo table and
agenda. Such a transaction would isolate all necessary backward-chaining and all attendant
reads ofM; as part of transaction commitment,M would be updated and any new messages
for the agenda would be queued for subsequent dispatch. In the extreme, one could imagine
starting a transaction for every message pushed to the agenda and permitting them to
resolve however they may; in practice, one is likely to want at least some semblance of
scheduling and synchronization between transactions, so that the system can, for example,
attempt to bring certain parts of the circuit into convergence before others.

In the next section, as part of a general effort to improve expressiveness of the
solver, we consider, but do not implement, a message-passing framework. In this framework,
the agenda is removed from its central, synchronizing role in the system and messages
between agents are asynchronous but ordered. Such a framework may be a useful starting
point for a non-transactional approach to parallelism, as it is not necessary to globally
synchronize across all agents, just locally on their message queues.

2.3 Items as Stateful Agents
We can think of our algorithm to date as a routing framework for messages between
items: when forward-chaining, messages are notifications of changed values; when backward-
chaining, messages indicate demands for values and responses thereto. The flexibility of this
algorithm is limited by the black-box nature of the e(j) functions of the definition of arith-
metic circuits. These functions are presumed to be capable only of responding to demands
for the value (of j) if they are provided the values of all parent items. While there cer-
tainly are functions that truly do depend on all of their arguments in all circumstances
and in opaque ways, there are several special cases worth considering for computational
performance.

Canonical examples of such special cases are selective operators, such as and and
or. In procedural languages, these operators are often given “short-ciricuit” semantics; if,
for example, the result of evaluating the first argument to and is false, then the second
argument will not be evaluated at all.50 Other examples are available as well. When
comparing the sum of natural numbers, a1 + a2 + ⋯, to a fixed natural k, one can stop
demanding additional ai items as soon as the running sum is greater than the threshold k:
the sum will only further increase and will not change the comparison result. As a lemma,
asking if a cons list is longer than a given length can similarly stop processing if a prefix of
that size has been observed: it does not matter how much more of the list is analysed, it
will never be found to be shorter.

In reactive settings, one sometimes wants to avoid picking a fixed short-circuit
ordering on parents. Having found a true parent, an and item should be able to express

50In a side-effect free language, this is purely a matter of implementation but may improve the wall-clock
time taken to evaluate a pure expression. (Time is, as a reminder, generally considered to be irrelevant to pure
programs.) However, some side-effectful languages even encourage use of this short-circuiting mechanism for
side-effect management, so that the statement “x or launchMissiles()” will have the effect of launching
the missiles when x is false.
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Backward-chaining
§2.3.1

In C @lookup⟨⟩ Request agent’s value
P @value⟨i ∈ I, v ∈ χ⟩ Inform agent of parent’s value

Out P @lookup⟨i ∈ I⟩ Demand value of parent
C @valueIs⟨v ∈ χ⟩ Reveal own value

Forward-chaining
§2.3.3

In C @lookup⟨⟩ Get agent’s value
P @notifyFrom⟨i ∈ I, v ∈ χ⟩ Parent i now has value v

Out C @valueIs⟨v ∈ χ⟩ Reveal value
@notify⟨⟩ Item’s value has changed

Mixed-chaining
§2.3.4

In
C @lookup⟨⟩ Request agent’s value

P @value⟨i ∈ I, v ∈ χ,m⟩ As above, but with mark m
@notifyFrom⟨i ∈ I, v⟩ As above, but v ∈ χ ∪ {unk}

Out
P @lookup⟨i ∈ I⟩ Demand value of parent

C @valueIs⟨v ∈ χ⟩ Reveal value
@notify⟨⟩ Item’s value has changed

Metadata
In - @flush⟨⋯⟩ Flush state (§2.3.4.1)
Out - @obligate⟨σ ⊆ Pi⟩ Set obligations of item i (§2.3.5)

Table 2.2: Inter-Agent Message Types. The third column, containing P (parent) or C (child) annotations,
describes the source of input messages and the destination of output messages, after handling and transfor-
mation by the containing framework. Metadata messages are exchanged directly with that framework itself.

its disinterest in all other parents until that true changes. Similarly, a sum-compare item,
having found a subset sum that determines the outcome, can should be able to indicate its
indifference towards other elements of the sum. We revisit obligation in §2.3.5.

To improve the expressivity of our algorithm, we replace e(j) with a richer inter-
face: a stateful, synchronous agent or actor [5]. Agents accept a message from a set I and
produce messages from a set O; along the way, they may update some internal state. We
model the type of the agent state for item j as (isomorphic to) a least solution Sj to the
equation Sj = I → jSj ,℘Oo. Agents consume input messages serially but may emit several
output messages at once, which may be processed in any order. We will write all messages
as terms, using a leading @ sigil to indicate that they are not part of H. The full taxonomy
of messages, together with the sections containing definitions, is shown in table 2.2.

We assume that agents for derived items can be restarted at any point by forgetting
their state and using an initial state object returned by a given function initState ∈ Πj∈Ider Sj .
Thus, we can selectively memoize agent state as well as item values: if we find ourselves
sending a message to the agent for j without an associated state object, we may conjure
a new one into being and pass it the message. One may expect an initial burst of output
messages while this new agent orients itself. Agents for input items are particularly simple,
merely returning the input value; they are not able to be reset, just as input items could
not be flushed.

The framework into which we embed our agents in this section should ensure that
messages are delivered reliably, exactly once, and in-order between every pair of sender and
receiver. That is, if an agent for item j issues one message m1 to item k and then later
another m2, the agent for k must receive m1 before m2, if it receives m1.51

51How can k not receive m1 since message delivery is reliable? It is possible that the agent for k is reset
between delivery of m1 and m2, so that the new agent observes only m2. Agents must be prepared to deal
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In §2.2.4.3 we introduced a notion of obligation which was built up from the memo
table. An item i was obligated to its child j if the value of j was memoized or, in turn, j
was obligated to any of its children. We slightly revise the definition here: if the framework
is holding an agent state for j, even if that state could not immediately return j’s value,
that is sufficient to obligate its parent i. The recursive aspect of the definition remains in
place. See §2.3.5 for more discussion.

2.3.1 Pure Backward-Chaining as Message Passing

The simplest input message is @lookup⟨⟩, which requests a @valueIs⟨v⟩ output. An input
item’s agent responds immediately, as might a derived item’s agent if it is caching the value,
à la the memo table of old. However, if the agent for a derived item j does not know the
value, it must emit demands for parents’ values, a set of @lookup⟨i⟩ messages. While the
prior algorithms assumed that all items needed all parents’ values, this message-passing
framework waits for an item’s agent to explicitly demand a parent. The framework should
respond by storing, internally, that this agent is waiting on the requested parents and
should issue (or queue to be issued later) @lookup⟨⟩ messages to these agents. Eventually,
those agents, possibly after demanding values of their parents (and so on), will yield a
@valueIs⟨v⟩ output message, which should be forwarded, as @valueIs⟨i, v⟩, to all agents
blocked on i’s value. Eventually, after possibly several rounds of @lookup and @valueIs
messages, the agent for j should emit its own @valueIs⟨v⟩. Upon receipt of such a message,
the framework should forward v to any agents that had requested j’s value.52

The behavior of listing 2.1 is recovered if we make a few assumptions of the frame-
work and agents. 1 @lookup⟨j⟩ messages from k are handled in a depth-first order: one j is
selected and its agent is sent a @lookup⟨⟩ message. Any @lookup⟨i⟩ messages it emits will
be handled in full before returning a value to k. 2 In response to a @lookup⟨⟩ message, an
agent that does not already know its value emits @lookup⟨i⟩ messages for all of its parents.
3 Given an @value⟨i, v⟩ message for each parent, an agent will emit a @valueIs⟨v⟩ carrying
its own value.

The move to a message-passing, demand-driven backward-chaining system enables
a few new features, which are worth discussing briefly. 1 A derived item j may now reveal
its value without having demanded the values of all of its parents, if the subset queried so
far is sufficient to determine its value. Typical examples of this behavior occur when there
are absorbing elements of e(j), e.g., multiplication by zero, or conditional behavior, such as
e(j)(⟨c, t, e⟩) encoding the behavior of “if c then return t else return e.” Previously,
both t and e would have been demanded, in addition to c, while now j’s agent may first
demand c and then demand only the one of t or e relevant to the result. Thus, the behavior
of the system is now value-dependent. 2 Moving away from depth-first search for parents’

with this scenario: agents may get answers to questions they have not (yet) asked! All messages discussed
in this section are idempotent, so this, for the moment, is not much of a concern.

52There is some finesse required for discarding agent state, in that a new state of the agent must be
synchronized with the framework as a whole. If, for example, the agent’s item’s value was under demand
when the old state was discarded, the new state may receive apparently unsolicited @value⟨i, v⟩ messages.
When instantiating a new agent for a presently-demanded value—that is, one on which some other agent is
blocked—the framework should synthesize a @lookup⟨⟩ message.
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values may allow for better scheduling of work (and use of the memo table). The framework
is free, for example, to operate in a breadth-first way to actively search for opportunities
for reuse of derived values, rather than memoize as best it can at the moment and hope for
cache hits later.

2.3.2 Pure Forward-Chaining as Message Passing, Take 1

Forward-chaining is already more overtly a message-passing system. However, the algo-
rithms of §2.2 treat the items’ evaluation functions as black boxes that are capable only
of computing their value when given the value of parents. Thus, the forward-chaining
algorithms’ agendas carry messages not for items’ consumption, but for the algorithm’s.

Precious little changes from listing 2.2, under the (relatively minimal) assumption
that agents, having computed a value in response to @lookup⟨⟩, will never forget this value
and need to engage backward-chaining thereafter. Updates, which once replaced values of
items, now correspond to replacements of agent state. That is, we can construct a new agent
for j in light of a notification from its parent i, demand the value of this new agent, and
interact with this new agent through its backward-chaining, and not immediately replace
the memoized state with the resulting, new agent state for j. By analogy with Invariant 4,
we continue to insist that there may be at most two agent states associated with a given
item: the current one and the pending one. If a subsequent notification is propagated before
the agent state replacement has occurred, the intermediate agent state is discarded (as with
updates). When the agent state is, ultimately, replaced, the framework must enqueue a
notification, to be routed to children.

2.3.3 Pure Forward-Chaining as Message Passing, Take 2

We can improve reactivity of the system if we assume agents with increased capabilities.
That is, we assume that (at least some) agents would benefit from being told which parent
had changed, as well as how it had changed (i.e., the new value). We use as our messages the
notifications from the taxonomy of §2.2.3.3. Our input messages are thus @notifyFrom⟨i, v⟩
(i.e., i ∶ ^ v being delivered to the recipient child of i) and outputs are @notify⟨⟩ (i.e.,
enqueueing ^ at the originating item).53 If the notification does not, in fact, produce a
change in value, the agent need not emit @notify⟨⟩ (that is, it may respond with a new
state and no messages). As before, we assume that an agent will retain its value (i.e., can
immediately respond to @lookup⟨⟩ with @valueIs⟨v⟩) at any point; in fact, the agent is now
required to ensure that it emits a @notify⟨⟩ message before it can report a @valueIs⟨v′⟩
with v′ different from the last v returned. Here, rather than being caused by a demand
issued by a child agent, @lookup⟨⟩ is issued by the framework when it goes to propagate a
notification to those children.

Assuming we immediately replace the agent state with the one given with the
@notify⟨⟩ output, we should immediately queue the notification (i.e., push it to the agenda)

53The v component of @notifyFrom messages differs from a strict reading of the taxonomy of §2.2.3.3,
but it follows the suggestion given therein that during propagation it is sensible to augment a notification
with current value. We do so here to temporarily avoid giving agents the ability to Lookup parents’ values,
maintaining a simpler exposition; they will gain such abilities when we consider mixed chaining.
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Figure 2.7: A small aggregation tree. Recomputing
the sum of the values for the items {a,b,c} in light
of a notification from a will require no @lookup mes-
sages, as the result can be recomputed from the exist-
ing cached sum of b and c and the notification from
a, while an update from either b or c will require a
@lookup of the other and of a as well. 15{a,b,c} :

unk{a} : 10{b,c} :

unk{b} : unk{c} :

for delivery to children. As in listing 2.2, such @notify⟨⟩ messages remain queued, “at item
i,” within the message-passing framework (i.e., on the agenda) until they are propagate-d to
child agents as @notifyFrom⟨i, v⟩ messages. Any @notifyFrom emitted by an agent before
a prior one has propagated replaces it, as before.

Updates, in this new world of increasingly clever agents, are still new agent states
(as in §2.3.2). However, because agents now may be maintaining metadata to assist with
update propagation (i.e., they are not merely managers of ephemeral backward-chaining
state and, ultimately, stores of values), subsequent messages to the item from above (i.e.,
@notifyFrom) must be routed to the state within the most-recently-queued pending update
object,54 while messages from below (i.e., @lookup) must continue to go to the memoized
state. That is, unlike listing 2.2, construction of an update no longer discards any existing
update, but continues to evolve the state contained therein. As agent states may be rather
large, having evolved the item state to a new value within the update, it may make sense
to replace the memoized agent state with one that solely caches the memoized value, as it
will never again see any message other than @lookup⟨⟩.(That is, now that an updated agent
state is stored in the agenda, that agent state will recieve messages from parents, while the
state in the memo table will continue to recieve messages from children. The only message
from children is @lookup⟨⟩.)

At present, @notify messages do not carry information beyond their presence.
Several extensions of §2.4 will extend notifications with additional metadata, but there will
be no need to cache agent states within these messages, unlike updates.

2.3.3.1 Dynamic Local Circuit Transforms

A common use case of these kinds of increasingly-capable agents is to encapsulate dy-
namic, local transformations of the computational circuit, which enable replacements to be
propagated without need of all parents’ values (i.e., j can update its value without calling
Compute(j)). For the moment, we are constrained by our story so far to consider only
replacements of values by other values; later, in §2.4 we shall see other options which will
even further increase the utility of such transformations.
Example 11: Suppose that e(j) is the sum of its (many) parents. We can reduce the work
of propagation by maintaining additional data structures, such as an aggregation tree,
which stores at intermediate nodes the sum of the values at child nodes, with the value of

54Of course, like all prior algorithms, this one does not need to keep more than one update object per
item; we can always replace any pending update with a newly computed one, rather than keep both. If we
did keep both, we should be careful to apply them in FIFO order, and to evolve only the chronologically
latest in light of messages from parents.
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5 ← [ {c}
4 ← [ {b}
1 ← [ {e}

5 ←[ {c}
3 ←[ {b}
1 ←[ {e}

b ∶ ^ 3
3 ← [ {b,c}
1 ← [ {e}c ∶ ^ 3

@notify⟨⟩

3 ←[ {b,c}
2 ←[ {a}
1 ←[ {e}

a ∶ ^ 2

Figure 2.8: A small example of an associative map for selective aggregation. Here, the agent is tracking
up to the three largest values it has seen and (some of) the parents currently having those values. Each
transition is caused by receipt of a notification, shown above the line. The agent always updates its internal
state, even when its reported value does not change (and so no @notify message is sent).

each Pj being found at a leaf.55 Now revision of the sum’s value in light of a notification
is possible by looking up the value of the changed parent and making O(log ∣Pj ∣) revisions
to the aggregation tree, rather than looking up the value of all parents and recomputing
from scratch. Of course, there’s no need to actually store the parent items’ values; they
can be retrieved if needed by emitting a @lookup message and awaiting the response. The
same is, more generally, true of intermediate nodes as well: they can be recomputed by
issuing several lookups. The agent’s state may thus devote storage to speeding up updates
from (predicted-to-be) often-changing parents while not storing (meta-)data relevant to
accelerating changes from subsets of parents whose values do (or are predicted to) not
change often. A small example is shown in figure 2.7. In the case of inexact values (§1.5),
properties like associativity and commutativity of aggregation operators cannot be assumed.
Thus, as suggested in §2.1.2.1, we may need to impose additional structure on our partial
aggregation structures, such as sorting of leaves, to ensure that the same bag of values
produces the same answer in all cases. ◊
Example 12: Suppose that e(j) is computing the maximum of its (many) parents. While
an aggregation tree could still be of utility, selective operators (i.e., those ⊕ for which
(a ⊕ b) ∈ {a, b}; recall “Properties of Functions of Bags,” in §1.3) offer another attractive
option: associate inputs with all of the parents with that value. When a parent’s value
changes, one should remove it from any current association, compute its new value, and
add the new association. The value of j is the largest value associated with one or more
parents.

If desired, one need not keep associations for all parents. Instead, one may keep
some subset of parents for (at most) the n largest values currently known.56 An example may
be found in figure 2.8. The removal, in light of a change, of a parent value not in the tracked
set makes no change to the data structure and clearly does not alter the item’s value. The
removal of an entry other than the greatest does not trigger a notification, but may, if the
set of parents associated with that value is now empty, make the data-structure incomplete,
in the sense that there is no easy way to recover the value (and parents) that should replace

55Once again, we must apologize for the vocabulary. The child nodes of the aggregation tree are the
parent items in the arithmetic circuit of aggregation the tree encodes: a node’s value is, e.g., the sum of its
child nodes’ values. The leaf nodes are, then, the input items.

56Such structures are called “k-best” in the parsing and AI literature, where they are used in typically
monotonic settings, wherein no parent’s value ever changes, once proven, but there may not be utility in
remembering all parents, merely the best ones. Curious readers are invited to read [141].
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this deleted one. The addition of a value greater than the current maximum shifts the set
n down and triggers an update. Addition of a value greater than the least tracked value
also triggers such a shift; additions of values smaller than the least tracked value must not
be tracked, as a larger value may have been shifted out of the set previously. Complete
removal of the greatest value (i.e., the emptying of its associated set of parents), when not
followed by an addition of an aggregand greater than the second greatest, makes the item’s
aggregated value equal to that second greatest aggregand (which may not be known, if there
have been many removals previously). The net result is a data structure which can locally
respond to some notifications without backward-chaining, but may occasionally need to
“refill” its cache (by querying all parents to find the current largest n values). If there are
few non-increasing changes, this can be especially attractive.

In fact, one could choose to deliberately not track a new value, so long as that value
is smaller than (or equal to) the current maximum, and one discards all smaller tracked
values. That is, one could eagerly discard some of the non-optimal values, out of a belief
that they are not likely to be useful in the future. Perhaps one believes that past results are
a strong indicator of future performance, and so, given a string of increasing inputs, would
believe that yet more increases are soon forthcoming. ◊

2.3.4 Mixed Chaining as Message Passing

Naturally, we can combine the above perspectives to restate and extend the algorithm of
§2.2.4 as a message-passing system. The key new feature is that backward- and forward-
chaining may interleave in ways they could not before. An agent may be in the middle of
performing a backward-chaining computation and receive a notification from a parent, and,
dually, may receive a request for its value while processing a notification. The agents are
more complex, but the framework as a whole is largely unaltered.

In a mixed-chaining system, it was possible to encounter a notification while
backward-chaining towards visible ancestors. In so doing, one could obtain a value that
we “marked” (§2.2.4.2) to ensure that memos derived from this value were appropriately
paired with notifications. We did not much consider the impact of these marked values on
derived values, because values were opaque objects to be recomputed every time as needed.
Now, however, that we have agent states, we must acknowledge another implication of a
marked value for the parent i: it likely differs from both the previous value observed for i
(if any) and, plausibly, the next. Thus, agents may need to treat marked values specially
(we shall see examples in later sections), so we pass marks in as part of @value messages.
Similarly, in a mixed-chaining system, notifications may not carry new values either, so
@notifyFrom⟨i,unk⟩ is entirely sensible. In the worst case, a recipient of such a message
will emit @lookup⟨i⟩; in the best case, the recipient’s value is insensitive to i and no work
is needed or the framework may take it upon itself to flush the would-be recipient state, to
reset it later.

2.3.4.1 Selective Memoization

Thus far, we have been somewhat binary in our memoization of agent states: we have
spoken of caching them or not. While we have, briefly, alluded to other possibilities, such

49



as, in §2.3.3, an agent which caches only the result of computation and otherwise behaves as
one first constructed, we should explicitly mention that there is a rich space of design here.
Agents may store any information about their value and their parents that may be useful
later in computation, and in many cases there are trade-offs between speed of response
to messages and space occupied by these cached intermediates. If the framework needs to
reclaim space, one could imagine a progression of @flush⟨x⟩ messages, describing how much
of the agent’s internal state is believed to be of future utility to the larger computation.
One could ask to flush cached results, trim aggregation trees to their tops, to decrease the
size in a selective aggregator’s associative map, etc. However, if resources are truly tight,
the framework is free to discard the entire state object and begin again should j receive a
message.

More generally, while we have, thus far, considered only queries for an item’s value
in its entirety, as an opaque quantity. However, we may wish to allow for predicated queries,
e.g., “Is your value positive?” These kinds of queries can be answered accurately even if
agents are storing partial information about their values.

2.3.5 Obligation Revisited

By default, when an item j demands the value of one of its parents i and the framework
caches the resulting agent state, i becomes obligated to j. That is, the framework is
obligated to forward @notify⟨⟩ messages from i as @notifyIn⟨i, v⟩ to j. Zooming in a bit, if
i was not already obligated to j, it becomes so obligated as soon as j receives a @value⟨i, v⟩
response to its @lookup⟨i⟩ query and the cached agent state is replaced (or the new state
is cached within an update, à la §2.3.3): at this point, j’s agent state(s) depend(s) upon
the observed value. If j’s agent state is freshly initialized or was not previously obligating
i, while the query is pending, we may consider i not obligated to j, as the state associated
with j cannot yet be dependent upon the value of i, so there is no need to revise it. In the
story so far, this obligation persists until j and all of its descendants have been Flush-ed.

As in §2.2.4.3, messages on the agenda serve to sever the recursive behavior of
obligation. A pending notification at j removes obligation to its children k: they will be
updated anyway, so there is no need to pass additional messages. j may still obligate
its parent i if j is itself memoized, despite this notification. Dually, a refresh update (as
opposed to a replacement update) at j removes obligations from its parents i. j may remain
obligated to its children, despite this refresh update. All of this, as with obligation itself, is
managed by the framework, not the agents themselves.

Some careful attention must be paid to the null initialization strategy, which
would seemingly violate the story just given. These agents seemingly have made no queries
of their parents and yet must obligate them, otherwise forward-chaining cannot possibly
function. As discussed in §2.2.3, the null initialization strategy is a special case of the
conservative initialization strategy, which queues refresh updates at all derived items (and
thereby releases all items from obligation, initially). These updates eventually pop and
serve to create obligation; the null initialization strategy relies on these updates having
no other effect. The algorithms of §2.2 use a notion of obligation strictly derived from the
memo table, so the mere presence of null in said is sufficient to ensure obligation. Here,
however, because we wish for a finer notion of obligation, when executing under an agent-
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based analogue of the null initialization strategy, we must initialize obligation at the same
time, as if agents had dispatched @lookup requests.

2.3.5.1 Obligation Release Messages

While some messages from i to j may not change j and so may not trigger additional
update messages from j, the framework can not extrapolate from such an event to conclude
that the value of j is completely insensitive to the value of i. As such insensitivity can
lighten the load of forward-chaining, we add a new kind of output message, an obligation
release, which explicitly informs the framework (rather than other items of the circuit) of
such insensitivity. Such a message, @obligate⟨σ⟩, with ∅ ⊊ σ ⊆ Nn1 , where j has n parents,
ensures that each α = {P⃗j⇃i ∣ i ∈ σ} is obligated to j and allows the framework to note
that all other Pj ∖ α are not so obligated. It is never necessary for an item to send such
messages, and items must be prepared to receive updates from parents outside their declared
dependencies, as the framework is free to over-approximate the obligation relationship (by,
e.g., flushing its memory of obligation releases). Control over obligation generalizes the
watched-variable trick from the satisfiability community [130].
Example 13: Suppose j is an item whose associated function is the AC-reducer or, and,
further, suppose that its i-th parent has value true. As long as this parent has this value, j
is insensitive to its other parents, who should not be obligated to propagate their updates
to j. Thus, j should, having concluded that its value is true emit a @obligate⟨{i}⟩. If
multiple parents i1, i2, . . . all take on value true, the j agent is free to watch any nonempty
subset of them and to release from obligation parents as they cease being true. ◊

There are some subtle points of control of obligation. σ must be a subset of previ-
ously obligated items, i.e., those from the most recent @obligate⟨σ′⟩ message (inductively)
or subsequently queried (and thereby implicitly obligated). An agent for j should not use
@obligate⟨σ⟩ to add an obligation, as it may have missed messages from the newly obli-
gated parent i during the duration it was not obligated. (Recall from the start of §2.3.5
that the framework adds obligations explicitly when routing @value messages and ensures
that it always over-estimates the true obligation.) Behaviorally, should an agent attempt
to add obligation this way, the framework should at a minimum raise a warning and either
synthesize a refresh or invalidation notification from i (e.g., deliver @notifyFrom⟨i,unk⟩ to
j) or discard the agent state for j in favor of a new instance.

If there is a refresh update pending at j, the effective obligation from j to its
parents is that of the update agent state. It is possible that j was, in the past, obligating
some parent i but that an update removes this obligation. Even if that update has yet to
be applied, i is still not obligated to j: the value of j is “about to be” insensitive to that of
i and so there is no point in forwarding messages.

In an actual implementation, one may also wish for a dual message which removes
an item from the obligation set. This could be useful to “remind” the framework of de-
obligations it has forgotten: upon receipt of an irrelevant notification from i, j need not
reconstruct its entire set of obligands, but can simply reply that i is not in that set.
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2.3.5.2 Applying Watched Variables to Obligation Itself

Recall that our solver permits one-sided error in the case of obligation: the solver will be
correct but inefficient in the case of spurious conclusions of obligation (but may be incorrect
given false claims of non-obligation). Thus, it may be expedient to approximate obligation
of i by caching the identity of a descendant item, k ∈ I, which causes obligation (by being
memoized, continuously queried, or itself obligated to some further descendant). Such an
item serves as a kind of watched variable; because we neglect to consider the potential,
obligation-severing effect of agenda messages between i and k, this cached value provides
a safe approximation of i’s obligation. We can, at any moment, backward-chain (towards
child items, because this is the obligation circuit) to derive a new cache for i, and indeed
must do so when and if k truly becomes no longer obligating. Only if none is found may
we conclude that i is not obligated (and inform the parents who are watching it).

2.3.5.3 Future Work: Predicated Obligation Releases

In addition to specifying which parents are still of interest to a particular child item, one
could imagine extending obligation to carry a notion of which changes in a parent would be of
interest. Such predicated obligation arises naturally from the hypothetical predicate queries
of §2.3.4.1. This enriched notion of obligation could even be used transitively, quiescing
swaths of the circuit that would otherwise have to transit messages only to discover that
they had no impact on the items of interest to the external driver. We have considered this
case, but not designed a solution.

An item implementing comparison against a constant would only need to be in-
formed of transitions of its parent’s value across this constant. That is, if e(j)(⟨i⟩) = i > 3,
i should only pass messages to j if its value crosses 3 (in either direction, naturally).

Comparison between parents’ values are also of interest, but more subtle. Suppose
that e(j)(⟨i, i′⟩) = i < i′ and j last perceived its parents with values vi and vi′ , respectively,
then, while it may seem that j should release item i from transitions that do not cross vi′
and dually for i′, this is too strong a condition and will miss some updates. (Consider 1 < 5
transitioning to 4 < 3.) However, one can pick one side of the comparison arbitrarily to
watch for all updates while using predicated obligation releases with the other. When the
former parent’s value changes, one should re-query the latter to catch up with any changes
in value that had been suppressed by obligation release, and then issue a predicated release
to the latter parent.

Selective operators can also give rise to useful opportunities for predicated obliga-
tion release. For example, only the current maximum of a collection of parents need pass all
messages to its maximizing child; the rest need only pass messages should they overtake the
current maximum. When the current maximum decreases, all parents should be queried,
the new maximum selected, and new predicated obligation releases issued.

Thus far, we have considered only the generation of predicated obligation releases.
While the framework surely should listen in on obligation releases for maintaining its notion
of obligation, it is also potentially useful to expose these messages to the agents themselves!
In light of a received predicated obligation release from all children,57 an agent may be able

57Such a message routed to a parent agent must be the predicate conjunct of all release messages from
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to generate predicated obligation release messages of its own. For example, a minimizing
agent could simply pass on any upper bound constraints: since it only matters that the
minimum is below some threshold t, the released node could flush its current cached value
(so that it will not, later, answer incorrectly) and release its parents from updates that do
not take their values above t.

We would like to combine predicated obligation release with queries as well, so
that the two can be delivered to a parent together. Thus, children could ask questions of
the form “What is your value, if it is larger than w?” Such a question could be asked by
a maximizing item k which has already observed one parent item to have value v or, as
we suggested at the start of the section, by an item whose e(k) function explicitly tests
this parent’s value against k. A minimizing parent j, having received such a query, could
then stop querying its parents as soon as it found one, i, with value v ≤ w and return
null. The item i must be remain obligated to j, at least for transitions across w. j should
cache unk as its value (since it does not know the minimum of all of its parents), though
it may remember (and properly maintain) the current contender, v, in hopes of being able
to answer subsequent predicated queries without having to query its parents.

2.3.5.4 Mark Management

Now that we have allowed agents to communicate tighter bounds on their dependencies, one
may wonder if, in the mixed-chaining scenario, having a lookup cross a notification, thereby
marking the obtained value, always necessitates constructing additional notifications when
caching agent states. Indeed, the necessity remains only if the agent’s value is actually
sensitive to the marked value, i.e., if the agent continues to obligate the parent that gave it
the marked value.
Example 14: Consider a simple agent computing the product of its two parents’ values,
i.e., j = i ∗ i′. Upon receipt of a demand for its value, j is likely to request the value of
both its parents. Suppose, further, that the response messages are @value⟨i,0, false⟩ and
@value⟨i′,1, true⟩. Because 0 is an absorbing value of multiplication, the resulting value,
j = 0 is not actually sensitive to i′, so j’s agent is justified in outputting the messages
{@valueIs⟨0⟩,@obligate⟨{i}⟩}. In this case, the framework is free to not mark the value
of j and to not construct a notification at j on the agenda. In the language of §2.2.4.2, the
logical-or of marks is computed now not across all parents but only those still obligated. ◊

2.4 Further Enriching Messages

The replacement (i ∶ ^ v) and refresh (i ∶ ^) updates and invalidation notifications (i ∶ ^)
considered thus far certainly get us off the ground, but are somewhat uninformative: they
treat values as opaque objects and either provide an entire replacement or defer the com-
putation of a replacement to backward-chaining. We now consider additional information
that could be carried by an update for use by child items.

its children. If some child has not released this parent at all, and is tacitly claiming sensitivity to the full
range of values, then no such message can be generated.
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1 def Update(j ∈ I, w ∈ χ ∪ {unk}) ∈ ⟨⟩
2 maybe
3 if (w = unk) ∨ (M(j) ≠ w) then
4 A(j)update ← ^ w
5 % else update made no change
6 return
7 % any existing update superseded
8 delete A(j)update
9 Apply(j, w)

1 def Apply(j ∈ Ider, w ∈ χ ∪ {unk}) ∈ ⟨⟩
2 M(j) ← w
3 A(j)notify ← ^
4

5 def lookupFromBelow(i ∈ I) ∈ jχ,boolo
6 ⟨v,m′⟩ ← Lookup(i)
7 m ← i ∈ Anotify
8 return ⟨v,m ∨m′⟩

Figure 2.9: Selected modifications to EarthBound to support both updates and notifications at the same
item, removing Invariant 6.

Figure 2.10: Relative information content of item con-
figurations (memo and agenda states). Solid arrows
point towards less-informative configurations. The
solver is free to evolve any message along any directed
path of solid arrows at any time (in addition to propa-
gation). Two of these solid arrows, labeled with A, cap-
ture the action of Apply. Dashed arrows are possible
effects of Lookup (L) or Compute (C); while the solver
is free to undertake these operations, they are likely
more expensive than the local operations of the solid
arrows. The two dotted edges indicate equivalence of
the two configurations, but we force monotonic mo-
tion of messages down the page by prohibiting these
moves.

^unk

^v’ ^;was vunk ^v
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This section introduces several new entries in our taxonomy of notifications. For
systems which enforce Invariant 6, the test on line 6 of listing 2.4 must be adjusted to reflect
any kind of notification. That is, (A(j) ≠^) must be generalized; we lack a concise syntax
for “any notification,” but imagine that any implementation has, or could easily have, such
a test at hand. Similarly, mark introduction at line 10 of listing 2.6 must be generalized.
However, cyclic circuits (§2.5) will provide motivation for dropping Invariant 6, and so
obviate the need to explicitly prevent the construction of both an update and a notification
at a given item. Update, Apply, and lookupFromBelow would thus be rewritten along the
lines of figure 2.9. Requisite changes not shown therein include Flush (from listing 2.7),
RunAgenda (from listing 2.5), and the the creation of notifications within Lookup (line 21 of
listing 2.6). The solver can dispatch updates and notifications from the same item in either
order; it is not, for example, requisite to apply any pending update before propagating a
notification from the same item.

2.4.1 Notifications with Old Values

Once we have imagined agents as maintaining state about their parents, it stands to reason
that informing them of the former value, as well as the new value (or unk) of a parent is
potentially useful. We visually represent notifications carrying the old value v as i ∶ ^;was v;
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to cut down on the number of messages used during propagation, one may bundle together
both the old and new value, as i ∶ ^ v′;was v. These messages are not idempotent: receiving
i ∶ ^ v′;was v twice would seem to suggest three transitions in the the value of i: from v
to v′ back to v and then back to v′, but the middle of these is implicit. Thus, we risk
misunderstanding the message stream looking only at one at a time. Moreover, these
notifications are not likely useful if they are long-lived, as they will function effectively as
duplicate memo entries. While lookupFromBelow can be modified to simply return the old
value, rather than mark the return from Lookup, the intended use case for notifications with
old values is strictly ephemeral, during propagation of notifications to children. Updates do
not carry old values; if the old value is known to the system, it is in the memo tableM. A
pictorial representation of the messages we have defined so far may be found in figure 2.10.
Example 15: Carrying the old value in a notification makes some local circuit transforma-
tions lighter weight, in the sense that they may occupy less storage in an actual imple-
mentation. In example 12 (in §2.3.3.1), it was necessary to associate values with sets of
parents (i.e., their names), so that the parents could, when notifications were delivered, be
removed from the sets justifying the availability of a given value. Now that we have old
values available in notifications, we can opt to store only cardinalities of these sets, rather
than the sets themselves.58

In the 2013 prototype of Dyna 2 [59], all aggregators used this so-called “bag-
gregator” strategy. Notifications existed only ephemerally within the system; the agenda
stored only replacement updates. The solver therefore could ensure that an initializing ag-
gregator could query all of its parents and obtain their values before receiving notifications.
While not particularly useful for non-selective aggregators, this strategy remains correct if
one remembers to factor in the cardinalities when aggregating. ◊

In the case of inexact values (§1.5), the equality test implied by use of such an old
value is suspect. The suggestion given above, to react to forward-chaining’s notifications
by searching for a value among several will not work in general, as the parent may have
recomputed its inexact value and gotten a (hopefully, slightly) different answer. However,
if we are certain that parents are always memoized, then the strategy remains sound; the
memo table implicitly serves as our map from parents to values, and there is no need to
duplicate that within the child item’s state.59 Alternatively, one could optimistically ignore
the inexactness of values and run exact comparison, falling back to full re-Compute-ation
when no match was found. If one is willing to tolerate some slop in the result, one could

58The agent must be sure, however, that the parent whose old value it wishes to remove from the set
actually contributed a value before. This requires either that agents recall the queries they have seen
answered or, more likely, some discipline within the agent framework so that non-idempotent notifications,
such as those carrying old values, are always delivered to agents expecting them. In this case, the framework
should originate these messages only if it is sure that all of the children which will receive it have indeed
queried the source parent item and have not been reset since; it is likely that such conclusions will be due to
invariants of the framework’s execution rather than explicitly stored state, but the mechanism is immaterial.

59This suggests that there are cases where it would be beneficial to inform children of flush events within
the circuit. We do not do so here, but it would not require any radically new machinery. It would suffice
to invent a new kind of notification, bearing an old (to-be-flushed) value and, explicitly, an unknown new
value, i.e., ^ unk;was v. While i ∶^;was v serves to indicate a transition from v to some other value (the
result of Lookup applied to i), this new form indicates merely the change in metadata and provides notice
that the next notification from i will not be capable of specifying the old value v.
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imagine searching for a cached (perhaps, the closest) inexact value within some window
around the old value given and behaving as though that one were the one being revised.
Such engineering approximations are out of scope for this document.

2.4.2 Partially Propagated Notifications

§2.3.3.1 considered dynamic transformations of the circuit wherein a child may group its
parents in some useful way. Dually, parents may wish to group their children, propagating
notifications more aggressively to some than to others. Notably, we expect such a facility
to be of service to responsiveness: selective propagation (§2.2.4.4) now need not propagate
along any large fan-outs from parents to children, as the algorithm can now propagate
only to the children who are (or whose descendants are) being Query-ied. We thus intro-
duce a partially propagated notification, σ ^, which indicates that it has already been
propagated to the children in σ, called the visited set. Introducing partial propagation
necessitates a few changes to the algorithm; unless otherwise specified, we ignore any pos-
sibility of notifications carrying old values (merely for simplicity of exposition; the two are
not incompatible). Further, we assume that an invalidation notification, ^, is now merely
a shorthand for a trivially-partially-propagated notification, ∅ ^.

● propagate must exclude the already-visited children σ and may, if the external policy
chooses, stop with an updated visited set σ:

1 def propagate(i ∈ I)
2 let σ ^ = A(i)
3 finished ← true
4 % loop over un-visited, obligated children
5 foreach j ∈ (Ci ∖ σ) where obl(i, j) do
6 maybe % optionally skip this child, to process later
7 finished ← false
8 continue
9 ⟨σ,w⟩ ← ⟨σ ∪ {j},unk⟩

10 maybe ⟨w,_⟩ ← Compute(j)
11 Update(j, w)
12 if finished then % loop did not execute or did not defer
13 delete A(i)
14 else
15 A(i) ← σ ^ % Record new visited set

● lookupFromBelow should (but need not) be modified to take the identity of the child
doing lookup to assess whether the notification applies to that child. (If this is
skipped, some values will be marked unnecessarily.) The call in Compute(j) is now
lookupFromBelow(i,j) and the method itself reads as
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1 def lookupFromBelow(i ∈ I, j ∈ Ider)
2 ⟨v,m′⟩ ← Lookup(i)
3 m ← A(i) = σ ^ and (j /∈ σ) % mark only if not already propagated to j
4 return ⟨v,m ∨m′⟩

● When partial propagation is combined with notifications carrying old values (§2.4.1),
lookupFromBelow may be able to exploit these old values, returning an unmarked value
immediately to children. That is, lookupFromBelow can act as Lookup would, ignoring
the fact that the value is contained within a notification, by first testing:

1 if A(i) = σ ^ _;was v and (j /∈ σ) and v ≠ unk then return ⟨v, false⟩

In this combination, one could imagine enriching Flush to remove either σ or the
old value from memory in addition to its current ability to remove memos. In order
to maintain correctness of the algorithm, forgetting σ must imply forgetting the old
value, but one can preserve σ when forgetting the old value. Thus, one can propagate
notifications with old values to some children and invalidations to others. That is,
within the taxonomy of figure 2.10, σ ^;was v can freely rewrite as σ ^, and thence
to ^, but not as ^;was v; these rewrites apply orthogonally to any flushing of the
memoized value.
Separately, the above code listing for propagate must be revised to persist the old
value when it updates the notification’s visited set σ. However, because that listing
simply calls Compute, it does not gain any benefit from these old values; more generally,
as discussed in example 15 (in §2.4.1) (and §2.3.3.1), one would wish for a mechanism
to alter the state of item j in light of the knowledge that its parent i had changed
(and with knowledge of i’s old value; i’s new value is available by Lookup).

A potential second use for partially propagated notifications is to enable a kind
of propagation during backward chaining, not just marking (recall §2.2.4.2). At present,
a marked return necessitates duplicated work: the notification will propagate until it
encounters a memo, re-Compute-s the corresponding value, and discovers that no change
is necessary. If we move from a boolean space of marks to a three-value space, back-
ward chaining can indicate to its caller—the child item—that this response is not only
marked, having traversed a notification, but that the child must treat it as a notifica-
tion and react as if it were forming an update. In more detail, take marks to be one of
the three values markNone < markCrossed < markPropagated. markNone behaves as a false
used to, and markCrossed as true. lookupFromBelow now may “strengthen” markCrossed to
markPropagated by adding the child to the visited set σ:
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1 def lookupFromBelow(i ∈ I, j ∈ Ider)
2 m ← markNone
3 if A(i) = σ ^ and (j /∈ σ) then
4 m ← markCrossed

5 maybe { A(i) ← (σ ∪ {j})^ ; m ← markPropagated }
6 ⟨v,m′⟩ ← Lookup(i)
7 return ⟨v,max(m,m′)⟩

B. 2.1

Compute now computes the max of the marks on parents, rather than ∨ (logical or). Lookup
must honor its mark obligations, if any:

1 def Lookup(i ∈ I)
2 if M(i) ≠ unk then
3 return ⟨M(i), markNone⟩
4 ⟨v,m⟩ ← Compute(i)
5 maybe M(i) ← v
6 if m = markPropagated ∨ (m = markCrossed ∧ M(i) ≠ unk) then
7 A(i) ← ^ % Preserve Invariant 5
8 m ← markCrossed
9 return ⟨v,m⟩

B. 2.2

While it may seem that markPropagated will not be carried along recursive backward
chaining, as Lookup only returns markNone or markCrossed (with markPropagated elminated
by the logic at line 6 of block 2.2), lookupFromBelow can promote any markCrossed to
markPropagated. Not shown in the listings above, lookupFromBelow would be within its
rights to remove the notification from the agenda if σ ∪ {j}, at line 5 of block 2.1, covers
all (obligating) children of i. In the case of a series of items with only one child, for exam-
ple, this allows (the appearance of) a single notification to follow the downward motion of
backward-chaining’s unwinding of its recursive stack.

Discarding the mark in propagate (e.g., line 21 of listing 2.5) remains acceptable,
even in the case of markPropagated: the update takes the new value into consideration
anyway, so no additional pushes to the agenda are required.

Partial Propagation and Obligations As might be imagined, a partially propagated
invalidation notification i ∶ σ ^ (with σ ≠ ∅) no longer completely severs the obligation
from i to its children Ci. As σ ⊆ Ci are already up to date, their perspective of the circuit
is (locally) equivalent to one in which no notification is pending at i. Thus, propagating
a notification from i to j and adding j to σ must have the effect of restoring (transitive)
obligation from i to j even if each of the rest of Ci ∖ σ remain severed.

2.4.3 Delta Messages

The first prototype of Dyna [51] actually used agenda-based forward-chaining with delta
updates such as i ∶ ⊕ v for some operator ⊕. Applying this update increments the old
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memo M(i) to M(i) ⊕ v and produces a delta notification i ∶ ⊕ v for propagation to
children, indicating that the value has been changed by ⊕ combination with v.

Dijkstra’s shortest-path algorithm [44] uses forward-chaining with delta updates
and idempotent-delta notifications, i ∶ min. These indicate that the value has changed by
being combined with min, i.e., that it has decreased. Here, because the operator is selective
(and therefore idempotent), there is no need to store the value into the agenda within the
update object; it can be obtained by calling Lookup.

A delta notification at i is sometimes cheap to propagate to its child j, when
compared to a replacement. One can sometimes avoid a full call to Compute(j) at line
21 of listing 2.5—which Lookup-s or Compute-s all the parents of j—by exploiting arith-
metic properties of e(j). If, for example, e(j)(⟨vi, . . .⟩) = vi ⊕ . . ., with ⊕ associative and
commutative, then propagating i ∶ ⊕w from the parent i = P⃗j⇃1 is essentially free: it be-
comes j ∶ ⊕w (and, eventually, after that pops from the agenda, j ∶ ⊕w). If ⊕ and ⊗
distribute and e(j)(⟨vi, x0, . . . , xn⟩) = vi ⊗ f(x⃗), then i ∶ ⊕w (again, with i = P⃗j⇃1) becomes
j ∶ ⊕(w ⊗ f(x⃗)).60 That is, we need only look up the other parents of j, i.e., Pj ∖ {i}. The
more general case, in which vi is used nonlinearly within an ⊗ expression, requires comput-
ing several deltas (which can be merged together) and requires, in general, the old value as
well as the delta for i; its solution is given in Eisner, Goldlust, and Smith [51].

Delta Obligations Unlike the invalidation notifications used ever since §2.2.3.3 (i ∶ ^),
but like the partially propagated notifications of §2.4.2 (i ∶ σ ^), delta notifications are
not idempotent. The change to the value of i encoded by a delta notification describes
precisely one transition of i’s value. If the value changes again, another delta notification
must be queued as well (or merged with the existing notification, a subject to which we
turn momentarily), or an invalidation must supplant the pending delta. That is, a delta
notification does not release its item from obligation to its children; recall, for contrast, the
discussion of notifications in §2.2.4.3.

2.4.4 Message Merge

The forward-chaining algorithms of §2.2.3 and §2.2.4 exploited the fact that, for any of
the three message types defined, a subsequent message (of the same sort) should always
supersede any pending on the agenda. Thus, the agenda stored at most one update and/or
notification for any item, and pushing was always done by simply setting this update,
discarding any prior, still-pending message. The mixed chaining algorithm additionally
enforced a (cosmetic) one message property (Invariant 6). This required promoting updates
to notifications when a notification already existed at an item (line 6 of listing 2.4), as done
in the fall-through case at line 14 of listing 2.4.

60One must be a little cautious when interpreting these propagated responses, though. If ⊕ has an
absorbing element (i.e., some value 0 such that ∀x 0 ⊕ x = x ⊕ 0 = 0), the change indicated by a delta
notification may not actually amount to a change of value. Consider, for example, taking the product of two
numbers, one of which is 0 and the other of which changes by doubling its value from 1 to 2. The resulting
notification will correctly convey that the value of the product has doubled, having gone from 0 to 0. Such
a lack of change will eventually be noticed when updating a memoized value, in which case ⊕d will pop and
produce no notification, rather than ⊕d.
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In the case of a delta message, however, this outright replacement is clearly in-
correct. As mentioned earlier, one possibility would be to detect the collision of pending
messages and fall back to using an idempotent replacement. Another possibility would be
to queue messages (per item and type; i.e., all updates to i form one queue, notifications
from i another, updates to j another, etc.) and pop them in queue order. However, we
can take advantage of associativity of delta messages, when possible, to merge updates on
the agenda, trading time (to find and replace a pending message, as well as compute the
merger) for space (needing to store only one message).

Moreover, in a general algorithm which uses both delta and replacement (and/or
invalidation) messages, one again needs to ensure temporal ordering or be able to merge
messages. Given two successive notifications with compatible, associative, ⊕ delta updates,
^;was v;⊕d (with d ∈ χ and v in χ ∪ {unk}) pushed before the ^;wasw;⊕e (similarly
qualified), these two notifications can be combined into ^;was v;⊕(d⊕ e). If the delta
component of one or the other message is missing, or if the delta components use differing
operators in the two messages, the delta component must be discarded, yielding ^ w′;was v.
Updates behave similarly to notifications but, of course, carry new values rather than old
ones. All told, the merge of ^ v;⊕d followed by ^ w;⊕e is ^ w;⊕(d⊕ e), again, assuming
associativity of ⊕.

Partially propagated notifications also complicate message merge. One possibility,
given some σ ^;was v message already on the agenda (with σ ≠ ∅) and a newly arriving
^;was v′ message, is to suspend the former and propagate the latter exclusively to σ, making
it σ ^;was v′. Now that the visited sets are equal, message merge can proceed as above
and simply preserve σ. This works even if delta components are also present. In fact,
this strategy cascades, should one wish: one could maintain a stack of suspended messages;
traversing further down the stack, one would see strict increases in visited sets.61 One would
be able to merge two messages at the top of the stack when their visited sets became equal
(i.e., after propagation of the topmost message). However, one may still wish to merge
messages with unequal visited sets. In this case, the visited set of the result must be reset
to ∅, and any old value or delta components discarded from the result, as different sets of
children have different information about the state of the parent to whom this notification
belongs.

2.5 Generalized Arithmetic Circuits
Our algorithm can be extended to handle cyclic arithmetic circuits. Pure forward chaining
can propagate updates around cycles indefinitely in hopes that the memos will converge
[51]. If so, it finds a fixed-point solution J⋅K. But backward chaining does not work on
the same circuit: it can recurse around the cycles forever without ever making progress by
creating a memo. The solution is interesting.
Example 16: Let us first ponder why one might care about cyclic circuits. We return to the
world of and/or graphs of §2.1.2.1. A Datalog program for computing the transitive closure

61And one would likely care to revisit the check made in lookupFromBelow in §2.4.2 to scan the stack
of pending notifications for the appropriate old value to provide to a given child.
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of a relationship e/2 (i.e., graph reachability where e/2 encodes the edges) as te/2 consists
of two rules and looks like this:
1 te(From,To) :- e(From,To).
2 te(From,To) :- e(From,M), te(M,To).

Describing a circuit for this program is straightforward:

1. The first rule describes circuit edges which make the or node te⟨f, t⟩ ∈ Ider a child of
the input node e⟨f, t⟩ ∈ Iinp. Because there is no conjunction in this rule, there is no
need for an and node. Datalog ensures that I is finite, so there are only finitely many
edges created by this definition.

2. The second rule defines {join⟨f,m, t⟩ ∣ te⟨f, t⟩ ∈ I,t⟨f,m⟩ ∈ I,te⟨m, t⟩ ∈ I} be a
subset of I (even though this is a recursive constraint on I, it does not change the
finiteness of I). The item join⟨f,m, t⟩ is a parent of the or node te⟨f, t⟩ and a child
of both or nodes e⟨f,m⟩ and te⟨m, t⟩.

The structure of this graph is cyclic. Using some finite set of integers as arguments of the
e/2 items, for example, we find that te⟨1,2⟩ is its own child, assuming e⟨1,1⟩ is an item.
Moreover, if e⟨3,4⟩ and e⟨4,3⟩ are both items, then te⟨3,3⟩ and te⟨4,4⟩ are cyclically
defined, as te⟨3,3⟩ has (at least) join⟨3,4,3⟩, e⟨3,4⟩, te⟨4,3⟩, join⟨4,3,3⟩, e⟨4,3⟩, and
te⟨3,3⟩ in its ancestry. ◊

2.5.1 Fixed-Point Solutions

Recall from §2.1.2 that a solution to an acyclic circuit is simply an extension of the inp
map (Iinp → χ) to a map over all of I by using the functions at each item. In the case of
an acyclic circuit, we are guaranteed a single solution which may be obtained by “bottom-
up” (“ancestors-first”) topological traversal of the circuit. However, this still seems a little
procedural, as definitions go. On the other hand, the definition of J⋅K given in equation (2.1)
(in §2.1) reeks of circularity even for acyclic circuits.

Following Van Emden and Kowalski [178, §6], another approach would be to split
J⋅K and define a step operator for a given arithmetic circuit. Such an operator would step a
map I → χ to another such map which was, roughly, “closer” to being a solution. Formally,
step ∈ (I → χ) → (I → χ). A perfectly reasonable choice looks very much like equation (2.1):

step(m)(j) =
⎧⎪⎪⎨⎪⎪⎩

m(j) j ∈ Iinp

e(j)(⟨m(i1), . . . ,m(inj)⟩) j ∈ Ider
.

This function recomputes the value of every (non-input) item j of the circuit by using e(j)
given the values for Pj from the input map, m. For an acyclic circuit, J⋅K as described earlier
has a curious feature: step(J⋅K) is equal to J⋅K! In fact, we can go so far as to say that a
solution is defined to be such a fixed-point of this step function. For an acyclic circuit, there
remains only one such (for each choice of input values).

We can immediately relate our procedural agenda to this step function as well.
Update messages serve to identify items for which step(m)(j) might differ from m(j). No-
tifications serve to identify parents of items with the same possibility of value changing before
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and after stepping. We could, in fact, think of the action of applying an update or propagat-
ing a notification as another kind of step function, from one configuration of the memo table
(and therefore of Lookup) to another. Ignoring any updates to input items, we could imagine
implementing forward chaining as iterating step on the conservative initialization strategy
until a fixed-point had been found, i.e., step(step(⋯({j ↦ null ∣ j ∈ Ider} ∪ inp)⋯)).
Example 17: Consider an item j with itself as its sole parent (i.e., a self-loop in the ancestry
graph) with e(j)(⟨vj⟩) = ⊕*1, vj/2+ (with ⊕ being an AC-reducer). If we take χ = R ∪
{±∞,null} and ⊕ such that ⊕*1,null+ = 1, ⊕*1,±∞+ = ±∞ (with corresponding signs),
and ∀x∈R⊕*1, x+ = 1+x, there are three fixed-points: vj = ±∞ and vj = 2. The conservative
initialization strategy will tend towards assigning j the value 2, as will any initialization of
j to have a value in (−∞,∞) ∖ {2}. Initialization to a fixed-point will, by definition, not
leave that fixed-point.62 ◊

More importantly, this definition, of the step function and of solutions being fixed-
points thereof, neatly applies to cyclic computations as well. It completely avoids the need
for a topological traversal and doesn’t punt the circularity of the circuit into circularity of
J⋅K. Our observations relating step and the agenda continue to apply, as well. However,
we do surrender uniqueness and even existence of solutions in the cyclic case; the potential
price we pay for abandoning our topological traversal is that there may be zero, one, or
more than one fixed-point of step for a given circuit and input map.

2.5.2 Guessing

In general, we can interrupt any (long-running) backward-chaining recursion—cyclic or
otherwise—by allowing Compute(j) to optionally guess, memoize, and return an arbitrary
value for j, such as null. Because this guess could be incorrect—the resulting M(j)
may be inconsistent with j’s parents—we must enqueue a refresh update j ∶ ⋅ to preserve
Invariant 5 (in §2.2). Popping this update later will resume backward chaining (i.e., it
serves as a continuation) to check that our guess at j is consistent with j’s visible ancestors
(perhaps now including j itself, cyclically). If not, it will use the agenda to propagate a fix
by forward chaining (perhaps cyclically until convergence; recall §2.2.4.4).

If j is already obligated to any children k, its guessed value must be marked (recall
§2.2.4.2), and so the guessing Compute must enqueue a notification j ∶ ^ unk to alert k that
guessingM(j) may have changed it from the previous value seen by Lookup(j), which was
based on memos at j or its ancestors or on a previous guess. As in §2.2.4.2, this notification
preserves Invariant 5 between j and its obligated children k, avoiding the same subtle bug
where an update that leaves M(j) unchanged is never propagated to k. This value may
be marked with markPropagated, and the notification’s visited set set appropriately, if the
machinery of §2.4.2 is in use. Here there is real reason to retire Invariant 6 (in §2.2) and
permit both an update and a notification to be pending at j: were we permitted at most
one, in order to satisfy Invariant 5, we must use a notification and the guess must not

62In practice, if χ uses a floating point approximation, initialization to any finite number will eventually
arrive at 2, or very nearby, due to rounding. Because addition (of a constant) and division (by a positive
constant) remain monotone w.r.t ≤ even given the approximation of floating point numbers, values will not
cycle in time, so finding a fixed-point is guaranteed.
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be memoized (because, in the acyclic case, this potentially-inconsistent memo could lack a
message in its visible ancestry; in the certainly cyclic case, by supposition, the guessed item
is in its own visible ancestry and so the notification suffices).

If j is not already obligated to any of its children, we may elide pushing the
notification and may return an unmarked value. Either there are no memoized descendants
(and no continuous queries) of j (in which case, all descendants are immediately consistent
with the guess) or any memoized descendants have (transitively) released j from obligation,
indicating that their values are insensitive to that of j. We can justify this as a push of the
notification followed by immediate propagation in which the loop at line 19 of listing 2.5
(in §2.2.4.1) loops over an empty set. Recall from §2.2.4.3 and §2.3.5 that active backward
chaining (i.e., agents waiting for results of Lookup) by descendants does not contribute to
obligation until those descendant items are memoized. In the case of cyclic j, i.e., j being its
own ancestor, it may seem that memoizing j as part of guessing necessarily results in both
an update and a notification at j. However, recall from §2.2.4.3 that refresh updates, which
are the kind used above, sever obligation: because j will bring itself up to date, j’s self-
ancestry does not necessitate the use of a notification. (But, of course, other descendants
of j may still impose the need for notifications!)

One particular special case of this general guessing strategy is to guess only when
a cycle has been detected, and to eagerly test for cycles at every step of backward-chaining.
Such an approach is probably the most natural for the agent-based framework of §2.3, which
postulated tracking agents blocked on each other’s answers and, essentially, prohibiting re-
entrancy of agents. In a more procedural framework, such as EarthBound of §2.2, we could
enforce this lack of re-entrancy of items, which would preserve a previously unstated invari-
ant of the acyclic frameworks: in any recursive backward-chaining, each item occurs at most
once within any call stack. Thus, all of Compute(j), Lookup(j), and lookupFromBelow(j)
have been guaranteed that A(j) and M(j) will not change across their (mutually recur-
sive) calls. Absent such strict cycle testing, our procedural solver enters novel situations,
including the possibility of returning from Compute(j) with j memoized, because j is its
own ancestor and more than one lap of the cycle had been unwound onto the call-stack
before a guess was made. (That is, Compute(j) (transitively) called Compute(j) which did
so again, due to lack of cycle testing.) The value being returned from Compute is more up
to date—the result of of more iterations of the cycle—than the entry in the memo table.
What are we to do?

One possibility is to discard the newer value in favor of the older one, so that only
the newest and oldest instance of j on the stack have any real significance. The newest
computes the memoized value, and the oldest returns this value to off-cycle children. This,
however, has the unfortunate effect of wasting potentially a great deal of work.

If we wish to avail ourselves of the multiple cycles wound onto the call-stack,
Lookup(i) must re-probe the memo table after Compute-ing and, if it finds thatM(i) ≠ unk,
then it must update the memo, mark the return value, and queue a notification to the
agenda (and, in contrast to message merging, any old or delta components in any existing
notification must be discarded). That is, line 19 of listing 2.6 (in §2.2) and line 21 are no
longer optional if M(i) ≠ unk after line 17. It may be possible, possibly with additional
assumptions, to find situations that could avoid the need to mark the return value or push
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the notification.

2.5.2.1 vs. Query

Query(j) of listing 2.7 (in §2.2) ran the agenda to completion, and then called Lookup(j).
Because the agenda had been freshly emptied, we could be certain that Lookup would not
mark the resulting value. This line of argument would remain true, with slight but straight-
forward modification, were we to replace the call to RunAgenda within Query with a call to
some routine which cleared (or obviated) all agenda messages from the ancestry of j. That
is, this routine would have to Apply all updates to all ancestors of j and (at least partially)
propagate all notifications at ancestors of j. It is sufficient that all notifications in the ances-
try of j have been propagated to their children which are also ancestors of j; other children
may be inconsistent, but because they are outside the ancestry of j, their inconsistency will
not affect j’s value (recall §2.4.2).

1 def Query(i ∈ I)
2 do % until result unmarked
3 RunAgenda()
4 ⟨v,m⟩ ← Lookup(i)
5 while m
6 return v

Listing 2.8: A replacement for the Query
method, handling guesses during backward-
chaining.

However, now that we may guess values,
which will therefore add messages even when the
agenda is empty, this argument no longer suffices.
Moreover, there appears to be no mechanism for
Query-directed control over this behavior: introduc-
ing a flag which would prohibit guessing is not ten-
able if there is a possibility of a cycle, all of whose
items are un-memoized. Thus, we are forced into
the awkward position of looping in Query, as shown
in listing 2.8, and any proof of termination must ap-
peal to the program itself (to ensure that the Query
is well-founded) as well as some external, policy-
aware argument. (Recall, for contrast, the case of acyclic (and, necessarily, finite) circuits,
as discussed up until this section, on which Query must terminate: RunAgenda always ad-
vances one message strictly downwards—towards the leaves—per iteration, and Lookup, in
the worst case, will explore the entire finite graph.)

2.5.2.2 vs. Diamonds

Combining optional memoization and the arbitrary guessing behavior of backward chaining
as above makes it now possible for two Lookup-s of the same item to return different values,
despite the careful commitment of the guesses to the memo table and the construction of
updates. It is instructive to consider an example in detail to study the interplay of different
facets of our system.
Example 18: Consider the small circut and evolution of the solver’s state depicted in fig-
ure 2.11. Initially, only the input node h is memoized, there are no messages pending, and
there are no obligations. Suppose that the user invokes Query(k) and that the Lookup(j)
recurses all the way to h and so returns 1, leaving a new memo in its wake only at j. Now
suppose that Lookup(j′) aborts at i, guessing the value 0, and thus memoizing and marking
0 at j′. The item k, which, absent any messages on the agenda, is guaranteed to take on
an even value, now takes on an odd value. ◊
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1h : ●

unki : =

unkj : = unkj’ : =

unkk : +

1h : ●

unki : =

1j : = unkj’ : =

unkk : +

1h : ●

^
^0i : =

1j : = ^0j’ : =

^1k : +

Figure 2.11: A circuit demonstrating two different results from Lookup due to guessing.

As we can see, generalizing from the example, any such discrepant value resulting
from guessing is going to be marked (in the example, i was already obligated to k via j
when the query from j′ caused a guess). The notifications queued to the agenda do not
carry the old values of §2.4.1 (because they are, in general, not knowable when the solver
guesses), so the next messages sent to an item having observed a guessed value will not carry
the old value. This implies that baggregation or other aggregation strategies which consider
only values will, in general, be unable to respond except to discard their state and start
over. Thus, we should prefer to handle these marked values within an aggregation strategy’s
internal state by name, so that they can be found and revised later (recall §2.3.3.1).

2.5.2.3 vs. Message-Passing

In a traditional backward chaining system, the (implicit) call stack keeps track of the path
from the inducing query to the item being currently explored. Cycle detection is relatively
easy in this case as one may the stack to check which items are actively being queried.

In §2.3.1, it was suggested that the message-passing framework itself should track
knowledge of which agents were waiting on results from others. In such a scenario, cycle
detection is then part of the framework, and so the framework must be responsible for
obtaining guesses for cycled items (and perhaps, more generally, responsible for inducing
guessing at all) and must synthesize messages appropriately.

2.5.3 Disallowing Self-loops

During acyclic propagate-ion, the fact that we left the notification on the agenda until the
very end meant that however Compute behaved when considering children, even if there
were diamonds in the graph, the marking strategy of §2.2.4.2 would ensure correctness;
marks were only discarded within propagate itself, and we were sure that, having visited all
children, the notification had served its purpose.

Were we to attempt to propagate a message around a self-loop, i.e., from an item
to itself, two problems arise. First, it might be incorrect to discard the notification at the
end of propagate-ion. That is, the act of propagate-ion might create a new notification
which should be propagate-d, too. Second, because propagate-ion is insensitive to the order
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of children, it is possible that this new notification could clobber the existing one mid-way
through the loop. While it may be possible to remedy these problems by clever programming
(by, say, always traversing a self-loop last, among other fixes), we would prefer a simpler
approach for expository purposes.

The simplest fix is to prohibit self-loops entirely. Thankfully, this can be done
without loss of expressive power by a simple transformation of the graph. If ever i ∈ Pi,
then we add a new node i′ with P⃗i′ = i and with e(i′)(⟨vi⟩) = vi, and we replace each i in
P⃗i with i′. This new item i′ serves as a placeholder for messages traversing the self-loop.
As a memo at i′ would be redundant with the memo of i, we should never memoize i′ and,
therefore, should use it to store only notifications.

2.5.4 Cyclic Obligation

Our current definition of obligation is overly broad in the cyclic case. It can create self-
supporting obligation, where updates are unnecessarily propagated around cycles without
actually refreshing any memos, merely because each item believes it is obligated to the next.
Restoring efficiency could be done by using the online graph reachability algorithm given in
[115]. This entails deriving not values but formulas justifying the values of derived items. As
pertains specifically to obligation in the cyclic case, this suggests that we require transitively-
obligated items i to watch only those descendants which are memoized or reachable from
but not within the strongly-connected component of the graph containing i. This prevents
the formation of self-supporting caches of obligation.

2.5.5 Consistency of Multiple Solutions

As alluded to earlier, cyclic circuits do not, in general, have a guaranteed unique solution.
If there are no solutions, forward chaining will run forever, as some item will always be
inconsistent with its parents. If there are more than one, the solver may wander between
them. The simplest case of a wandering solver is one that simply resets the memo table to
store unk for all derived items. Having done so, any cycles in the circuit are fair game to
be explored and guessed differently the next time around.
Example 19 (Latches): We can construct cyclic circuits which (imperfectly) record ephemeral
states of the solver. We informally call these circuits “latches,” as, like electrical circuits
of the same name, they hold their value until forcibly reset, even after the initial stimulus
is gone. Consider, for example, a circuit in which k contains a self-loop and a parent item
j with its own unique parent, the root item i. Let e(k) be or and e(j)(⟨vi⟩) = vi < 2.
Suppose, for simplicity, that we always consider all items obligated and always guess null
when necessary to break cycles. If the input update stream contains of just i ∶ ^ 1 and
i ∶ ^ 2, then k will be true if the solver computed (and cached, and did not subsequently
Flush) j and/or k between the two input updates. ◊
Example 20: More usefully, Expectation Maximization (EM) [43] optimization can be en-
coded as a cyclic circuit. The “latent” values depend upon the model parameters (and
input data), while the parameters depend upon the latent values (and input data). The
EM algorithm will converge at any local optimum of likelihood (of the latent variables);
these local optima correspond to fixed-points of the EM circuit. ◊
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We conjecture that a kind of minimality of solution could be guaranteed by mech-
anism analogous to those just discussed for obligation. It may be sufficient to require
every non-null item j to justify itself in terms of some non-null ancestor i outside of the
strongly-connected component containing j. (That is, every non-null item j must have
some support from parents that are not participating in cycles with j. This would ensure
that items whose ancestry is exclusively cyclic—an “all roads lead back to Rome” scenario—
are assigned the value null in every solution.) However, such a mechanism would be unable
to distinguish between multiple fixed-points that differed only in their non-null values.

2.5.5.1 vs. Snapshots

When combining cyclic programs with the snapshot mechanism of §2.2.3.4, it may be de-
sirable to guarantee stability of items, either within or across causally-related63 snapshots
of the circuit’s state. In the absence of a stability guarantee, the result v from Query(i)
means merely that “there exists a solution in which i takes on value v.” The result v′ of
a subsequent Query(i′) could come from another fixed point entirely; so even if the circuit
requires that i′ = i, v need not equal v′! Stability within a snapshot would eliminate this
possibility so long as the Query-s were directed at the same snapshot.

A particularly simple policy that a snapshot-supporting solver may wish to employ
is to ensure that any cycle of items which contains at least one memoized item at the time
of a snapshot, or comes to contain one afterwards, is never, subsequently, entirely flushed.
This policy has the effect of making (the queried portion of) the circuit effectively acyclic.
Once a memo is created so that Compute(i) does not revisit i, because cycles may not be
completely flushed, no subsequent Query of this snapshot can cause Compute(i) to revisit i
again. This invariant remains true even if precisely which items on a cycle are memoized is
not constant across time, so long as those memos are the result of Lookup (and not guessing).
The use of guessing within a snapshot seemingly must be restricted to the essential case of
cycle-breaking. We have not found an invariant of the solver’s memo table and/or agenda
which guarantees stability if guessing is used arbitrarily.

A stronger notion of stability prohibits changes to the value of an item unless
the change can be “justified by the update stream.” That is, querying the same item j in
two different, causally-related snapshots must return the same value unless the intervening
updates include an update to j’s ancestry. If one is using snapshots to perform counter-
factual reasoning, this is a highly desirable property: the only changes to the circuit will be
those actually caused by the updates made between two snapshots.

2.5.6 Programs

In the next chapter, we turn our attention to the problem of extending the algorithms
presented here to work not on arithmetic circuit descriptions directly but on Prolog-like
weighted rules of Datalog with Aggregation [173, 82, 32] and Dyna [49]. These programs

63For a given instance of a circuit, snapshot s2 is causally related to s1 if s2 has seen a superset of the
updates seen from s1 from the driver program: that is, s2 is some future of s1; there may be more than one
if the driver is permitted to fork the update stream to explore multiple changes, as mentioned at the end of
§2.2.3.4.
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can describe infinite generalized arithmetic circuits with value-dependent structure and with
infinite fan-in or fan-out. A query, update, or memo may now be specified using a pattern
that makes it apply to infinitely many items.

2.6 Related Work

The constraint solver Kangaroo [135] was independently motivated by very similar concerns.
Like our algorithm, it mixes backward and forward chaining. In Kangaroo, queries seek
out relevant updates—the reverse of our obligation approach, in which updates seek out
relevant memoized queries. Our algorithm is potentially more selective about storage than
Kangaroo, which stores memos at all nodes of the circuit.64 On the other hand, Kangaroo
is more selective about runtime. While it may have more memos, it updates only stale
memos that are relevant to current queries, whereas our current algorithm updates all stale
memos.

Previous mixed-chaining algorithms have been simpler. For functional program-
ming, Acar, Blelloch, and Harper [2] and Acar and Ley-Wild [4] answer queries by backward
chaining with full memoization; they update these memos by forward chaining of replace-
ment updates. The same strategy is used for Prolog (including cycles with aggregation
and negation) by Saha [160] and Swift and Warren [170], who contrast it with the “DRed”
(“Delete and REDerive”) strategy that forward-chains invalidation updates [85]. Saha [160]
gives a refinement to DRed in which the system watches (in the sense of the watched-variable
trick) only the acyclic derivations of an item, filtering out extraneous deletions (which would
be reversed upon re-derivation). The “magic sets” transformation for Datalog [152] can be
seen as a variant of these strategies. It uses only forward chaining, but restricted to items
that would have been visited by backward chaining from the given query. All of these
strategies memoize every computed item. In contrast, we are more economical with space.

Acar, Blelloch, and Harper [3] do separately consider selective memoization, but
do not handle updates in this more challenging case (see §2.2.4). L10 [163] offers backward
chaining across “worlds” but forward-chains to saturation within each world, a kind of
coarse-grained magic templates. A different selective strategy [112] relies primarily on un-
memoized backward chaining. It first performs forward chaining on a given sub-circuit to
identify and memoize a subset of true values. However, this relies on the special property
of Datalog that a true node of a sub-circuit is also true in the full circuit.

Hammer et al. [87] considers a ML-like language (“Nominal Adapton”) in which
the programmer may give explicit, first-class names for particular computations. These
names are akin to our names of items within the circuit, but also encode the edges of the
DAG: the name of a child item is a function of the name of its parents. Thus, Nomi-
nal Adapton’s memo table is not, like many prior efforts at incremental computation,
structural, but rather nominal. That is, in memoizing a function f , it does not associate
the input value x with the cached f(x) value, but rather the name of this input. During
incremental computation (i.e., forward-chaining to revise stale values), the memo table will

64Selective memoization is an added reason for mixed chaining. Our forward chaining sometimes invokes
backward chaining, in order to re-Compute the value of a stale item with an un-memoized parent.
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thus provide the old value, which, hopefully, requires only small changes in response to the
changes to its input.

We have not discussed static transformations of arithmetic circuits (in contrast to
the dynamic transformations of §2.3.3.1), but there is ample literature on the topic and we
would be remiss in not mentioning at least some of it. One may wish to transform for local
arithmetic efficiency [184], numeric stability [120, 139], or broader rewrites [48]. Thankfully,
while related, such work is orthogonal to the thrust of this thesis.
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Chapter 3

Towards Backward Chaining
Weighted Logic Programs

Prolog is so simple that one has the sense that sooner or later someone had to discover
it. … We benefitted from freedom of action in a newly created scientific center and,
having no outside pressures, we were able to fully devote ourselves to our project.

Undoubtedly, this is why that period of our lives remains one of the happiest in
our memories. We have had the pleasure of recalling it for this paper over fresh almonds
accompanied by a dry martini.

Alain Colmerauer and Philippe Roussel, The Birth of Prolog. [34]

In the prior chapter, we introduced EarthBound, a flexible algorithm to han-
dle queries and updates on finite, possibly cyclic circuits. The Compute procedure of this
algorithm computes a given, single item’s value from its parents’ values as obtained via a
Lookup method (which finds them cached in a memo table or else recursively calls Compute).
When the circuit is specified by a weighted logic program, the analogous task is one step
of backward-chained reasoning, which computes the values of a given set κ of items, such
as might be specified by a non-ground term, by consulting the rules of the program and
combining values from parent items as directed. The present chapter addresses this surpris-
ingly challenging problem, culminating in the pair of Compute(κ) procedures of listings 3.2
and 3.3. These return representations of a piecewise-constant map from all items in κ to
their values.

Throughout this chapter, except occasionally where otherwise indicated, we will
consider pure backward-chaining, without any consideration of notifications (§2.2.3.3) or
marked values (§2.2.4.2). The exclusion of marked values also precludes guessing during
backward chaining; recall §2.5.2. Extending the algorithms in this chapter to handle marked
values should be straightforward, but we do not do so here, for simplicity of presentation.
The proofs of this section will also assume the same: we will model the procedural Lookup
using an item valuation function, so that multiple requests for the same item’s value will
obtain the same answer.

While programs may specify finite, possibly-cyclic circuits, programs also open
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the door to infinite circuits. The circuit corresponding to a program may contain infinitely
many items, items with infinite in- and/or out-degrees, and infinitely long (acyclic) paths
in either direction.65 The algorithms of §2 clearly will not suffice. However, for all its
potential complexity, the circuit retains a finite description, in the form of the program,
as given. Thus, the rules of the program will come to have a central position in our story,
obviating the overtly graphical description encoded in the Pj and Ci sets as well as the e(j)
evaluation functions.

Prolog programs specify boolean circuits whose items are ground terms from some
Herbrand universeH and whose values are from {true,null}.66 To specify general weighted
circuits, we generalize Prolog. Rules in our weighted setting now compute and route aggre-
gands to their head items, based on the values of their subgoal items. Thus, we might write
“rs(X) ⊕= r(X,Y) ⊗ s(Y)” to compute the matrix-vector product of r/2 and s/1, i.e.,
⊕y r⟨x, y⟩⊗s⟨y⟩ for each x. We have replaced Prolog’s “:-” with an aggregator, indicating
how the contributions produced by the body are to be collected. The body, meanwhile,
is now an expression tree of subgoals, rather than being a conjunction thereof. We now
introduce a core calculus for weighted logic programming, which we call µDyna. We then
consider three forms of backward-chaining reasoning on µDyna programs: ground reasoning,
in which all collections of items and aggregands are finite, in §3.2; partition-based set-at-a-
time reasoning, in which answers may be infinite but do not overlap, in §3.3; and, finally,
default-based set-at-a-time reasoning, in which we more explicitly use a non-monotonic con-
cept of (recursive) defaults, in §3.4.

3.1 µDyna Normal-Form Programs

We define µDyna, (“micro-Dyna”) a minimal, set-theoretic, “administrative” normal-form
[68] of weighted logic programs. A µDyna program consists of several components: 1 its
set of items, I ⊆ H; 2 a map from items to their aggregation operators; and 3 a finite bag
of (µDyna) rules, *ρr ∣ r ∈ Ξ+, where Ξ is a finite set of rule indices.67

3.1.1 µDyna Rules

A µDyna rule has three major parts: a head (an item name), a result, and a body. The
body is a tuple of subgoals, which are kv-pairs of a key and a value (in that order, i.e.,
⟨key,value⟩). A rule grounding, then, is a nested tuple over these components; we will
use mnemonic, infix pair formers, so rules render as

{(head↩ result) ⇐ ⟨key1 ↦ value1, . . . ,keyn ↦ valuen⟩ ∣ ⋯},
65That is, infinite sets of items I ⊆ I in which every i ∈ I can reach (or be reached by) infinitely many

other items in I and for which, given any two distinct items i, j ∈ I, either i can reach j or j can reach i.
66While it is tempting to use {true,false} instead, we prefer the use of null to maintain consistency

with the rest of this document.
67That is, this third component of the program is the pair of the set Ξ and the Ξ-indexed collection of

rules ρ⋅; the use of a bag is meant to emphasize that rules may be repeated. Occasionally, we shall simply
write ρ for an arbitrary rule, just to reduce clutter, when the index r is not of relevance to the discussion.
The reader should, however, assume, in such cases, that there is some program tacitly under discussion and
that there exists r in that program’s Ξ such that ρ is ρr.
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rather than the more formal

{⟨⟨head, result⟩, ⟨⟨key1,value1⟩, . . . , ⟨keyn,valuen⟩⟩⟩ ∣ ⋯}.

Each grounding of a µDyna rule reads as an instruction: “contribute (↩) the result to the
head, if (⇐) each subgoal’s key has been assigned (↦) the corresponding value”; groundings
which satisfy this condition are called rule answers.68 A subgoal can thus be seen as a
request for the value of the item named by the key.69 The set of rule answers will vary if
items’ values change (e.g., during a solver’s execution or in response to updates external
to the solver). Generalizing, a µDyna rule ρr is a set containing all possible groundings of
this rule, from which the rule answers will be selected. Our example of a weighted logic
language rule from above, rs(X) ⊕= r(X,Y) ⊗ s(Y), is now rendered as

ρr = {

hr
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(rs⟨x⟩
²
head

↩ z) ⇐

sg
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⟨r⟨x, y⟩ ↦ v,s⟨y⟩ ↦ w,⊗⟨v,w⟩ ↦ z⟩ ∣ v,w, x, y, z ∈ H}

res sg.2.1.1 sg.3.2sg.1.1.2

(3.1)

We have annotated the rule with several paths and given mnemonics to particular prefixes,
hr def= 1, head def= 1.1, res def= 1.2, and sg def= 2, to help clarify later operations. Variables used
more than once within the set element constructor give rise to covariance between different
positions within a rule: above, the res and sg.3.2 projections are equated (by reuse of z).
Our formal theory does not use variables; they are merely notation to help specify sets.

Formally, sets ρr used as µDyna rules obey five constraints (∀r∈Ξ):

1 projections along head, res, and sg are defined for all elements of the set;

2 the head and result are terms, i.e., ∀t∈ρr,π∈{head,res} t⇃π ∈ H;

3 the number of subgoals in each grounding within ρr, is constant across all groundings
of the rule and denoted nr; i.e., ∀⃗s∈(ρr⇃sg) tlen(s⃗) = nr;

4 each subgoal is itself a pair of two terms, so ∀t∈ρr,i∈Nnr
1 ,j∈{1,2} t⇃sg.i.j ∈ H; and

5 the subgoals and head determine the grounding, i.e., ∀α⊆ρr ∣α⇃sg∣ = ∣α⇃head∣ = 1⇒ ∣α∣ = 1
(and, in particular, that ∣α⇃res∣ = 1).

These clearly hold for equation (3.1) above: 1 these projections clearly exist, 2 rs⟨x⟩
and z are terms, 3 there are exactly three subgoals in any grounding, 4 subgoal keys
and values are terms, and 5 the reuses of x and z together imply the stronger statement
∀α⊆ρr ∣α⇃sg∣ = 1⇒ ∣α∣ = 1.

68Recall from “Functions and Maps” (in §1.3) that ↦ is simply an infix pair constructor; despite its
frequent use in defining functions as sets of pairs obeying functional a dependence, here, we use it merely
as a mnemonic between subgoal key and value even though there is no functional dependence within the
structure of the rule itself. However, once the rule is refined down to a set of answers, there will, indeed, be
a functional dependence between the tuple of all subgoal keys and corresponding values.

69Readers familiar with Prolog may think of a subgoal ⟨k, v⟩ as another rendering of v is k. In µDyna,
every subgoal is an is/2 subgoal, though one which evaluates against the program rules rather than a built-in
database and which is not restricted to the Prolog mode “-Number is +Expr”, where - and + mean free and
ground structure, respectively. (See §5 for more about mode analysis.)
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Example 21: A pure Prolog rule behaves similarly, with ⊕ being logical or and ⊗ being and.
The result (res) and all subgoal value (sg.k.2, with k ∈ N) paths have singleton projections
of true⟨⟩. That is, the pure Prolog rule rs(X) :- r(X,Y), s(Y) appears in µDyna as
{(rs⟨x⟩ ↩ true⟨⟩) ⇐ ⟨r⟨x, y⟩ ↦ true⟨⟩,s⟨y⟩ ↦ true⟨⟩⟩ ∣ x, y}. ◊

We now introduce several key definitions, which will be expanded through the
chapter and reused throughout the rest of this thesis. A quick visual summary of the
notation is offered in figure 3.2. A rule query t⃗ for the rth rule is a nr-tuple of items.
A rule query gives rise to a set of pre-answers by refining the subgoal keys: θt⃗r

def=
ρr[{t1}/sg.1.1]⋯[{tnr}/sg.nr.1]. t⃗ is trivial if θt⃗r = ∅. Given an item valuation func-
tion v ∈ I → H′, with H′ def= H∪{null} (the addition of null /∈ H may seem curious; it will
be explained momentarily, in §3.1.2), one can filter pre-answers to the set of rule answers (as
defined, informally, at the start of this section); that is, having refined the keys of the sub-
goals, we can now additionally refine the values: εt⃗r,v

def= θt⃗r[v(t1)/sg.1.2]⋯[v(tnr)/sg.nr.2].70

If any v(ti) = null, then ε is ∅. As all subgoal projections have been refined to singletons
within rule answers, the constraints on µDyna rules imply that ∀h,r,t⃗,v ∣εt⃗r,v[{h}/head]∣ ≤ 1:
every rule query has at most one corresponding answer per head.
Example 22: Consider again our example rule from equation (3.1). A rule query for this
rule is a nr = 3-tuple of terms. One example would be an element of {⟨r⟨1,2⟩,s⟨3⟩, t⟩ ∣ t},
which would be trivial, as it attempts to refine sg.2.1.1 simultaneously to both {2} and {3}.
On the other hand, t⃗ = ⟨r⟨1,2⟩,s⟨2⟩,4⊗ 5⟩ is a non-trivial rule query: its pre-answers are

θt⃗r = ρr[{r⟨1,2⟩}/sg.1.1][{s⟨2⟩}/sg.2.1][{⊗⟨4,5⟩}/sg.3.1]
= {(rs⟨1⟩ ↩ z) ⇐ ⟨r⟨1,2⟩ ↦ 4,s⟨2⟩ ↦ 5,⊗⟨4,5⟩ ↦ z⟩ ∣ z ∈ H}

If v assigns anything other than 4 to r⟨1,2⟩ and/or anything other than 5 to s⟨2⟩, then
εt⃗r,v = ∅. On the other hand, suppose that v chooses 4 for r⟨1,2⟩ and 5 for s⟨2⟩ and 20 for
⊗⟨4,5⟩. Then εt⃗r,v = {(rs⟨1⟩ ↩ 20) ⇐ ⟨rs⟨1,2⟩ ↦ 4,s⟨2⟩ ↦ 5,⊗⟨4,5⟩ ↦ 20⟩}. ◊
Example 23: It is not always the case that the rule answer sets are singletons. Consider
the rule {(f⟨x⟩ ↩ z) ⇐ ⟨a⟨⟩ ↦ z⟩ ∣ x ∈ τ, z ∈ H}, for some τ . The only non-trivial rule
query for this rule is ⟨a⟨⟩⟩ and, for that query, the set of pre-answers is equal to the
rule as a whole. Supposing that v assigns the value 1 to a⟨⟩, then the rule answer set is
{(f⟨x⟩ ↩ 1) ⇐ ⟨a⟨⟩ ↦ 1⟩ ∣ x ∈ τ}, which is only a singleton when τ is. ◊

Paralleling the treatment in §2.1.2, items that are also to be found in a rule’s
head are said to be derived, and denoted Ider

def= I ∩ ⋃r∈Ξ ρr⇃head. The other items, not
in the head of any rule of a program, are input and denoted Iinp

def= I ∖ Ider; their values
will be defined by the driver program when the µDyna program is invoked, as a function
inp ∈ Iinp → H′.71 By definition, the driver may not directly set or otherwise influence the

70There is no analogue of pre-answers sitting between (item) queries and (item) answers: pre-answers
emerge due to the conjunction of queries, i.e., interactions among the subgoals of a rule.

71In practice, input nodes include “built-in” or “primitive” facts of the system, such as integer addition
or current heap byte count, as well as the user’s input to the logic program. We could view these as rules
within the program, but we choose to keep the current view, as it makes discussion of reactive programming
easier: the program is finite and the input changes values, rather than the program itself.
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Terms (H)

Iinp Ider

Heads (ρr⇃head)

Items (I)

Results (ρr⇃res)

Figure 3.1: A schematic view of the term universe and some important subsets defined by a µDyna program.

ρr

θt⃗r

εt⃗r,v
t⃗

Hnr

r

Ξ

v

Mnemonic Type
Ξ Program rule indices Set
v Item valuation function ∈ (I → H′)
r Rule index ∈ Ξ
t⃗ Rule query (tuple of terms) ∈ Hnr

ρ Rule groundings
µDynaθ Pre-answers, these keys

ε Answers, Evaluated

Figure 3.2: Plate notation and mnemonics for our notation for important subsets of a µDyna rule, ρr.
Plates (solid rectangles) indicate quantification of structure over the variable in their lower-left corner;
domains of quantification point to their elements with dotted arrows. Solid arrows entering a plate are
fanned-out to each instantiation. Double-tipped arrows indicate that the target is, in addition to being
derived from the source, also a subset thereof.

value of a derived item; it may only set input items and let the program compute. Figure 3.1
shows a schematic of the term universe and some important subsets thereof.

3.1.2 Aggregation

Rules give rise to contributions to items; what remains, then, is to aggregate these contri-
butions into a single value. In order to capture a notion of “no assigned value,” especially
for derived items with zero contributions (recall §2.2.3), we use the symbol null /∈ H
and use H′ = H ∪ {null} as the result of aggregation. Each item specifies an aggrega-
tion function, or just aggregator, which maps its bag of contributions, ℘+Ū∞τ for some
τ ⊆ H, to elements of H′. That is, we assume, as part of the program definition, a function
aggr ∈ Πi∈I(℘+Ū∞τi →H′) with ∀i∈I τi ⊆ H.72

Aggregators f in µDyna additionally obey f(∅) = null and ∀a∈τ f(*a+) = a (with
τ as above). The input to an aggregator is termed an aggregand, generalizing “summand”
and “multiplicand.” Because null /∈ H, it is impossible to define µDyna rules which ex-
plicitly manipulate null. Thus, null acts as an annihilator of the conjunction of rules’
subgoals: any attempt to refine any path to {null} will immediately empty the set of
groundings. For most aggregators, an output of null implies an empty bag input, and so

72Often we tacitly extend τi to H and gloss over the behavior of elements in H∖ τi. In §5.2 we consider
static analysis to demonstrate that no such values arise. We may thus speak of “summation of reals” as an
aggregator, taking τi = R ⊆ H and neglecting non-real inputs.
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null is often taken to be synonymous with “has no aggregands.”
It is occasionally convenient, for simplicity of theory, to extend the domain of

aggregators to include null elements. That is, we enlarge their domains from ℘+Ū∞τ
to D = ℘+Ū∞(τ ∪ {null}). On the extension, we define ∀m f(*null@m+) = null, which
completely defines the behavior of aggregators on null. In practice, null is never manifest
and so will not be provided to aggregators’ implementations.

3.1.2.1 Aggregators Built From Semigroups

We often build aggregators out of commutative semigroups and, in particular, commutative
monoids. Thus, we will speak of values being aggregated by summation or minimization or
similar; formally, we mean to be using the corresponding AC-reducers (recall footnote 23,
in §1.3). In the case of semigroups, there is no good choice for f(∅), so absent null, it is
not clear what we would use for that image. For monoids, the obvious choice is the monoid
identity element, 0. The existence of null, and our insistence that f(∅) is null rather
than 0, thus distinguishes the cases of “has no aggregands” and “aggregands aggregate to
a unit value,” which turns out to be a useful distinction when an item’s aggregator differs
from those of the items upon which it depends. Consider a child item j aggregated by
minimization with a parent item i aggregated by summation. If i having no contributions
from its parents meant that it had value 0, the minimization would include 0 in its input,
despite there being no path from the inputs to justify this 0 value.73

One can imagine lifting the associative and commutative properties of a commu-
tative semigroup up to AC-reducing structure on aggregators with domains extended to
include null, as above. On the domain extension we find that f being an AC-reducer
implies that f(*null+) = f(*f(∅)+) = f(*f(∅)+ ∪ ∅) = f(∅) = null and a simple in-
duction shows that f(*null@m+) = null for m < ∞. The remaining constraint, that
f(*null@∞+) = null, is all that is necessary to make null an identity of f , regardless of
its multiplicity.

3.1.3 Additional Examples

Our rs example above, as rendered in equation (3.1), highlights several typical features of
µDyna rules.

1 There can be covariance between (subterms of) subgoals’s keys (y); the definitions
above ensure that all answers will take y within the intersection of the active domains
of the subgoals of which y is a subterm. This is analogous to a database equi-join.

2 Values’ covariance is not syntactically restricted. That is, values are free to be reused
as (subterms of) keys or values of (other) subgoals. Such cases are not allowed in
some other weighted logic programming languages in which rules primarily describe
how to combine keys and values “come along for the ride,” e.g., [32, 51].

73The first edition of Dyna [51] restricted the entire program to operate with a single semiring, whose
additive monoid was used for aggregation, side-stepping any confusion resulting from, as we would frame it,
conflating null and the additive identity.
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3 The result of a rule (res) is often in covariance with the value of a subgoal (⊗). Many
typical µDyna rules partition their subgoals into “search” components (r,s) and an
arithmetic evaluation tree over the results of this search (⊗); however, this is not
required by the formalism.

We briefly exhibit some other cases that emerge.
Example 24 (Axiomatic Rules): Rules with no subgoals, e.g., {(f⟨x⟩ ↩ 1) ⇐ ⟨⟩ ∣ x ∈ H},
are termed axiomatic because they are independent of the rest of the program and form
the base cases for forward reasoning. The only possible rule query for such a rule is ⟨⟩.
While µDyna permits head-result covariance in general, e.g., {(f⟨x⟩ ↩ x) ⇐ ⟨⟩ ∣ x ∈ H}, the
formalisms we develop below will severely restrict the applicability of such rules (see §3.2.1
and §3.3.2.1). Extending our solvers to handle these rules in more general ways remains an
open question. ◊
Example 25 (Value-Value Covariance): The rule {(eq⟨⟩ ↩ 1) ⇐ ⟨a⟨⟩ ↦ v,b⟨⟩ ↦ v⟩ ∣ v} con-
tributes 1 to eq⟨⟩ iff the program assigns the same values to a⟨⟩ and b⟨⟩. This, too, as
with equation (3.1) and as discussed in point 1 above, is analogous to a database equi-
join, but between columns that are, now, each subject to functional dependence on other
columns. ◊
Example 26 (Value-Value Relation): Generalizing, the rule

{(rp⟨⟩ ↩ 1) ⇐ ⟨a⟨x⟩ ↦ va,b⟨y⟩ ↦ vb,r⟨va, vb⟩ ↦ true⟩ ∣ ⋯}

contributes 1 to rp⟨⟩ for each pair ⟨x, y⟩ ∈ jH,Ho such that the values of a⟨x⟩ and b⟨y⟩ are
related by r/2. A strict separation into search and arithmetic components would require
iteration over both a/1 and b/1, generating pairs ⟨x, y⟩ to be checked. However, as we shall
see later, being able to consider, e.g., the a/1 and r/2 subgoals before b/1 increases the number
of programs on which a solver might terminate: when b/1 has infinite support but a/1 and,
∀x, rj{x},Ho have finite support, this alternate subgoal order will terminate. A similar
observation can be made about the “more typical” rule {(v⟨⟩ ↩ v) ⇐ ⟨a⟨x⟩ ↦ a,p⟨a⟩ ↦ v⟩ ∣
⋯}: one may consider p/1 before a/1, reversing the apparent search and evaluation roles. ◊
Example 27 (Value-Head Covariance): In µDyna, subgoal values may influence the graph
structure of the circuit. This happens when the head item’s key is determined by a subgoal’s
value. For example, the rule {(f⟨a⟩ ↩ 1) ⇐ ⟨a⟨⟩ ↦ a⟩ ∣ a ∈ H} contributes the value 1 to an
item determined by the value of a⟨⟩. A more complex example is {(f⟨a⟩ ↩ 1) ⇐ ⟨a⟨x⟩ ↦ a⟩ ∣
a, x ∈ H} whereby, e.g., f⟨3⟩ gains an aggregand of 1 for each value of x such that, according
to S (or, ultimately, Lookup), a⟨x⟩ has value 3. ◊
Example 28 (Naked Heads and Subgoals): It is conventional, but not required, that heads and
subgoal keys explicitly state their outer-most functor. Within the formalism, we are free to
consider rules which evaluate part of their head, as in {(eval⟨a⟩ ↩ x) ⇐ ⟨a↦ x⟩ ∣ a, x ∈ H}.
This rule contributes to each eval⟨a⟩ (eval/1 is a symbol as any other, not a keyword of the
language) an aggregand of the value of the item specified by a. Rules without explicitly-given
head functors are also possible, as in the bizarre {(a↩ x) ⇐ ⟨a⟨x⟩ ↦ a⟩ ∣ a, x ∈ H}, where
each item a gains an aggregand of x when the item a⟨x⟩ has value a. This seemingly-bizarre
ability to omit explicit functors has some practical utility: we can, with a single pair of
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rules, test whether any given item’s value is null by (ab)use of the aggregation machinery.
The pair of rules {(null⟨x⟩ ↩ true⟨⟩) ⇐ ⟨⟩ ∣ x ∈ H} and {(null⟨x⟩ ↩ false⟨⟩) ⇐ ⟨x↦ v⟩ ∣
v, x ∈ H}, together with and aggregation of nulljHo items (again, null/1 is just a symbol,
not a keyword), results in null⟨x⟩ having value true⟨⟩ exactly when the item x has value
null. ◊

3.1.4 µDyna B-Hypergraph Semantics

A µDyna program specifies the structure of a labeled B-hypergraph (recall §2.1.2.2) with
nodes I ⊆ H and hyperedges E = Σr∈Ξ{⟨h, t⃗⟩ ∣ ∀i∈Nnr

1
ti ∈ I, h ∈ I ∩ (θt⃗r⇃head)}, each of which

corresponds to a nontrivial rule query t⃗, for the rule at index r, and a head item h to which
its value would contribute. (Recall θ’s definition as the set of pre-answers in §3.1.1.)74 The
use of the dependent sum Σr permits multiple hyperedges with the same ⟨h, t⃗⟩ pair and
annotates each with its rule index r. For a given e = ⟨r, ⟨h, t⃗⟩⟩ ∈ E, its target is targ(e) def= h;
its sources are srcs(e) def= {t⃗⇃k ∣ k ∈ Nnr

1 }. The target is said to be a child of each of
the sources; each source is, in turn, a parent of the target. The vocabulary of “Relative
Nomenclature” (in §2.1.2) continues to apply.

To this hypergraph we attach labels, augmenting it with functions le⋅ ∈ E → H′
(edge labels) and ln⋅ ∈ I → H′ (node labels). The edge labeling function is by hyperedge
index e ∈ E rather than by source and target collections: there may be two hyperedges with
the same sources and targets but with different labels. Labels of one sort are said to be
consistent with labels of the other sort when the first is the result of particular computations
over the second. Given an edge ⟨r, ⟨h, t⃗⟩⟩ ∈ E and a node labeling function ln⋅ , the edge label
consistent with ln⋅ is selt(εt⃗r,ln⋅ [{h}/head]⇃res), if that exists, and null otherwise (ε is the set
of rule answers, as defined in §3.1.1).75 For a node h ∈ Ider, we define its yield bag using its
incoming hyperedges and an edge-labeling function le⋅ : yb(E, h, le⋅ )

def= *lee ∣ e ∈ E, targ(e) = h+.
That is, each hyperedge’s label is an aggregand to its sole target node and is derived from
the labels of its source nodes. The consistent lnh is aggr(h)(yb(E, h, le⋅ )), where, as per §3.1.2,
we take the domain of aggr(h)⋅ to be ℘+Ū∞H. Input nodes are consistently labeled only
when their labels are equal to those assigned by the given inp(⋅).
Example 29: Continuing our running matrix-vector product example, we see that we will
have a node in the hypergraph for each rs/1, r/2, s/1, and ⊗/2 item. There is an edge for
each nontrivial rule query and head, e.g., e = ⟨r, ⟨rs⟨1⟩, ⟨r⟨1,2⟩,s⟨2⟩,⊗⟨3,4⟩⟩⟩⟩ ∈ E, with

74This is a little subtle; the hyperedges are not in correspondence with the rule groundings or even the
pre-answers subset thereof: the degrees of freedom accorded by values is not reflected in the collection of
hyperedges. Further, because the purpose of this hypergraph is to give meaning to an item valuation function
given later, we can not hope to use the rule answer sets corresponding to some particular valuation function
in its construction. Thus, we are left with the use of rule query as part of the identity of a hyperedge, and, in
fact, find that this means that the identity of the subgoal keys that matter, which is in concordance with our
desire to later consider an item valuation function. The head must additionally be specified, as there may
be paths therein that are not constrained by specification of the subgoal keys. Curious readers are invited
to see additional discussion of the hypergraph encoding given in §6.3.

75That is, when the set εt⃗r,ln⋅ [{h}/head] is empty. This set never has cardinality more than 1, as per
constraint 5 of §3.1.1. Recall that selt(⋅) is defined, as per “Sets” (in §1.3), to be the function which maps
a singleton set to its element, i.e., selt({x}) = x, and that it is undefined on non-singleton sets..
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r standing for this rule’s index within Ξ. If the program assigns r⟨1,2⟩ ↦ 3, s⟨2⟩ ↦
4, and f⟨3,4⟩ ↦ 12, then the rule answer set corresponding to e is {(rs⟨1⟩ ↩ 12) ⇐
⟨r⟨1,2⟩ ↦ 3,s⟨2⟩ ↦ 4,⊗⟨3,4⟩ ↦ 12⟩}, a singleton set. The edge indexed by this rule query
is thus consistently labeled by 12, thereby contributing 12 to rs⟨1⟩. If the program assigns
other values to either r⟨1,2⟩ or s⟨2⟩, the corresponding rule answers will be ∅, causing the
edge to be labeled null. ◊

Using these definitions, we can define nl ∈ (E → H′) → (Iinp → H′) → I → H′ to
take edge-labeling and input-labeling functions and build a node labeling function that is
everywhere consistent with the given functions. In the other direction, we have el ∈ (I →
H′) → E → H′. We can define T (l) = nl(el(l))(l∣Iinp), T ∈ (I → H′) → I → H′, which sends
one node-labeling function to another; T (l) returns a node labeling function in which all
children have values that are consistent with their parents’ values from l (and input items
have the same values they did in l).

A solution is a node-labeling function ln⋅ which is everywhere consistent with edge
labels le⋅ themselves consistent with ln⋅ . That is, solutions are fixed points of T consistent
with the input (as they were in §2.5.1). The update messages of pure forward chaining
(§2.2.3) can be thought of as identifying nodes n where lnn ≠ ((nl ○ el)(ln⋅ ))(n). As before, a
given program and input pair may have zero, one, or many solutions.

While intentionally informative, these definitions do not constitute an algorithm
for finding solutions: if the ancestry graph contains cycles or a node with infinite ancestry,
then these labeling functions are not necessarily well-founded. For acyclic hypergraphs
where all nodes have finite ancestry, on the other hand, this definition is always well-
founded, a unique solution exists, and solver algorithms are easily extracted.76

3.1.4.1 Aside: Selective Aggregators and Provenance

Consider an item, goal⟨⟩, whose aggregator corresponds to the maximization semilattice
over, say, N. The semantics just given make it apparent that the consistent value for goal⟨⟩
is the maximum of the aggregands (from N) obtained from rule answers. However, it may
seem that we have designed away our ability to find out which rule answer(s) contribute
that aggregand. In the case of a finite circuit of §2, it would have been easy to design
an item evaluation function whose value was a pair of the maximum value and the parent
providing that maximum.77

76There is a straightforward generalization to monotonic cycles, wherein the aggregators are selective
AC-reducers and rules are such that each subsequent un-rolling of the cycle contributes the same (or a
de-preferred) value. Pure Datalog programs fall into this special case, as they, by definition, operate with
a finite I and monotonic operators (and and or). If Datalog is extended with stratified negation, in which
there are no cyclic paths through not nodes, such programs continue to fall into this special case. Such a
circuit decomposes into an acyclic relation between strongly connected components of the original circuit;
within these components, the monotonic case applies and because the larger structure is acyclic, the solution
must be unique.

77In the case of ties, one could pick arbitrarily. Unfortunately, arbitrary choices like this resemble inexact
values and necessitate much the same kind of handling. It therefore probably behooves the system to fix an
order of parents for tie-breaking, so that it makes consistent choices throughout time. More generally, one
could even add a notion of sets of items to the value space; as the set of items is a finite set, there should
be no formal difficulty.
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In the case of a program, however, there is no single parent item for any given
value. (The hyperedges of the semantics are not given names that can be referenced within
the program itself.) However, we can take inspiration from the finite case and make the
result of the rules contributing to goal⟨⟩ a pair of the value and some meta-data about
the value’s provenance. That is, we could change {(goal⟨⟩ ↩ v) ⇐ ⟨f⟨x⟩ ↦ v⟩ ∣ v, x} into,
e.g., {(goal⟨⟩ ↩ ⟨v, x⟩) ⇐ ⟨f⟨x⟩ ↦ v⟩ ∣ v, x}. We would then change the aggregator for
goal⟨⟩ from maximization to a lexicographic ordering which used maximization on the first
projection of the pair and free choice on the second projection.78

3.1.4.2 Aside: No Disjunctive Heads

The µDyna formalism is quite general. It subsumes (pure) Prolog and at least the Datalogs-
with-aggregation of which we are aware. Its use of item valuation functions in specifying
rule answers provides ample opportunity for non-monotonic reasoning. However, it cannot
express any of the logic programming formalisms described as “disjunctive,” built up around
theories involving non-definite Horn clauses (see, e.g., Minker and Seipel [125] for a survey).
That is, every aggregand must be clearly routed to exactly one head. While in disjunctive
logic programming, one might write a rule which reads as “(at least) one a or b is true if c
and d are true,” µDyna has no such facility for nondeterministic routing of aggregands.

3.2 Ground Program Inference
Let us begin by considering the special case in which there are only finitely many items. In
this case, we could imagine that Lookup takes a possibly infinite set of terms κ—an (item)
query—and returns an answer consisting of a (finite!) map from those items in κ to their
corresponding values. Formally, Lookup ∈ Πκ⊆H⋃α∈℘fin(κ∩I)(α →H).
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To interpret ρ’s influence on the item h against the backdrop provided by Lookup,
we would compute ρ[{h}/head] and then visit each subgoal in turn, projecting its key for
Lookup, and then use each point in the resulting map to refine the rule before visiting the
next subgoal or, should there be none left, arriving at a rule answer. Procedurally, we would
define a recursive function refineRuleSuffix(r,ans)(σ ⊆ ρr,i ∈ Nnr+1

1 ) which interpreted a
suffix of a rule subset σ, i.e., all subgoals at and after the i-th position of a possibly already
partially refined rule ρr, and which then invoked its callback, ans(t ∈ ρr), on each obtained
rule answer t. That is, we would invoke refineRuleSuffix(r, ans)(ρ[{h}/head], 1),
having written this:80

78The use of free choice to break ties continues to be short of ideal, as in footnote 77. As before, it would
behoove the system to fix an ordering, now on H∗, so that it makes consistent choices. Computationally,
the escape hatch of using sets is also possibly closed to us, as it interacts poorly with our default reasoning
mechanism (to be discussed, in §3.4).

79Throughout this chapter, we model Lookup as a function even though, in practice, as in §2, it is in
fact a side-effectful procedure, capable of mutating the memo table and varying its answers with time. We
rely on, but suppress from discussion, the mechanism of marked values (§2.2.4.2) to deal with observed
inconsistencies between multiple calls while processing a µDyna rule, much as §2.5.2.1 relied on marking
while processing an individual item. When we say Lookup herein, an actual implementation should use
lookupFromBelow, with all the attendant marking machinery.

80The use of a higher-order function returning a recursive function closure (go) avoids repetition of the

79



1 def refineRuleSuffix(r ∈ Ξ, ans)
2 return go
3 def go(σ ⊆ ρr, i ∈ Nnr+1

1 )
4 if σ = ∅ then return
5 else if i = nr + 1 then ans(selt(σ))
6 else foreach (k ↦ v) ∈ Lookup(σ⇃sg.i.1) do
7 go(σ[{⟨k, v⟩}/sg.i], i + 1)

B. 3.1

The constraints on µDyna rules ensure that the invocation of selt(⋅) will be well defined:
the head and sg projections of σ have been brought to singletons. Moreover, ans will be
called only finitely many times, as each nested loop has a finite domain, by assumption.
We can render the actions of refineRuleSuffix as a search tree. Non-leaf nodes represent
invocations of Lookup on subgoals, and their outgoing edges represent answer item/value
pairs; leaves are either ∅ or represent rule queries (the tuple k⃗ of the ks obtained on line 6
of block 3.1) and their corresponding rule answers εk⃗r,Lookup[{h}/head]. In this light, our
assumption that Lookup returns finite maps now ensures that every node has finite branching
factor (and, thus, finitely many leaves) and the constraints on ρ sets ensure that each leaf
corresponds to at most one rule answer.

The solver strategy encapsulated in Compute of §2.2 has, as part of the specification
of the arithmetic circuit, the full set of parents for each item, and assumes that all of them
are relevant to the child being Compute-d. We could attempt to determine the value of an
item within a program by extracting the collection of all parents of an item from the logic
program, and consider all possible rule queries so arising. However, this is likely to be an
infinite set (unless all rules’ domains of quantification are finite) and, setting that aside,
equality constraints (variable reuse) within a rule set means that many rule queries are
trivial and so do not contribute values to their head items. refineRuleSuffix instead uses
the answers from one query (i.e., the identities and values of the subset of the queried items
with non-null values) to guide the next; the set of parent items whose values are Lookup-ed
is now data dependent.

3.2.1 Range Restriction

While correct, the procedure above works only for one item h at a time! Rather than
having to iterate over our (finite, but possibly large) item set, we would surely much rather
let the facts guide us, à la SLD resolution [110, 179]. If the rules of our program all
obey range restriction [22], a requirement that the subgoals determine the head, i.e.,
∀α⊆ρ ∣α⇃sg∣ = 1⇒ ∣α⇃head∣ = 1,81 then we can skip the initial selection of the head h and still

parameters r and ans in the internal recursive call and avoids naming the initial parameters to this recursive
function at the outer definition.

81The usual notion of range restriction is that variables appearing in the head must also appear in a
(positive, i.e., not negated) subgoal; the requirement given here is a trivial generalization to our set-based,
weighted setting. When combined with our global constraint on µDyna rules, we have ∀α⊆ρ ∣α⇃sg∣ = 1⇒ ∣α∣ = 1,
which excludes, e.g., {(f⟨x, y⟩ ↩ v) ⇐ ⟨g⟨x⟩ ↦ v⟩ ∣ y ∈ τ,⋯} when ∣τ ∣ > 1. Because quantification in µDyna
is typed and may be over subsets of H, we could relax range restriction to be simply that the head is finite,
i.e., ∀α⊆ρ ∣α⇃sg∣ = 1⇒ ∣α⇃head∣ < ∞. It appears to be a simple task to push such a change through, though we
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be assured that selt(⋅) is defined.
Within the context of backward-chaining, we are not, as the definition of range

restriction suggests, necessarily interested in all possible items in a rule head, but rather
a subset, the query set κ. In §2, we assumed, effectively, that ∣κ∣ = 1, as Lookup could
only be applied to one item as a time; here, we relax that assumption. The full brunt of
range restriction may similarly be relaxed, if we somehow know the set of all queries K
that may be asked, toK-sufficiently range restricted (K-SRR): ∀κ∈K ∀α⊆ρ[κ/head]∣α⇃sg∣ =
1 ⇒ ∣α∣ = 1. General range restriction is the same thing as {H}-SRR. If K is such that
∀κ∈K ∣(κ ∩ fjH, τo)⇃2∣ = 1, then the rule above, {(f⟨x, y⟩ ↩ v) ⇐ ⟨g⟨x⟩ ↦ v⟩ ∣ y ∈ τ,⋯}, is K-
SRR despite not being generally range-restricted. In the below, we use “range restricted”
to mean “{κ}-sufficiently range restricted” for whatever query κ is under consideration.82

We now see how to execute a single step of backward reasoning, within a (suffi-
ciently) range restricted program, given some query set κ ⊆ I: visit each rule r, compute
σ = ρr[κ/head], and invoke refineRuleSuffix(r, f)(σ, 1), letting its callback f accu-
mulate all obtained results. Connecting this back to our sets, we see that refineRuleSuffix
computes the set of rule answers εk⃗r,Lookup, by interleaving the refinements given in the
definitions of θ and ε. All told, the complete code listing, modulo refineRuleSuffix from
above, is listing 3.1.

3.2.1.1 Correctness Conditions

The correctness of this procedure does not rely, strictly, on the finiteness of I, so much
as the finiteness of the answer maps. If one can ensure that each answer map is finite at
initialization, say, by requiring that the driver can only ever assert finitely many input items
non-null and initializing the memo table such that only a finite subset is non-null, then
range restriction suffices to ensure that the program is step-wise finite. Each additional
round of backward-chaining Compute-ation, with its internal call to refineRuleSuffix, will
find only finitely many items with aggregands. Thus, while the program may not halt, each
step will complete in finite time.

Even this condition is more strict than necessary. It potentially considers each
subgoal of a rule—the source of a query needing an answer map—in isolation, while
refineRuleSuffix represents a kind of sideways information-passing [18], wherein we use
the results of earlier subgoals to narrow the queries made for later ones. Thus, we need only
the refined queries we actually make to have finite answers. Thus, we could imagine running
our running rs/1 matrix-vector-product example in a context where ⊗/2 items existed for
each of the infinitely many facts that hold for multiplication on R, for example. So long
as r/2 and s/1 have finite non-null support at every timestep, the rule remains finitely
productive. Of course, any execution of this rule which began with “first consider each fact
about multiplication” (i.e., “begin by looping over ⊗/2”) would fail to terminate, though it

do not do so, for clarity of exposition.
82However, in contrast to range restriction, checking that a program is sufficiently range restricted is no

longer a simple syntactic condition on the µDyna program, as it requires the query set K. The existence of
a K which is sufficiently large for a program to operate and yet, for which, the program is K-SRR is a joint
constraint on all the rules of the program as well as any queries (and update operations) available to the
driver. Static analysis of such properties of a logic program is the purview of mode analysis [137]; see §5.
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1 def Compute(κ ⊆ Ider) ∈ ⋃α∈℘finκ(α →H)
2 y ← {k ↦ ∅ ∣ k ∈ κ} % per-item running union of yield across all rules
3 foreach r ∈ Ξ do % visit each rule
4 foreach (k ↦ β) ∈ computeRule(r,κ) do % accumulate aggregands
5 y(k) ← y(k) ⊎ β
6 return {k ↦ v ∣ (k ↦ β) ∈ y, v = aggr(k)(β), v ≠ null} % aggregate answer
7

8 def computeRule(r ∈ Ξ, κ ⊆ Ider) ∈ (κ→H+)
9 c ← {k ↦ ∅ ∣ k ∈ κ} % accumulator for rule contribution

10 refineRuleSuffix(r, contribRuleAnswer)(ρr[κ/head], 1)
11 return c
12

13 def contribRuleAnswer(g ∈ ρr) ∈ ⟨⟩
14 let ⟨k, v⟩ = g⇃hr in c(k) ← c(k) ⊎ *v+
Listing 3.1: Ground Compute. y is a function storing the finite running accumulation of contributions
from all rule answers supported by the item answers from Lookup. computeRule is called for each rule
of the program and uses refineRuleSuffix (from block 3.1) to find its answers, whose contributions
are accumulated within c. (c is not, strictly, necessary within this listing; we could store directly back to
y within computeRule, rather than storing to c and taking unions to update y on line 5. However, we
use this presentation here as later listings will add additional structure to c.) When an answer is found,
contribRuleAnswer is called to update c, having extracted the singleton head and result; the notation
f(k) ← v updates the (mutable) function value f for its argument k to yield v in future invocations.
Because contribRuleAnswer takes a rule grounding (recall the use of selt(⋅) on line 5 of block 3.1) and
yet refineRuleSuffix is invoked on a rule with potentially non-singleton head projection, this code works
only for µDyna programs obeying range restriction.
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would indeed enumerate the finite support of the rule (and then spend eternity probing for
more answers that will never arrive). Thus, one must plan the execution of rules: not all
subgoal orderings are viable. In fact, rule subgoals may need to be reordered for different
queries. Despite the necessity of planning, we gloss over this detail in all subsequent pro-
cedural considerations, deferring discussion to §5.3; we assume that every ρ object under
consideration is already in suitable order, when it matters, for whatever query is being pro-
cessed. Our notion of step-wise finiteness is related to the notion of “supersafety” in ASP
[114].

While planning can indicate acceptability of many programs that more naïve anal-
ysis would reject, there are still programs that might be acceptable but which would re-
quire more clever analysis and runtime support. Notable examples include cases where
all subgoals in isolation have infinite non-null support, but taken together with covari-
ances in the rule, one nevertheless has only finitely many solutions to consider. Degen-
erate examples include {⋯, ⟨even⟨x⟩,1⟩, ⟨odd⟨x⟩,1⟩⋯ ∣ x ∈ N}, where the intersection of
these two indicator functions’ domains is empty, but non-empty cases arise, too, such as
{⋯, ⟨a⟨x, y⟩,1⟩, ⟨b⟨x, y⟩,1⟩⋯ ∣ x, y ∈ H} with a/2 having finite first projection of its non-null
support, and b/2 having finite second projection.

Albeit in a primarily forward-chaining context, this need for plans to exist for rules,
evidencing those rules to be H-sufficiently range restricted, was the underlying requirement
on programs of the Dyna 2 solver implemented in 2013 [59].

3.2.1.2 Aside: Aggregation

Delaying aggregation to the end of the operation, as done in listing 3.1, is almost surely
computationally inefficient (though there may be occasions in a reactive situation where
it is the right answer). In practice, aggregators are often AC-reducers (à la §3.1.2.1) or
can be decomposed into functions pre- and post-composed with an AC-reducer; an actual
implementation would likely take advantage of this to eagerly aggregate as soon as new
aggregands were discovered, though once again inexact values (§1.5) pose a challenge. Eager
aggregation would also form the basis of the optimizations discussed in §2.3.5.3. We omit
such handling here to avoid incidental complexity and because keeping bags of aggregands
is in line with the semantics given earlier.

3.2.2 Improved Lookup Interface

There is no fundamental reason that Lookup takes only the key component of each subgoal.
In fact, because it has access to memoized values, providing it access to a set of possible
values for each queried key within the set can be of computational benefit. Going forward, we
will be providing Lookup with the entire subgoal projection, viewing it as α = Σk∈κ τk ⊆ jH,Ho
for some κ and κ-indexed collection τ with each τk ⊆ H. The return from Lookup will be
σ ⊆ α where k ∈ σ⇃1 and (k ↦ vk) ∈ σ if the item k has been assigned the value vk ∈ τk. Lookup
now has a more intimidating type: Π(Σk∈κ τk)⊆jH,Ho⋃α∈℘fin(κ∩I)Πk∈α τk, but the change to
refineRuleSuffix is, thankfully, straightforward: replace Lookup(σ⇃sg.i.1) on line 6 of block
3.1 with Lookup(σ⇃sg.i) (note the shorter projection path).
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Example 30 (Value Filtration): The rule {(goal⟨⟩ ↩ 1) ⇐ ⟨a⟨⟩ ↦ t⟩ ∣ t ∈ {2,3}} contributes
1 to goal⟨⟩ if a⟨⟩ has been assigned the value 2 or 3. If we were to pass only the subgoal key
a⟨⟩ to Lookup, and its value were not memoized, the solver would be obligated to compute its
value recursively. Now, however, we have placed all answers other than 2 or 3 in the same
equivalence class as null (because an answer value v /∈ {2,3} will cause the refinement
in refineRuleSuffix to produce the empty set). In the case of a cached answer in this
excluded set, Lookup can return an empty map (more generally, omit the offending key(s)
from its return map). In the case of an un-cached value, these kinds of constraints may still
be useful as additional fodder for recursive computation: supposing a⟨⟩ is aggregated by
minimization, the solver can stop its recursive quest if, say, it finds an aggregand with value
0. The solvers discussed herein, regretfully, do not take advantage of this possibility. ◊
Example 31 (Inverse Query Modes): Separately, providing values to Lookup enables inverse
query modes. Some sets of items, such as addition, can solve for a subset of their keys
given another subset and their value. That is, because there is only one answer x to the
equation x + 2 = 3, the query (set of kv-pairs) {⟨x + 2,3⟩ ∣ x ∈ H} has only one answer for
Lookup to return. More interestingly, the query {⟨x2,4⟩ ∣ x ∈ H} has two keys, and so differs
fundamentally from {⟨

√
4, x⟩ ∣ x ∈ H}, which could only return from one “branch” of the

square root function. These kinds of queries are called “inverse” because we are solving for
keys rather than values. We will say more about query modes in general in §5.3. ◊

3.2.3 Correspondence of Semantics and Procedural Results

We can formally argue that this procedure implements our semantics. Specifically, the
algorithm of listing 3.1 (with the minor tweak from §3.2.2) produces the same results as
§3.1.4. Because we are treating Lookup as encoding a function,83 these proofs apply only
in the absence of marked values (recall §2.5.2.2). Thankfully, this condition can be made
to hold (with a sufficiently large memo table) when a solution has been obtained, so these
proofs still have utility.

We begin with a relatively straightforward characterization of our core procedure,
refineRuleSuffix:
Lemma 1 (refineRuleSuffix overestimates ε): Assuming Lookup encodes a function f
within listing 3.1, every invocation of the function returned by refineRuleSuffix(r, _),
with arguments (σ, i), within computeRule(r, κ), obeys

∃p⃗∈Hi−1 σ ⊇ ⋃t⃗∈Hnr−i+1 ε
κ,p⃗++ t⃗
r,f

The superset is equality when i = nr + 1, which also implies t⃗ = ⟨⟩ ∈ H0.

Proof. The prefix tuple p⃗, while not overtly visible in the argument variables in scope,
consists simply of the k values selected by the foreach-es on line 6 of block 3.1 which have
(transitively) called the invocation in question. A straightforward inductive argument shows

σ = ρr[κ/head][{⟨p1, f(p1)⟩}/sg.1]⋯[{⟨pi−1, f(pi−1)⟩}/sg.(i − 1)].
83That is, there is some function f such that that the invocation of Lookup(Σκ τ) (with κ finite) returns

a function f ′ such that, for every k ∈ dom(f), if and only if f(k) = v ∈ τk is f ′(k) defined (and equal to v).
If f(k) /∈ τk, then we require that k /∈ dom(f ′).
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By commutativity of refinement operators, and that

∀α,k,v,j α[{⟨k, v⟩}/sg.j] = α[{k}/sg.j.1][{v}/sg.j.2],

we see that σ is ρr subject to a subset, improper when i = nr +1, of the refinements done to
εκ,p⃗++ t⃗r,f . Refinements can only reduce membership in a set, so the result is immediate.

This lemma does most of the heavy lifting in proving one direction of the equiv-
alence. The other is sufficiently straightforward that we do not give it a separate lemma.
All told, we can demonstrate the following.
Theorem 1: Assuming Lookup encodes a function f , computeRule, and therefore Compute,
in Listing 3.1 implements our semantics for the case of finitely-productive circuits.

Proof. Every invocation of the function closure go (as returned by computeRule’s call to
refineRuleSuffix(r, contribRuleAnswer)) with arguments (σ, nr + 1), with σ ≠ ∅, cor-
responds to exactly one hyperedge ⟨r, ⟨selt(σ⇃head), p⃗⟩⟩ ∈ E (with p⃗ the witness to the ex-
istential in the above lemma) with label selt(σ⇃res). This edge’s impact is recorded by
contribRuleAnswer. The selt() within refineRuleSuffix is guaranteed to be defined, by
range restriction of the program. Thus, the values accumulated into c(k) by line 14 of
listing 3.1 for any k ∈ κ are a sub-bag (possibly improper) of those in the semantics’
yb(E[{r}/1], k, f).

To show inclusion in the other direction, it suffices to argue that every hyperedge
is accounted for. That is, every hyperedge undergoes one of three fates: 1) survives to be
fed to contribRuleAnswer, 2) skipped because it ends up in a set corresponding to an empty
σ, 3) skipped because it would correspond to an empty σ. The first case is apparent, but
the others deserve some explanation. Line 4 of block 3.1 evidently short-circuits and avoids
consideration of the suffix of a set of hyperedges; assuming Lookup behaves as specified,
this line will only execute at the outermost refineRuleSuffix invocation, excluding all
hyperedges for rule r whose heads are outside the query set κ. However, if Lookup were
imagined to return every key/value association (ignoring the infinite time this would take),
then line 4 of block 3.1 would exclude exactly the set of edges that we are presuming
to be implicitly elided. (Computationally, this implicit elision is a huge advantage: the
encoding is sufficiently loose that it often produces infinite collections of edges when they
are not, strictly, necessary; see §6.3.) Thus, with all edges accounted for, we see that
yb(E[{r}/1], k, f), stripped of its nulls, is a (possibly improper) sub-bag of c(k) as of line
6 of listing 3.1.

Compute simply combines the effects from computeRule of all rules within the pro-
gram by bag union at each item, which agrees with the definition of yb(E, ⋅, ⋅).

3.3 Non-ground Inference via Set Subtraction

3.3.1 A Motivating Example

We now seek a set-at-a-time execution strategy, which attempts to reason about sets of
similarly-behaving items at once. Viewed in terms of the underlying hypergraph, two items
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rs:
ρ = {(rs⟨x⟩ ↩ z) ⇐ ⟨r⟨x, y⟩ ↦ r,s⟨y⟩ ↦ s,⊗⟨r, s⟩ ↦ z⟩ ∣ r, s, x, y, z ∈ H}

Figure 3.3: Our rule rs(X) ⊕= r(X,Y) ⊗ s(Y), shown in µDyna form at the top, can perform the computa-
tion shown in the middle—the product of an infinite matrix (all of whose off-diagonal elements are 2) with an
infinite vector. To obtain the answer, we call Compute with query κ = rsjHo. The bottom of the figure shows
a search tree that computes the aggregands of the answers. The root represents the initial query of the first
subgoal r, and the edges from the root correspond to the branches of answers returned by Lookup. Each such
edge leads to a new node with some refined query of the second subgoal s, and the edges from that node again
correspond to answers. Each such edge leads to a leaf that specifies some subset of the head rs and contributes
some aggregand at some multiplicity (colored box) to all items in that subset. (We elide the handling of the
third subgoal, ⊗, as it is only queried on singleton sets, so no branching is possible.) Thus, the leaves (at right)
correspond to rule answers (ε sets). The rule answers must be further partitioned and aggregated (see §3.3.3)
to yield the answers to the original query rsjHo, namely {{rs⟨0⟩} ↦ ⊕*⊗⟨4,6⟩@1,⊗⟨2,5⟩@∞+,rsjN ∖ {0}o ↦
⊕*⊗⟨3,5⟩@1,⊗⟨4,6⟩@1,⊗⟨2,5⟩@∞+,rsjZ ∖No ↦ ⊕*⊗⟨4,6⟩@1,⊗⟨2,5⟩@∞+}. The shape of the search tree
is determined by the answers from Lookup, which returns disjoint slices of the r matrix {{r⟨0,0⟩} ↦
4,{r⟨x,x⟩ ∣ x ∈ Z ∖ {0}} ↦ 3,{r⟨x, y⟩ ∣ x, y ∈ Z, x ≠ y} ↦ 2} and s vector {{s⟨0⟩} ↦ 6,{s⟨t⟩ ∣ t ∈ N ∖ {0}} ↦ 5}.

Non-ground rule query Non-ground rule answer
⟨{r⟨0,0⟩},{s⟨0⟩}, . . .⟩ {(rs⟨0⟩ ↩ ⊗⟨4,6⟩) ⇐ ⟨r⟨0,0⟩ ↦ 4,s⟨0⟩ ↦ 6,⋯⟩}
⟨{r⟨0,0⟩},sjN ∖ {0}o, . . .⟩ ∅
⟨{r⟨x, x⟩ ∣ x ∈ Z ∖ {0}},{s⟨0⟩}, . . .⟩ ∅
⟨{r⟨x, x⟩ ∣ x ∈ Z ∖ {0}},sjN ∖ {0}o, . . .⟩ {(rs⟨x⟩ ↩ ⊗⟨3,5⟩) ⇐ ⟨r⟨x, x⟩ ↦ 3,s⟨x⟩ ↦ 5,⋯⟩ ∣ x ∈ N ∖ {0}}
⟨{r⟨x, y⟩ ∣ x, y ∈ Z, x ≠ y},{s⟨0⟩}, . . .⟩ {(rs⟨x⟩ ↩ ⊗⟨2,6⟩) ⇐ ⟨r⟨x,0⟩ ↦ 2,s⟨0⟩ ↦ 6,⋯⟩ ∣ x ∈ Z ∖ {0}}
⟨{r⟨x, y⟩ ∣ x, y ∈ Z, x ≠ y},sjN ∖ {0}o, . . .⟩ {(rs⟨x⟩ ↩ ⊗⟨2,5⟩) ⇐ ⟨r⟨x, y⟩ ↦ 2,s⟨y⟩ ↦ 5,⋯⟩ ∣ x ∈ Z, y ∈ N ∖ {x}}

Table 3.1: Non-ground rule queries and answers for figure 3.3. The two empty results come about since
{0} ∩ (N ∖ {0}) = ∅.
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behave similarly, roughly, if they are the heads of hyperedges whose tails are also (pairwise)
similarly-behaving items. Items without incoming edges—the input—all behave similarly:
there is no work to be done to find their values. Because hyperedges arise as instantiations
of rules, in practice, this means that items likely behave similarly at least when many of
their hyperedges come from the same rules. Rather than try to formalize the notion of
similarly-behaving, let us leave it as an intuition and, more usefully, formalize a query
procedure instead.
Example 32: The rule {(f⟨x, y⟩ ↩ 1) ⇐ ⟨⟩ ∣ x, y ∈ H} (f(X,Y) ⊕= 1) defines an aggregand
for each of the infinitely many terms of fjH,Ho, but the pattern is so simple that all these
terms can be considered at once. ◊
Example 33: This kind of bulk handling extends across rules, too. The pair of rules

{(f⟨1, y⟩ ↩ 3) ⇐ ⟨⟩ ∣ y ∈ H}, {(f⟨x,2⟩ ↩ 4) ⇐ ⟨⟩ ∣ x ∈ H}

(respectively, f(1,Y) ⊕= 3 and f(X,2) ⊕= 4) will contribute 3⊕4 to the aggregated value
of item f⟨1,2⟩, while also contributing 3 to each item in {f⟨1, y⟩ ∣ y ∈ H∖{2}} and 4 to each
item in {f⟨x,2⟩ ∣ x ∈ H ∖ {1}}. ◊

A more dramatic example is shown in figure 3.3: the product of a infinite matrix
with an infinite vector, exploiting the fact that both have, in this case, simple definitions.
The matrix r is defined by the cases {r⟨0,0⟩} ↦ 4, {r⟨x,x⟩ ∣ x ∈ Z ∖ {0}} ↦ 3, and
{r⟨x, y⟩ ∣ x, y ∈ Z, x ≠ y} ↦ 2, where τ ↦ v means that v is the value of each t ∈ τ . Similarly,
the vector s is defined by {s⟨0⟩} ↦ 6 and {s⟨y⟩ ∣ y ∈ N ∖ {0}} ↦ 5. For simplicity, assume
⊗ is total. In this case, our rs rule should answer non-ground rule queries as in table 3.1.
We can read out the contributions of the ground answers contained in each non-ground
rule answer: 1 rs⟨0⟩ gets *⊗⟨4,6⟩@1+. 2 Each rsjN ∖ {0}o gets *⊗⟨3,5⟩@1+.84 3 Each
rsjZ ∖ {0}o gets *⊗⟨2,6⟩@1+. 4 For each x ∈ Z, the item rs⟨x⟩ gets *⊗⟨2,5⟩@∞+—an
infinite bag of aggregands (one for each y ∈ N ∖ {x}).85

Figure 3.3 shows how these answers are computed. Recall that refineRuleSuffix
in §3.2 simply enumerated individual items that matched a rule’s subgoals, in order to
deduce aggregands for individual items that matched the rule’s head. However, this is
inadequate to compute the infinite example above. Figure 3.3 must enumerate several sets
of related subgoal items, such as {r⟨x,x⟩ ∣ x ∈ N∖{0}}. Furthermore, each set may produce
contributions to multiple head items, and we must combine all contributions to each head
item, with the results given in the figure caption. The next two sections explain how this
is done in general.

3.3.2 Non-ground Rule Queries and Answers

We now extend the definitions of §3.1 (and, in particular, those shown in figure 3.2) to be
applicable for non-ground reasoning. A non-ground rule query for the rule r is a nr-tuple

84Preserving the covariance of x between the head and body is vital: if projected separately, we would
be at risk of claiming infinitely many contributions to each of infinitely many items!

85Were we to replace N with a finite set τ in the example, this last combination becomes a little more
interesting: there would be ∣τ ∣ contributions of ⊗⟨2,5⟩ to each of rsjZ ∖ τo, where the exclusion of x from
the domain of y cannot be relevant, and ∣τ ∣ − 1 contributions to each rsjτo, where the exclusion is always
relevant.
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of sets of items, τ⃗ . The corresponding set of pre-answers is the union of all pre-answers
possible for different queries formed by element-wise choices from τ⃗ , or, more simply, just
the refinement by each element in turn: θτ⃗r

def= ρr[τ1/sg.1.1]⋯[τnr/sg.nr.1]. In general,
invoking Lookup on a set of kv-pairs τ ⊆ jH,Ho will yield a function τ⇃1 → H′.86 This
function will, in general, have an infinite domain and will encode some complex relationship
between domain element and assigned value. Lookup may return this function all at once
or in a series of partial answers, which must be looped over just as before. These stream
elements are termed packets and each packet serves to partially answer the Lookup-ed set
of items (and values). (Recall that in the ground setting of §3.2, Lookup merely returned a
finite key-value map with individual items as keys.)

Suppose that Lookup(τi) yields fi when called, for each i ∈ Nnr
1 . Then the rule

query τ⃗ = ⟨τ1, . . . , τnr⟩ has a non-ground rule answer of

ε = ετ⃗
r,f⃗

def= ρr[{t↦ f1(t) ∣ t ∈ τ1}/sg.1]⋯[{t↦ fnr(t) ∣ t ∈ τnr}/sg.nr] ⊆ θτ⃗r .

This is essentially a set of ground rule answers (which, in principle, could be individually pro-
cessed by contribRuleAnswer). It contributes to each h ∈ ε⇃head the values ε[{h}/head]⇃@res.
Since the value fi(t) may covary with t, our expression for ε takes care to refine subgoal i
(that is, sg.i) by a set of pairs ⟨t, fi(t)⟩ that captures this covariance. We will disallow this
covariance in the next section, requiring that each considered fi be constant.

As mentioned earlier (§3.2.1), in backward-chaining, we are often interested only
in the subsets of rules’ groundings that pertain to a particular set of heads η. Therefore, we
pair our concepts of rule pre-answers and answers with optional head refinements. We aug-
ment the definitions of θ and ε with another index, allowing concise notation for additional
refinement by heads: θη,τ⃗r

def= θτ⃗r [η/head] and similarly for ε.
A few set-theoretic properties of these augmented θ and ε are worth noting:

1 θα,τ⃗r = θη,τ⃗r [α/head] and εα,τ⃗r,L = ε
η,τ⃗
r,L[α/head] for any pair of sets α ⊆ η. Thus, θ and

ε are ⊆-monotone in their head index. (This would not be true of ε if we had used ⌈⋅⌉ in its
definition; instead, values are determined directly by τ⃗ .) 2 θ⋅r sends τ⃗ ⪯ τ⃗ ′ to θτ⃗r ⊆ θτ⃗

′
r , but

no similar monotonicity holds for ε⋅r,L, due to the evaluation of L in the latter (there being
no necessary relationship between L(τ) and L(τ ′), even if τ ⊆ τ ′).

3.3.2.1 Three Simplifying Assumptions

Recall from the introduction that Lookup may call Compute. Compute will issue rule queries
against the rules of the program—via recursive Lookup calls to their subgoals—and then will
combine the heads of the resulting rule answers ε (via §3.3.3 below) to obtain its own return
value. We now observe that Lookup will return a piecewise-constant map if the recursive
Lookup calls do so and the resulting rule answers have sufficiently simple hr projections.

1 If the recursive Lookup calls could instead return arbitrary item valuation func-
tions fi, then it would presumably be hard to compute ε and hard to aggregate ε’s heteroge-
nous contributions to head items. (For example, imagine that fi = {g⟨x⟩ ↦ 2 ∗ x ∣ x ∈ Z}.)
We therefore restrict to cases of the sort illustrated by figure 3.3: each fi is a constant
function returning some vi, so that the result of Lookup is piecewise-constant with finitely

86We use H′ because some or all items in τi may have value null.
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many pieces. Despite being a special case, this is still a strict generalization of our ground
reasoning story: therein, Lookup associated each of finitely many items with a value, while,
herein, we allow for finitely many, possibly infinite sets of items to have an associated value.
Under this assumption, letting vi be the value associated with all τi of a rule query, our
set of rule answers has a much simpler definition: ετ⃗r,v⃗

def= θτ⃗r [{v1}/sg.1.2]⋯[{vnr}/sg.nr].
There is no difficult preservation of covariance here: we are directly refining the sub-
goal value positions, for all corresponding keys. In this context, Lookup now has type
Π(Σk∈κ τk)⊆jH,Ho⋃K∈fp(κ∩I)Πα∈K({null} ∪ ⋂t∈α τt), where fp(β) is the set of all finite par-
titions of the set β: a set of sets B is a member of fp(β) iff all of ⋃B = β, ∣B∣ < ∞, and
∀β1,β2∈B β1 ∩ β2 = ∅.

2 We next insist that the rule answers ε = ετ⃗r,v⃗ in the previous paragraph have
simple heads, which we will be able to combine across rules (§3.3.3 below) to give a new
piecewise-constant function. Recall that for ground reasoning (§3.2), we required “K-
sufficiently range restricted” rules (§3.2.1) so that each rule answer would have a single
item as its head: that is, with the head refined by the query κ ∈ K, bringing ρr⇃sg to
a singleton would bring the entire set to a singleton. Now that we are prepared to rea-
son about sets of terms at once, this is no longer necessary and we can write rules such
as the previously-troublesome {(f⟨x, y⟩ ↩ v) ⇐ ⟨g⟨x⟩ ↦ v⟩ ∣ y ∈ τ,⋯} (f(X,Y) ⊕= g(X));
grounding the subgoals leaves a set of heads all of which receive the same bag of aggregands.

Generalizing, we will, instead, require non-ground K-sufficient range restric-
tion of our programs: any rule answer ε = εκ,τ⃗r,v⃗ that we compute (for any κ ∈ K) must
treat all its head items η = ε⇃head identically, contributing the same aggregands *v@m+
to each of them. (Formally, ∃v∈H,m∈N∞ ∀h∈η ε[{h}/head]⇃@res = *v@m+.) This will allow
§3.3.3 to easily determine which sets of head items receive which sets of aggregands. Like
ground K-sufficient range restriction, in general, attesting that a program is sufficiently
range restricted requires static analysis §5. We will, as before, continue to suppress the “K-
sufficient” by tacitly assuming {κ}-sufficiency, for whatever query κ is under consideration,
throughout.

Non-ground range restriction, as defined here, indeed excludes, as promised, cases
where the head and value covary within a single rule answer. The rule ρ = {(f⟨x⟩ ↩ x) ⇐
⟨⟩ ∣ x ∈ τ} is rejected for any τ with ∣τ ∣ > 1 if subjected to a query fjκo with ∣κ∣ > 1. That
is, this rule is {{f⟨k⟩} ∣ k ∈ κ}-sufficiently (non-ground) range restricted, but not {fjκo}-
sufficiently so. When ∣τ ∣ < ∞, we can recover by using a rule for each element of τ , and
one could imagine attempting to do something clever for the case of a finite intersection of
query and rule, e.g., splitting the result into a finite set of results obeying the requirement
above; for the moment we exclude the pair of rule and query, but we speculate about an
extension in §3.6.1.

3 More trivially, we also need all head items in η to share an aggregator. To ensure
this, we require that each rule r specify an aggregator consistent with all its possible heads:
all items I ∩ ρr⇃head must use this aggregator. This ensures that aggr(η) def= selt({aggr(h) ∣
h ∈ η}) is well-defined when we use it to construct a query answer in listing 3.2 below.
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3.3.3 Combining Results

Recall that in §3.2, we imagined collecting ground rule answers by calling a procedure
contribRuleAnswer on each one. We now generalize this to the non-ground case. If rules
obey non-ground range restriction, then a rule query with non-empty answer ε can be
read as an instruction: “contribute, to each h ∈ η = ε⇃head, m = selt({∣ε[{h}/head]∣ ∣ h ∈ η})
copies of v = selt(ε⇃res).” We further assume the existence of a procedure RuleToInstr which
extracts η and *v@m+ from any non-empty ε derived from a non-ground range-restricted
rule.

Given two rule answers, ε1 and ε2, with corresponding head projections, ηi, and
contributions, *vi@mi+, their combined contributions should be that (η1 ∖ η2) gets only
*v1@m1+, that (η2∖η1) gets only *v2@m2+, and that (η1∩η2) gets contributions from both,
i.e., *v1@m1, v2@m2+. (Recall example 33.) Generalizing, if we have already accumulated
some number of rule answers into a map c, upon the arrival of another set of heads η and
bag of contributions β = *v@m+, one must construct a new entry in the map for any novel
items in η and then split every existing entry κ into κ∩η and κ∖η (we may safely omit the
∅ bin). Procedurally,

1 def disjoin(c, η, β) % Add all of β to each h ∈ η across all of c
2 return {(η ∖⋃(dom(c))) ↦ β ∣ η /⊆ ⋃(dom(c))} % new bin for new terms;
3 ∪{(κ ∖ η) ↦ τ ∣ (κ↦ τ) ∈ c, κ /⊆ η} % split old bins: differences …
4 ∪{(κ ∩ η) ↦ β ⊎ τ ∣ (κ↦ τ) ∈ c, κ ∩ η ≠ ∅} % … and intersections

B. 3.2

This procedure forms the core of our contribRuleAnswer procedure for non-ground backward
reasoning, shown in listing 3.2.

3.3.4 Correspondence of Semantics and Procedural Results

We can reprise §3.2.3 with our modified, non-ground algorithm. In this setting, we need to
slightly revise our assumptions of Lookup. Lookup(Σκ τ) (wherein κ is no longer required
to be finite) now further encodes f ∈ κ → H′ by f ′ ∈ ⋃K∈fp(κ∩I)Πα∈K({null} ∪ ⋂t∈α τt).
To ensure that f ′ is a faithful encoding of f , we require that ⋃K = κ and, ∀(k↦v)∈f , that
either v ∈ τk ∧ f ′(α) = v or v /∈ τk ∧ f ′(α) = null. Unlike the ground setting, we are, here,
requiring a kind of “totality” in that ⋃K = κ; we use null where before we would simply
have reduced the domain of the encoding f ′.
Lemma 2 (refineRuleSuffix overestimates ε): Assuming Lookup behaves as above, encoding
some function f , within Listing 3.2, every invocation of the function closure go (as returned
by refineRuleSuffix(r,_), when called from computeRule(r,κ)) with arguments (σ,i)
obeys

∃φ⃗∈(℘H)i−1 σ ⊇ ⋃p⃗∈Hi−1,∀j pj∈φj⋃t⃗∈Hnr−i+1 ε
κ,p⃗++ t⃗
r,f .

The superset is equality when i = nr + 1.

Proof. The prefix tuple φ⃗ consists of the τ sets in the foreach-es on line 21 of listing 3.2
that transitively called the invocation of refineRuleSuffix in question. Generalizing the

90



1 def Compute(κ ⊆ I)
2 y ← ∅ % initialize accumulator: no contributions to any item
3 foreach r ∈ Ξ do
4 foreach (η ↦ β) ∈ computeRule(r,κ) do % accumulate aggregands
5 y ← disjoin(y, η, β)
6 return {η ↦ aggr(η)(β) ∣ (η ↦ β) ∈ y}
7

8 def computeRule(r ∈ Ξ, κ ⊆ Ider) ∈ (⋃K∈fp(κ∩I)K →H′+)
9 c ← {k ↦ ∅ ∣ k ∈ κ} % accumulator for rule contribution

10 refineRuleSuffix(r, contribRuleAnswer)(ρr[κ/head], 1)
11 return c
12

13 def contribRuleAnswer(ε ⊆ ρr) ∈ ⟨⟩ % extract answers and accumulate (§3.3.3)
14 c ← disjoin(c, η, β) where ⟨η, β⟩ = RuleToInstr(ε)
15

16 def refineRuleSuffix(r ∈ Ξ, contribRuleAnswer)
17 return go
18 def go(σ ⊆ ρr, i ∈ Nnr+1

1 )
19 if σ = ∅ then return % no contributions here, or
20 elif i = nr + 1 then contribRuleAnswer(σ) % some answers to process, or
21 else foreach (τ ↦ v) ∈ Lookup(σ⇃sg.i) do
22 go(σ[jτ,{v}o/sg.i], i + 1) % refine and move to next subgoal
23

24 Lookup ∈ Π(Σk∈κ τk)⊆jH,Ho⋃K∈fp(κ∩I)Πα∈K({null} ∪ ⋂t∈α τt) % answer a subgoal query
25 RuleToInstr ∈ Πε⊆ρrjε⇃head,℘+Ū∞(ε⇃res)o % extract head and result bag from rule

Listing 3.2: Non-ground Compute. Lookup(τ) is assumed to return an assignment of values (now inclusive
of null) to each element of a finite partitioning (fp) of τ (recall 1 of §3.3.2.1). contribRuleAnswer is
prepared to deal with multiple answers at once, provided that RuleToInstr can extract a head and result
bag such that all results apply to each head. It uses disjoin, as given in block 3.2 (in §3.3.3), to maintain
the invariant that all domain elements of the accumulators c and y are disjoint.
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arguments from ground computation, and taking vi = selt({f(k) ∣ k ∈ φi}), we have

σ = ρr[κ/head][{⟨p, v1⟩ ∣ p ∈ φ1}/sg.1]⋯[{⟨p, vi−1⟩ ∣ p ∈ φi−1}/sg.1].

We now appeal to a kind of distribution of refinement over a product operation, specifically,

∀α,σ,τ,j α[{⟨s, t⟩ ∣ s ∈ σ, t ∈ τ}/sg.j] = α[σ/sg.j.1][τ/sg.j.2],

and the distribution of refinement over union, i.e., that ∀α,S,π α[⋃S/π] = ⋃σ∈S α[σ/π].
These two facts, and a little algebra within an induction on i shows that the ⋃⋃ ε term
can be rearranged to have, at least, all of the same refinements to ρr that were applied to
obtain σ, with the two becoming equal when i = nr + 1.

As before, our correspondence is nearly immediate as a consequence:
Theorem 2: Assuming Lookup behaves as above, computeRule, and therefore Compute, from
Listing 3.2 implements our semantics for programs amenable to bulk handling.

Proof. Essentially the same proof from the ground case continues to apply here. Ev-
ery invocation of contribRuleAnswer corresponds exactly to a set of hyperedges all la-
beled with selt(σ⇃res). Dually, every hyperedge either is included in some σ on which
contribRuleAnswer is invoked, included in some σ that eventually becomes empty, or is
skipped by the loops because it would have empty σ (and therefore ε).

Finiteness of the encoding returned by Compute is nearly immediate, too:
Lemma 3: Assuming Lookup behaves as above, computeRule, and therefore Compute, from
Listing 3.2 returns finite partitions of potentially infinite sets.

Proof. Given that each rule call to Lookup produces a finite partition (of a potentially infinite
set), contribRuleAnswer’s use of disjoin will only ever update the c accumulator to have a
finite domain. Since there are only finitely many rules, y, too, must have finite domain. To
be fully formal, we would have to argue that disjoin is correct as written, but we believe
inspection suffices.

3.3.5 Set Manipulations

A practical implementation of our algorithm requires a computational representation of sets
of terms, such as regular tree automata, which are closed under the set operations we use
and whose cardinality can be computed.

Unfortunately, to represent sets with covariance such as {r⟨x,x⟩ ∣ x}—or any
µDyna rule with repeated variables—we require tree automata with equality constraints
(the canonical textbook on the topic is [35]; we will discuss tree automata in more detail
in §4.2). General use of equality constraints destroys the nice computational properties,
meaning that some sets cannot be constructed or cannot be counted in finite time.

However, there are useful settings where our algorithm can be executed without
running into these problems.
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Bounded-Depth Rules Recall that a µDyna rule is formally a set of nested tuples over
terms, such as {(g⟨x⟩ ↩ v) ⇐ ⟨f⟨x, y⟩ ↦ v⟩ ∣ v, x, y ∈ τ}. If quantification within the set
defining the rule (e.g., the set τ) is over only bounded-depth terms (e.g., Datalog programs,
wherein all items are flat, i.e., I ⊆ {f⟨a1⟨⟩, . . . ,an⟨⟩⟩ ∣ f/n ∈ F ,∀i ai/0 ∈ F}), then the
rule consists of bounded-depth tuples. In this case, all sets that arise in our algorithm
should be representable using acyclic tree automata with equality and disequality (where
the disequalities arise from set difference). The operations on such sets are tractable, as
they can be reduced to finite sequences of operations on regular tree set automata.

Tree Automata With Bounded-Depth (Dis)Equalities More generally, for some
programs, we can similarly guarantee that all sets that arise can be represented using tree
automata with equality and disequality constraints that only mention nodes close to the
root. For example, this is true for a rule like {(g⟨x⟩ ↩ v) ⇐ ⟨f⟨x, y⟩ ↦ v⟩ ∣ v, x, y ∈ τ} if
τ is a regular tree type (see §4.2.3) rather than being a complicated type such as “lists of
all-equal elements” or “lists of equal pairs,” which require equality checks arbitrarily far
from the root (requiring, in turn, equality constraints across recursion within an automaton
representing such a type).

µDyna with Disjoint Sets While set subtraction in general is complicated, one scenario
is particularly easy to compute: the subtraction of a set from any subset of its complement
(yielding the empty set). This observation gives us computational traction on a subset of
µDyna programs wherein all sets that arise are disjoint (unless equal) and which, therefore,
trivially give rise to solutions with disjoint keys. For example, one could take a a (ground)
range-restricted program (recall §3.2.1) describing a finite circuit and construct a degenerate
description of infinitely many copies of that circuit by adding an otherwise unused variable
to every head and subgoal: that is, by replacing every rule

{⟨⟨h⟨...⟩,w⟩, ⟨⟨g1⟨...⟩, v1⟩, . . . , ⟨⟨gn⟨...⟩, vn⟩⟩⟩⟩ ∣ ⋯}

with the modified rule

{⟨⟨h⟨..., x⟩,w⟩, ⟨⟨g1⟨..., x⟩, v1⟩, . . . , ⟨⟨gn⟨..., x⟩, vn⟩⟩⟩⟩ ∣ x ∈ H,⋯}

(with x a new variable not in any of the elided segments). The variable must be the
same across all subgoals and the head, otherwise the semantics of the program will be
altered and duplicate copies of the structure will contribute their values multiple times to
individual items. Our algorithm will execute correctly against these programs, computing
answers which leave x unbound throughout and otherwise faithfully emulate those of the
original program. All set subtractions computed within disjoin (block 3.2) will be trivial,
since range restriction (and, in particular, step-wise finiteness) of the original program will
ensure that the heads are ground aside from the introduced free variable.
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3.4 Non-ground Inference via Default Reasoning

3.4.1 Required Set Theory Operations

This section aims to eliminate the need to compute and represent differences of sets of trees,
as part of a more general program of lowering the requirements of algorithmic representa-
tions of sets. In the previous section, we used set difference to construct the piecewise-
constant valuation function (§3.3.2.1) by partitioning its domain into non-overlapping sets
(§3.3.3). Unfortunately, this approach does not appear to be computable in general, in that
the suitable families of tree automata for µDyna’s use (i.e., those with equality constraints)
of which we are aware are either not closed under set complementation or have undecidable
decision predicates (e.g., emptiness). (See §4.2 for more discussion.)

We are, indeed, able to eliminate any need to represent the difference of two sets,
though in general, our set-theoretic requirements will remain quite high. The design in this
section encodes the piecewise-constant valuation function as a series of partial functions with
overlapping domains. These functions partially override one another, where functions with
smaller domains “win” on their domain: that is, of all the partial functions that contain a
given item name in their domain, there is one with a strictly smallest domain, and it defines
the corresponding value. This design requires the ability to describe sets that correspond
to all instantiations of a non-ground term (which may contain repeated variables). We also
require our family of representable sets to be closed under finite unions and intersections.
Finally, we require the ability to count cardinalities of set differences (without representing
the differences themselves).

Formally, this last ability, cardinality of set difference, implies, further, that we
can perform testing of any subset relation: α ⊆ β iff ∣α ∖ β∣ = 0. Thus, we are also able
to test for equality of two sets (⊆ is anti-symmetric) including emptiness of a set (α = ∅ if
∣α∖∅∣ = 0). These operations are known to be undecidable on many classes of tree automata
(even many which cannot represent set differences); however, we hope that, by developing
appropriate heuristics that cover common cases, we can enlarge the class of programs on
which we can guarantee terminating execution.

In the previous section, we ultimately required that all non-ground rule answers
ε were uniform in their contributions to their heads: each h ∈ ε⇃head had to be associated
with the same bag of aggregands. Now, we will require a similar kind of uniformity of rule
answers, in particular, uniformity on a “surviving” subset. Recognition of this uniformity,
with a little irony, encapsulates two set subtractions yet appears to be a slightly lower
requirement. In particular, given a non-ground rule answer ε ⊆ ρ, an “obstructed head” set
ω ⊆ I, and a “masked” set of rule groundings µ ⊆ ρ, we define AnswerFor(ε, ω, µ) to equal
β iff ∀h∈(ε⇃head∖ω) (ε ∖ µ)[{h}/head]⇃@res = β. We can read this as “every head in ε⇃head,
excepting the obstructed ω, is, after masked groundings are removed, associated with the
same bag-view res projection, β.” For simplicity, we will restrict to βs of the form *v@m+
for some v ∈ H and m ∈ N∞.

The treatment in this section is abstracted over the choice of underlying automaton
family or computational set encoding (discussed further in §4). That is, we describe and
solve the problem using the language of sets, without worrying about execution. Sadly,
it seems likely that no single class of tree automata is suitable for all programs. Further,
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despite our efforts towards static analysis in §5, we are not yet to the point of understanding
how to effectively describe the subset of general operations that would be required by a given
program. As such, an interesting avenue of future work is to consider partially-capable classes
(or overlapping collections of classes) of tree automata and verify that a given program’s
computational demands will be within the total subsets of the domains of the underlying
automata operations.

3.4.2 Encoding Functions with Finite Ranges

In a large subset of µDyna programs, we need to find and manipulate functions f ∈ κ→H+
which have possibly infinite domain κ but only finite range, where the range is known only
at runtime. We recast the machinery of the prior section in a new light as an “encoding”
of a function before exhibiting a “default”-based encoding which avoids the need for set
subtraction in construction and may be interpreted with only cardinality of subtractions.

3.4.2.1 Encoding by Domain Partition

A piecewise-constant function with finite range, f ∈ κ → α, can be described by a finite set
of pairs ⟨τi, ai⟩ with disjoint τi ⊆ κ and ai ∈ α. This, in turn, can be made into a function
f ′ = ⋃i{τi ↦ ai} so that f(t) = f ′(τi) with τi the unique element of dom(f ′) which contains
t. Given two such encodings, f ′i , (i ∈ {1,2}) of functions with a common domain, fi ∈ κ→ α,
and a binary operator ⊕ on α, it is easy to build the ⊕-join of f1 and f2: f1∧⊕ f2 ∈ κ→ α; it
is {(τ1∩τ2 ≠ ∅) ↦ f ′1(τ1)⊕f ′2(τ2) ∣ τi ∈ dom(f ′i)}. If, however, the fi have different domains,
fi ∈ κi → αi, and we wish for the join (when decoded) to have κ1 ∪ κ2 as its domain, we
must first specify values for the novel part of the domain for each fi. Specifically, we must
add (partitions of) κ2 ∖ κ1 to dom(f1), and κ1 ∖ κ2 to dom(f2), associated with identity
elements of ⊕. At least one of these differences is non-empty, by assumption. The need to
compute set differences is unavoidable.

As it happens, the non-ground reasoning algorithm of the last section maintains
its collections of aggregands to head items using exactly this encoding. Recall its disjoin
function, block 3.2 (in §3.3.3), which adds the collection of aggregands β to each head
h ∈ η across the encoding f ′ and yields an appropriately adjusted encoding. This function
is precisely f ′ ∧⊎ {η ↦ β} in disguise. We reproduce it here in a slightly different, but
equivalent, form, with comments to highlight the relation to ∧⊎:

1 def disjoin(c, η, β) % Add all of β to each h ∈ η across all of f ′

2 return {(κ ∩ η) ↦ β ⊎ τ ∣ (κ↦ τ) ∈ f ′, κ ∩ η ≠ ∅} % common domain elements
3 ∪{(κ ∖ η) ↦ τ ∣ (κ↦ τ) ∈ f ′, κ /⊆ η} % enlarge novel domain
4 ∪{(η ∖⋃(dom(f ′))) ↦ β ∣ η /⊆ ⋃(dom(f ′))} % enlarge f ′'s domain

3.4.2.2 Encoding by Defaults

One may alternatively encode such a piecewise-constant function with finite range, f ∈ κ→
α, using finitely many potentially overlapping subsets of κ, so long as it is clear which subset
should be used for decoding each element k ∈ κ. Here, we consider an encoding which ensures
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that there is always a unique, smallest subset of κ for each k. Let B ∈ (K ∖ {∅}) → α with
K ⊆ ℘κ be such an encoding, called a piecewise-constant backed-off function (BF),
whose structure we now detail.

Not any such function B on any set K will do. In order to ensure that there is
a unique smallest set for every k ∈ κ, we require that K be 1 intersection-closed (i.e.,
∀τi∈K τ1 ∩ τ2 ∈ K), and 2 a cover of κ (i.e., ⋃K = κ).87 We will occasionally refer to the
particular K used by a BF encoding (i.e., the domain of the encoding, not encoded, function)
as its base. Let ficc(κ) (“finite, intersection-closed covers”) be the set of all such sets K.
∩-closure allows us to define the encloser of non-empty subsets σ ⊆ κ for B: ⌈σ⌉B (or just
⌈σ⌉, when clear) is the smallest τ ∈ K such that σ ⊆ τ , if it uniquely exists.88 The BF B
encodes f by taking f(k) = B(⌈{k}⌉). We extend application notation to B(k) def= B(⌈{k}⌉)
(since k ∈ κ and not ℘κ, this is unambiguous).

The ∧⊕ of two Bi ∈ (Ki ∖ {∅}) → α, with ∀i⋃Ki = κ, is much as before: B1 ∧⊕ B2 ∈
{σ1 ∩ σ2 ≠ ∅ ∣ σi ∈ Ki} → α sends τ to B1(⌈τ⌉B1) ⊕ B2(⌈τ⌉B2).

89 Given a BF B ∈ S → α
with ⋃S ⊊ κ, we can construct a BF B′ ∈ S′ → α with ⋃S′ = κ by ensuring that κ ∈ S′
and {κ ∩ σ ∣ σ ∈ S} ∈ S′ and that these map to appropriate values (e.g., the identity of ⊕).
(This is not the only way to construct B′, but it is perhaps the most convenient.) No longer
needing to partition, we have no need for set subtraction.

Of course, as BFs are just an encoding of a function, just as is the partition-based
scheme above, it is possible, and hopefully illustrative, to consider converting a BF B to a
partition encoding f ′. The subset of κ strictly enclosed by τ ∈ K (and not by some subset
of τ) is u(τ) = τ ∖ ⋃{σ ∈ K ∣ σ ⊊ τ}. While there may be σ′ ∈ K which overlap τ but are
not subsets thereof, ∩-closure of K ensures that the overlap σ′ ∩ τ ∈ K and will, therefore,
be removed from u(τ). Thus, K = {u(τ) ∣ τ ∈ K} is a partition of κ, and f ′(κ′) = B(κ′) is
constant on each κ′ ∈K. In the other direction, every partition-based encoding f ′ is already
a BF. By assumption, the partition covers the domain κ. Partition elements have empty
intersection, so dom(f ′) ∪ {∅} is already ∩-closed, and f ′ serves as B.
Example 34: Consider the three rules {(r⟨x, y⟩ ↩ 2) ⇐ ⟨⟩ ∣ x, y ∈ Z} {(r⟨x,x⟩ ↩ 1) ⇐ ⟨⟩ ∣ x ∈
Z} and {(r⟨0,0⟩ ↩ 1) ⇐ ⟨⟩}.90 If aggregated by sum, their combined contributions form a
three-way partition of rjZ,Zo: {r⟨0,0⟩ ↦ 4}∪{r⟨x,x⟩ ↦ 3 ∣ x ∈ Z∖{0}}∪{r⟨x, y⟩ ↦ 2 ∣ x, y ∈
Z, x ≠ y}. This same result can be readily encoded as a piecewise-constant BF without the
need for set subtraction: {{r⟨0,0⟩} ↦ 4,{f⟨x,x⟩ ∣ x ∈ Z} ↦ 3,rjZ,Zo ↦ 2}. ◊
Example 35: A rule in which values covary with the head, such as {(f⟨x⟩ ↩ x) ⇐ ⟨⟩ ∣ x ∈ H}
does not give rise to contributions amenable to piecewise-constant BFs. Recall 2 of §3.3.2.1
and see §3.6.1 for discussion of extending backoff-functions beyond piecewise-constancy. ◊

87This ensures that B still acts as a total function on its domain. Practically, this often means that κ ∈K
with some suitable default value, very often null.

88Not having required that κ ∈ K, we are not ensured that an arbitrary subset of κ has an encloser.
Enclosers are, however, certainly defined for any subsets of any σ ∈K and for all singleton subsets of κ.

89The use of ⌈τ⌉ as arguments to Bi is perhaps surprising, but necessary: there may be multiple pairs
⟨σ1, σ2⟩ with σi ∈Ki that have the same intersection σ1∩σ2. It is easy to see that ⋃{σ1∩σ2 ≠ ∅ ∣ σi ∈Ki} = κ
follows from our assumptions on Ki.

90Prolog-style syntax does not obviously offer a convenient way to write rules where variables range over
proper subsets of the term universe, such as {(r⟨x, y⟩ ↩ 2) ⇐ ⟨⟩ ∣ x, y ∈ Z}; introducing explicit annotations
might allow something like r(X :int, Y :int) += 2.

96



3.4.3 Default Reasoning

3.4.3.1 Revisiting Our Motivating Example

To motivate and guide our discussion of default reasoning using BFs, we tell again, in
figure 3.4 the story from figure 3.3 (in §3.3.1) of computing the product of an infinite matrix
with an infinite vector via rs(X) ⊕= r(X,Y) ⊗ s(Y). To find the answer, we invoke one
step of backward reasoning by calling Compute(rsjZo), which, internally, uses Lookup to
obtain values for subgoals’ items. Lookup will continue to return a finite map with elements
τ ↦ v, where τ ⊆ I is a set of items and v ∈ H′ is the value assigned to each t ∈ τ . The
centerpiece of this section is that the τs in this map now overlap, forming the base of a BF
that encodes the partition of old. Thus, the non-ground rule answers obtained (at the leaves
of the tree) in answer to the non-ground rule queries (the root-leaf path through the tree)
will overlap in that their pre-answer sets may have non-empty intersection.91 The answer
sets may not intersect due to ascribing different values to the same keys.

3.4.3.2 An Intuitive View of Default Reasoning

Let us attempt to give an intuition before we dive into the formalities. We will use ⋅̃ over a
symbol to mean that we are giving a preliminary definition here and that that symbol will
have a more rigorous definition given in the indicated section. As there are rather many
derived quantities in flight, we proffer the map in figure 3.5 for orientation as we proceed.
Quantities involved will come to have unusually many indices on them; subscripts will be
global in flavor (program Ξ or rule r, answers L) while superscripts will tend to be more
local (query η, replacement τ⃗).

Every contribution to a head h can be named by a pair of a rule, r, and a ground
rule query t⃗ thereof (recall our hypergraph construction from §3.1.4). If the responses from
Lookup are partitions of its argument, as they were in §3.3, then each such name will be
associated with at most one value: within the search tree of figure 3.3, t1 occurs on at most
one edge from the root node, and, thereunder, t2 again occurs on at most one edge, and so
on. Whatever values are assigned to each ti, the rule answers ε will be contained within the
pre-answers θ: θt⃗r is the set of all possible answers for a given name (for all possible heads,
at that).

Now, however, we are assuming that the response is described by a BF, L, encoding
I → H′, and so there may be several branches of the search tree of figure 3.4 which contain
t1, each of which may contain several branches containing t2, etc. We must post-process the
results of the search so that only values from enclosing branches are considered. As there
is only one encloser for ti, this will again associate at most one value with the query t⃗, and
the definition of BFs ensure that this will be the value as if the result had been partitioned.
How are we to do this post-processing?

We can identify each leaf of the search tree with a non-ground rule query τ⃗ , e.g.,
⟨τ1, τ2⟩. Given a rule query τ⃗ for r, the pre-answer set θτ⃗r is the set of all possible answers

91Overrides within a BF answering a query of a µDyna program only arise from primitives or the in-
teraction of multiple contributions across multiple rules or from existing overrides at subgoals; conjunction
within a rule cannot on its own create an override de novo, as its action on θ and ε sets is defined entirely
by refinement, which is merely set intersection in a fancy wrapper.
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rs:
ρ = {(rs⟨x⟩ ↩ z) ⇐ ⟨r⟨x, y⟩ ↦ r,s⟨y⟩ ↦ s,⊗⟨r, s⟩ ↦ z⟩ ∣ r, s, x, y, z ∈ H}

Figure 3.4: A retelling of figure 3.3, now with default reasoning; see §3.4.4.1 for prose. We are computing
the product of an infinite matrix with an infinite vector. To obtain the answer, we call Compute with query
κ = rsjHo. The bottom of the figure shows a search tree that computes the aggregands of the answers.
The root represents the initial query of the first subgoal r, and the edges from the root correspond to the
overlapping branches of answers returned by Lookup. Each such edge leads to a new node with some refined
query of the second subgoal s, and the edges from that node again correspond to answers. Thus, each
leaf corresponds to a non-ground rule query ⟨τ1, τ2,H⟩, which can be read off from the root-leaf path. The
attendant (pre-)answer sets are central to further reasoning; for reasons of space we show only θ at each leaf
and describe it by the variables used in the comprehension definition of ρ at the top. Each rule answer may
contribute values to subsets of their heads, subject to masking (§3.4.3.6). To the right of the search tree
is a trace (to be read top-to-bottom, and discussed in §3.4.4.1) of the execution of the algorithm of §3.4.4,
which visits overrides before visiting defaults (i.e., sets are visited before their proper supersets). This order
explains the order of branches in the tree and is why, for example, the top-most answer deriving from the
pre-answer corresponding to x = 0, y = 0 contributes to {rs⟨0⟩} but the second does not. Dotted lines connect
regions of the trace with their causative object in the search tree. Value contributions from leaves are denoted
with ⊕= in this log; masks, derived from θ upon returns up the search tree (dotted arrows), are denoted #
and continue to use the variable notation from the leaves. We elide the last set of masking operations. Gray
entries do not change the algorithm’s state; entries marked with daggers (†) rely on obstruction. The shape of
the search tree is determined by Lookup’s returns, namely {{r⟨0,0⟩} ↦ 4,{r⟨x,x⟩ ∣ x ∈ Z} ↦ 3,rjZ,Zo ↦ 2}
and {{s⟨0⟩} ↦ 6,sjNo ↦ 5}, BFs encoding the r and s items that have non-null weights.
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§3.4.3.3
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r

Mnemonic Type
Ξ Program rule indices Set
L Lookup Results BF
κ Query Key Set ⊆ I
r Rule index ∈ Ξ
η Head under consideration ∈ H
τ⃗ Rule query ∈ R
R Replacements

Set of tuples of
subsets of IH Replacements for Head

M Masking replacements
H Induced Heads ⊆ I
ω Obstructing heads
ρ Rule groundings

µDynaθ Pre-answers, these keys
ε Answers, Evaluated
ψ Surviving answers
ν Keys and Values Bag of

kv-pairsℶ Bag of result kv-pairs
C Contribution per rule BFY Yield

Figure 3.5: Plate notation and mnemonics for the various characters involved in reasoning with defaults.
Recall figure 3.2 for the basic semantics of plate notation. To these semantics we now add a notion of fan-in,
using the mechanism indicated, of solid arrows exiting a plate. To reduce visual clutter, indices have been
omitted (they can be uniquely recovered from context) and L and ρ have been repeated in the diagram,
representing the same value at each occurrence. The τ⃗ plate on the left derives the “induced heads” (see
§3.4.3.4), which form the base of the contribution to the answer (C) for each rule (r ∈ Ξ) given the query
head (κ) and input BF (L). The η plate derives the value for each point therein. Our assumptions on the
program equation (3.2) (in §3.4.3.6) are seen to be the bridge between the system’s fan-in (§3.4.3.5) and its
masking post-processing (§3.4.3.6) of fan-out (§3.4.3.3).
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for all ground rule queries {t⃗ ∣ ti ∈ τi}. Thus, given two non-ground rule queries σ⃗ and τ⃗ ,
in which ∀i σi ⊆ τi, the set of possible answers unique to τ⃗ is θτ⃗r ∖ θσ⃗r , which is a superset of
whatever actual rule answers are licensed by τ⃗ . If we collect all such σ⃗ from the search tree
for each τ⃗ into M̃τ⃗ (§3.4.3.6), then we see that θτ⃗r ∖⋃σ⃗∈M̃τ⃗ θ

σ⃗
r is the set of possible answers at

the leaf identified with τ⃗ , and, given a value vi for each τi, ψ̃τ⃗ = ετ⃗r,v⃗ ∖⋃σ⃗∈M̃τ⃗ θ
σ⃗
r (§3.4.3.6) is

the set of un-masked answers from this leaf, just as if each τi had been a partition element.
ν̃ τ⃗ = ψ̃τ⃗⇃@hr (§3.4.3.5) is then a bag of pairs of heads and associated aggregands from this
leaf, which should be split by head and then aggregated, along with ν̃ from other leaves.

Unfortunately, this ν̃ τ⃗ is difficult to compute and manipulate. Its computation
clearly requires set subtraction. More worrying, even, it may overlap with other leaves’ ν̃ τ⃗ ′

in complex ways reminiscent of why we needed to disjoin, but with yet more difficulty:
there is no reason to believe that ν̃ can be described as a bag product between a set of
heads η and a bag of aggregands β. We require some kind of uniformity of ν̃, and so must
require something of its progenitor, ψ̃. Let us put this question on hold.

If our goal is to not just interpret BF encodings of item answers but to produce a
BF, as well, as the return for an item query, there is the question of what base (i.e., what
sets of heads) H̃ the output will have (§3.4.3.4). Assuming the kind of uniformity suggested
above, we might speculate that ε⇃head for each choice of rule query τ⃗ as likely candidates.
It will turn out that we need θ⇃head as well in some cases, and, of course, we must ensure
that the output base is ∩-closed. Producing a BF also allows us to revisit the uniformity
requirement on ν̃: it is OK to be wrong on a head h when generating the answer for base
point η ∈ H, so long as η is not ⌈{h}⌉. That is, so long as a smaller head set gets it right,
our error will go un-noticed! Thus, we require uniformity of ψ only at η ∖ {η′ ∈H ∣ η′ ⊊ η}.

We now expand our approximations before giving an algorithm.

3.4.3.3 Replacements

For any rule r, non-ground rule queries τ⃗ , pre-answers θτ⃗ , and answers ετ⃗ are defined
(§3.3.2) for any choice of sets of terms τ⃗ = ⟨τ1, . . . , τnr⟩. However, given that Lookup acts
as a BF, L, rule queries formed from dom(L) have special significance, describing root-leaf
paths in the search tree. We call these L-replacements (or just replacements, when
clear): Rr,L

def= {τ⃗ = ⟨⌈τi⌉⟩i∈Nnr
1
∣ σi ∈ dom(L), τi = σi ∩ ρr⇃sg.i.1, θτ⃗r ≠ ∅}. In this definition,

we have, without semantic consequence, restricted to non-trivial rule queries (by requiring
that θ ≠ ∅) formed from sets which are not completely overridden within L (by using ⌈⋅⌉ in
the definition of elements of the set). Our idea to order τ⃗ by ⊆ on components is formalized
as a partial order termed specificity: τ⃗ ⪯ τ⃗ ′ ⇔ ∀i∈Nnr

1
τi ⊆ τ ′i (τ⃗ is more specific than τ⃗ ′)

and τ⃗ ≺ τ⃗ ′⇔ τ⃗ ⪯ τ⃗ ′ ∧ ∃i τi ≠ τ ′i (τ⃗ is strictly more specific than τ⃗ ′).
The BF L, encoding a valuation function, specifies more than just its base. There

is, thus, a natural choice not only for the non-ground rule queries but also for the values
v⃗ determining a set of non-ground rule answers: the values assigned by L to each τi, and
in particular vi = L(⌈τi⌉L). Thus, we define the non-ground rule answer set for τ⃗ ∈ Rr,L:
ετ⃗r,L

def= ετ⃗r,v⃗ = θτ⃗r [v1/sg.1.2]⋯[vnr/sg.nr.2]. Recall that elements of these ε are no longer
necessarily all reflective of reality, in that there are some kv-pairs in ε that would appear
to suggest that some head item had some aggregand, but this contribution is overridden
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by some other replacement. More formally, that is, overriding (more-specific) replacements
cause elements of ε to not accurately reflect the assignment of values to items as done by
the interpretation of L.

3.4.3.4 Induced Heads

For a given r, valuation (encoding as a BF) L, and query head κ, a L-replacement τ⃗ ∈Rr,L
gives rise to two induced non-ground heads, entries in the base of the BF encoding the
results of Compute-ing κ on the rule r. The head projection of both the (pre-)answer sets are
potentially meaningful quantities, representing sets of items which behave similarly under
the rule r. We define Hr,κ,L as the ∩-closure of the head projections of both pre-answers
and answers for all replacements Rr,L, i.e., of {θκ,τ⃗r ⇃head, ε

κ,τ⃗
r,L⇃head ∣ τ⃗ ∈ Rr,L}. Unpacking

the definitions, we see that all induced heads are subsets of the query (i.e., ∀η∈Hr,κ,L η ⊆ κ),
as expected. We ignore any ∅ in Hr,κ,L as ρr[∅/head] = ∅.

A key insight is that the L-replacements that might potentially influence an entire
head α, as opposed to merely a subset thereof, are those L-replacements whose pre-answers
do not refine the head to a proper subset of α: Hαr,L

def= {τ⃗ ∈ Rr,L ∣ α = θα,τ⃗r ⇃head}. That
said, because pre-answers do not take values into consideration, it is possible that the actual
impact of τ⃗ is to a subset of α; the contribution-collection machinery of §3.4.3.6 will solve
this problem.
Example 36: Continuing our running example (§3.4.3.1) and considering κ = rsjHo, it is
easy to check that all induced heads each come from both a θ and an ε, as refinement of
subgoal values does not alter head projections. All told, Hr,κ,L = {{rs⟨0⟩},rsjNo,rsjZo},
as can be verified by inspecting the trace shown in figure 3.4. ◊
Example 37: It may seem that θ-derived heads (i.e., those entries in H which are the head
projection of some θ) serve no purpose; after all, only subsets of ε are plausibly related
to the values defined by the semantics of the language. However, consider a rule which
constrains the value of a subgoal whose key covaries with the head, such as {(a⟨x⟩ ↩ 1) ⇐
⟨b⟨x⟩ ↦ 4⟩ ∣ x ∈ H}, with the overlapping answers L = {bjHo ↦ 4,{b⟨3⟩} ↦ 2}. The θ-
derived heads are {ajHo,{a⟨3⟩}}, while the ε-derived heads are {ajHo,∅}. Thus, were we
to solely consider ε-derived heads, we would fail to assert that {a⟨3⟩} ↦ null. Put another
way: a replacement may have answers while a more-specific replacement may not. ◊
Example 38: (Recall example 27, in §3.1.3.) The rule {(f⟨a⟩ ↩ 1) ⇐ ⟨a⟨⟩ ↦ a⟩ ∣ a ∈ H}
has covariance between the head and a subgoal value, contributing the value 1 to an item
determined by the value of a⟨⟩. While the previous example showed that θ-derived heads
are essential, this example shows that ε-derived heads are as well, as the sole θ-derived head
is fjHo. ◊

3.4.3.5 Collecting Contributions

For the moment, let us assume the existence of bags of kv-pairs, νη,τ⃗r,L F εη,τ⃗r,L⇃@hr, which capture
the contribution of each τ⃗ ∈ Hηr,L to the induced non-ground head η ∈H and which omit any
contributions from τ⃗ overridden by some more-specific τ⃗ ′ ∈ H. We assume no relationship
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between the various ν, nor, for the moment, do we assume that νη,τ⃗r,L⇃1 is η.92 So armed, it
is easy to define the bag of contributions to η across all relevant replacements τ⃗ :

ℶηr,L
def= ⊎τ⃗∈Hη

r,L
νη,τ⃗r,L .

These, then, can be combined in a BF with base Hr,κ,L: Cr,κ,L def= {η ↦ {h ↦ *v@m ∣
⟨h, v⟩ ⊏−=m ℶηr,L+ ∣ h ∈ η} ∣ η ∈ Hr,κ,L}. The core of this definition simply partitions the bag
ℶηr,L by key and collects together all of the values within a bag for each key in η. This
operation is done for each induced head η ∈H; by construction, the induced heads cover all
possible results from the current rule. The last step, then, is to repeat this exercise for all
rules r ∈ Ξ and merge the results, which is easily enough done using the ⊎-join of all such
functions: YΞ,κ,L def= ⋀⊎r∈Ξ Cr,κ,L. (As ⊎ is associative-commutative, there is no concern of
ordering here.) To ensure that the domain of Y is I, we may further ⊎-join with {I ↦ ∅}
as well.

Unfortunately, while theoretically straightforward, this collection mechanism re-
quires iteration over H and each η therein, since the νs are arbitrary. If we are to have
hope of Compute-ing in finite time, we must impose structure on ν.

3.4.3.6 Masking and Obstruction

We now focus in on the middle of the system, on the task of deriving ν from ε. Recall that
ψ̃τ⃗ was the set of rule answers from τ⃗ , having removed all pre-answers for all σ⃗ ≺ τ⃗ . We could
formalize this by defining M̃τ⃗

r,L = {σ⃗ ∈ Rr,L ∣ σ⃗ ≺ τ⃗} and taking ψ̃η,τ⃗r,L = ε
η,τ⃗
r,L ∖ ⋃σ⃗∈M̃τ⃗

r,L
θη,σ⃗r .

Then ν̃η,τ⃗r,L = ψ̃
η,τ⃗
r,L⇃@hr is a bag of kv-pairs which are produced by τ⃗ and survive masking,

which should be aggregated with the results of other replacements and other rules. All
told, given Ξ and L, the value assigned to h ∈ I by the above, item-at-a-time mechanism is
aggr(h)(⊎r∈Ξ⊎τ⃗∈Rr,L(ψ̃

η,τ⃗
r,L⇃@res)).

Returning to set-at-a-time reasoning, and, in particular, to generating a BF, we
can find two refinements of the system so far described; recall that, for a given output
base point η, it is okay to be wrong when describing h ∈ η so long as η ≠ ⌈{h}⌉. Specif-
ically, this means two things. 1 There is no need to consider masking ετ⃗ by θσ⃗, even
if σ⃗ ≺ τ⃗ , if θσ⃗⇃head ⊊ ετ⃗⇃head. 2 We can ignore uniformity requirements of ν on heads
ωηr,L

def= ⋃{η′ ∈ Hr,κ,L ∣ η′ ⊊ η}. The first point means, concretely, that there is no need to
consider something quite so large as M̃ above; when computing the base point η, we need
only consider Mα,τ⃗

r,L
def= {σ⃗ ∈ Hαr,L ∣ σ⃗ ≺ τ⃗} = {σ⃗ ∈ Rr,L ∣ σ⃗ ≺ τ⃗ , α = θα,σ⃗r ⇃head}, i.e., the set of

more-specific τ⃗ which do not shrink the pre-answer head.
Combining both of these observations, we can define (r, L and η are used three

times in this definition, τ⃗ twice): ψη,τ⃗r,L
def= (εη,τ⃗r,L ∖ ⋃σ⃗∈Mη,τ⃗

r,L
θσ⃗r )[(I ∖ ω

η
r,L)/head]. It is at this

point that we must appeal to our oracular test of uniformity (§3.4.1); we require that every

92Despite the similarity of notation, unlike θ and ε, ν is not necessarily monotonic with respect to ⊆ in its
η parameter, not least because the requirement that τ⃗ ∈ Hη

r,L implies that varying η may render ν undefined
for a fixed choice of τ⃗ . However, even if restricting η to a subset (so that H becomes a superset), the values
associated with keys in ν may change.

102



computed ψ be such that every head h ∈ ψ⇃head be associated with the same bag of values
ψ[{h}/head]⇃@res. If this holds, then, at long last, we have a viable ν:

νη,τ⃗r,L
def= *⟨h, v⟩@m ∣ h ∈ η, v ⊏−=m AnswerFor(εη,τ⃗r,L, ω

η
r,L, ⋃σ⃗∈Mη,τ⃗

r,L
θσ⃗r )+. (3.2)

There are a few things to note about this definition. 1 It can happen that η′ = εη,τ⃗r,L⇃head ⊊ η.
When this happens, it implies that η′ ⊆ ωηr,L, so ψ

η,τ⃗
r,L = ∅ and thus νη,τ⃗r,L = ∅. We can see this

clearly in example 38 (in §3.4.3.4); for the purpose of the example, assume L({a⟨⟩}) ↦ 7,
so that εfjHo,⟨{a⟨⟩}⟩r,L ⇃head = ε{f⟨7⟩},⟨{a⟨⟩}⟩r,L ⇃head = {f⟨7⟩}. Thus, because the head covaries
with a subgoal value, the default head fjHo has associated aggregands ∅. 2 This is a
constraint only on the (masked, un-obstructed) rule answers. Other than their role in
masking, groundings inconsistent with L need not be considered. The set of inconsistent
groundings may even be outside the collection of sets possessing description within an
implementation (though the masks, derived from θ and therefore inclusive of both consistent
and inconsistent groundings, must still be within the system). 3 Given ground inputs and
a range-restricted program, this algorithm behaves essentially as any other ground solver: ω
and M will always both be ∅ and ∣ε⇃@hr∣ = 1, so AnswerFor is trivial. The need for AnswerFor
to be defined thus replaces prior algorithms’ (including [63]) appeal to range restriction [22].

A Closure of Computation At long last, we can get computational traction:
Lemma 4: If ν is derived according to equation (3.2), YΞ,κ,L is piecewise-constant.

Proof. The definition in equation (3.2) gives νη,τ⃗r,L which are bag products between Ū1η and
values. That is, for any choice of r, L, η, and τ⃗ for which ν is defined, {h ↦ *v@m ∣
⟨h, v⟩ ⊏−=m νη,τ⃗r,L+ ∣ h ∈ η} is a constant function. As ℶηr,L is a union (over τ⃗) of ν bags, it
follows that each {h ↦ *v@m ∣ ⟨h, v⟩ ⊏−=m ℶηr,L+ ∣ h ∈ η} must, also, be a constant function.
The definition of Cr,κ,L, which maps each η to a function of the above form, then implies
that it is piecewise-constant. YΞ,κ,L is just a join of piecewise-constant BFs, and so must
itself be piecewise-constant.

Thus, to obtain a first practical algorithm, we restrict to piecewise-constant L
and assume the preconditions of equation (3.2). The above lemma means, having started
with piecewise-constant answers L, that we will always obtain piecewise-constant answers,
which we can merge into L as part of our solver’s fixed-pointing execution, and not violate
our precondition. While piecewise-constancy of L does not imply the preconditions of
equation (3.2), it may, speculatively, nevertheless simplify the proof obligation to be met
by static analyses.

3.4.4 Pseudocode

At last, we come to a procedural description of the system given above; pseudocode is shown
in listing 3.3. Compute simply wraps computeRule for each rule, using ⊎-join and a notion of
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1 def Compute(κ ⊆ I) ∈ (⋃K∈ficc(κ)K →H′)
2 Y ← {κ↦ ∅} % running union across all rules
3 foreach r ∈ Ξ do let C = computeRule(r,κ) in Y ← Y ∧⊎ C
4 return {τ ↦ aggr(τ)(β) ∣ (τ ↦ β) ∈ Y} % bulk aggregate
5

6 def computeRule(r ∈ Ξ, κ ⊆ I) ∈ (⋃K∈ficc(ρr⇃head∩κ)K →H+)
7 C ← {κ↦ ⟨∅,∅⟩} % initialize aggregands and masks
8 let α = ρr[κ/head] in refineRuleSuffix(r,applyM,applyV)(α, α, 1) % fill C
9 return {η ↦ x⇃1 ∣ (η ↦ x) ∈ C} % values w/o masks

10

11 def applyV(∅ ⊊ ε ⊆ ρr) ∈ ⟨⟩ % accumulate values (aggregands)
12 capclose(ε⇃head)
13 foreach (η ↦ ⟨β,µ⟩) ∈ C where η ⊆ ε⇃head do
14 let *v@m+ = AnswerFor(ε, ω, µ) where ω = ⋃{η′ ∈ dom(C) ∣ η′ ⊆ η} % §3.4.1
15 C(η) ← ⟨*v@m+ ⊎ β,µ⟩
16

17 def applyM(∅ ⊊ α ⊆ ρr) ∈ ⟨⟩ % accumulate masks
18 capclose(α⇃head)
19 foreach (η ↦ ⟨β,µ⟩) ∈ C where η ⊆ α⇃head do C(η) ← ⟨β,α ∪ µ⟩
20

21 def capclose(η ⊆ κ) ∈ ⟨⟩ % put η ∈ dom(C), ∩-closed
22 if η ∈ dom(C) then return
23 else foreach (τ ↦ _) ∈ C do let η′ = τ ∩ η in
24 if η′ ∉ (dom(C) ∪ {∅}) then
25 let A = {β ∈ dom(C) ∣ η′ ⊆ β,∀β′∈dom(C) β

′ ⊆ β ⇒ η′ /⊆ β′}
26 C(η′) ← ⟨⊎α∈A C(α)⇃1,⋃α∈A C(α)⇃2⟩
27

28 def refineRuleSuffix(r ∈ Ξ, applyM, applyV) ∈ ⟨⟩
29 return go
30 def go(αk ⊆ ρr, αv ⊆ αk, i ∈ Nnr+1

1 )
31 if αk = ∅ then return ⟨⟩ % incompatible keys
32 elif αv ≠ ∅ then
33 if i = nr + 1 then applyV(αv) % end of rule
34 else foreach (σ ↦ v) ∈ Lookup(αv⇃sg.i) toposorted by ⊆ ascending on σ do
35 go(αk[σ/sg.i.1], αv[jσ,{v}o/sg.i], i + 1)
36 applyM(αk) % before returning, mask
37

38 Lookup ∈ Π(Σk∈κ τk)⊆jH,Ho⋃K∈ficc(κ∩I)Πκ∈K({null} ∪ ⋂k∈κ τk)
Listing 3.3: Default-based Compute, assuming AnswerFor from §3.4.1 as a primitive operation.
refineRuleSuffix now tracks two subsets of ρ: the first, αk, ignores values and gradually refines down
to θ, while the second, αv, is the more typical gradual refinement down to ε. During its operation, its
nested loops each advance in topologically sorted order so that calls to applyV and applyM are made on
monotonically non-⪯-decreasing L-replacements.
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bulk aggregation to turn bags of aggregands into the final answer, Y.93 computeRule forms
nested loops using refineRuleSuffix, which now tracks its position in the rule’s subgoals,
i; a superset of ε, αv; and a superset of θ, αk. These supersets are exact at the leaves of
the search tree. refineRuleSuffix calls applyV to contribute the answers it finds (at the
leaves) and applyM whenever it returns to add to masks. Within refineRuleSuffix, C is
a BF which stores both values and masks; the masks are removed upon return. capclose
adds its argument to, and enforces the ∩-closure property of, C.

Mask Estimates The algorithm, as is typical of search algorithms, only enumerates suc-
cesses (i.e., replacements with non-empty ε), while the theory of §3.4.3 seems to depend
on enumeration of both ε and θ for every L-replacement. While the algorithm does de-
rive masks from successes (the rightmost left-facing dotted arrows in figure 3.4), it also
derives masks from other αk sets during its execution, when it unwinds the recursion of
refineRuleSuffix. These αk sets correspond to θs derived from a prefix of a rule query,
τ⃗ = ⟨τ1, . . . , τi−1,H, . . . ,H⟩ (wherein entries i through nr are unspecified, i.e., are the entire
term universe, H), which therefore subsume the θs of any possible query ⪯ τ⃗ . While these
are over-estimates of the sets tracked by the theory, they are not too large, in the sense of
improperly masking later results, because they will only mask later results that share the
prefix, which has just been exhaustively searched.

3.4.4.1 Discussion of the Example Trace

Figure 3.4 includes a trace of computeRule of listing 3.3 running on the example of §3.4.3.1
on inputs described in the former’s caption. The root node of the search tree corresponds
to the outermost RefineRuleSyntax call’s Lookup of rjH,Ho.

The first entry in the log (cyan box) arises from the discovery of aggregands
*⊗⟨4,6⟩@1+ for {rs⟨0⟩} from the replacement ⟨{r⟨0,0⟩},{s⟨0⟩}⟩. The second entry adds
this replacement’s pre-answer to the mask for {rs⟨0⟩}, ensuring that any later-discovered
values assigned to the ground rule query ⟨r⟨0,0⟩,s⟨0⟩⟩ are discarded. Indeed, we see exactly
this case for the replacement ⟨{r⟨x,x⟩ ∣ x ∈ Z},{s⟨0⟩}⟩, on the third line of the log (cor-
responding to the second leaf of the tree): the algorithm revisits this ground replacement,
due to the unification of x and y (in ρ) by the diagonal r, and must mask its incorrect
contribution of ⊗⟨3,6⟩. As the head here is still just {rs⟨0⟩}, ε needs no further processing.

The third leaf of the tree generates contributions which claim themselves to be
applicable to all rsjNo (red box). However, when the head is restricted to {rs⟨0⟩}, we find
ourselves again revisiting only the ground rule query ⟨r⟨0,0⟩,s⟨0⟩⟩, and so, in fact, these
contributions are destined to rsjN ∖ {0}o, which is encoded by contributing to rsjNo but
not {rs⟨0⟩}. The algorithm then proceeds to mask off the diagonal entries in all heads
{rsjZo,rs⟨N⟩,{rs⟨0⟩}}, though there is some redundancy in its efforts (gray log lines).

93To ensure that bulk aggregation is defined, we require that each rule r specify an aggregator consistent
with all its possible heads: all items I ∩ ρr⇃head must use this aggregator. This ensures that aggr(η) def=
selt({aggr(h) ∣ h ∈ η}) is well-defined when we use it. In practice, we will not compute all of Y and then
reduce it; instead, we will exploit the required properties of aggregators to directly aggregate while computing
C and then again to obtain results equivalent to aggregating across Y.
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σ ↦ v {g⟨4⟩} ↦ 2 gjZo ↦ 3 gjHo ↦ 2

αk µ1
def= ρ[{4}/sg.1.1.1] µ2

def= ρ[Z/sg.1.1.1] µ3
def= ρ[H/sg.1.1.1] = ρ

αv µ1[{2}/sg.1.2] µ2[{3}/sg.1.2] µ3[{2}/sg.1.2]
applyV ∩ {f⟨4,2⟩} ↦ ⟨∅,∅⟩ fjZ,{3}o ↦ ⟨∅,∅⟩

{f⟨4,3⟩} ↦ ⟨∅, µ1⟩
fjH,{2}o ↦ ⟨∅,∅⟩
fjZ,{2}o ↦ ⟨∅, µ2⟩

applyV {f⟨4,2⟩} ↦ ⟨*1+,∅⟩ fjZ,{3}o ↦ ⟨*1+,∅⟩
{f⟨4,3⟩} masked

fjH,{2}o ↦ ⟨*1+,∅⟩
fjZ,{2}o masked
{f⟨4,2⟩} masked

applyM ∩ fj4,Ho ↦ ⟨∅,∅⟩ fjZ,Ho ↦ ⟨∅,∅⟩ no change to fjH,Ho

applyM fj4,Ho ↦ ⟨∅, µ1⟩
{f⟨4,2⟩} ↦ ⟨*1+, µ1⟩

fjZ,Ho ↦ ⟨∅, µ2⟩
fjZ,{3}o ↦ ⟨*1+, µ2⟩
fj{4},Ho ↦ ⟨∅, µ2⟩
{f⟨4,3⟩} ↦ ⟨∅, µ2⟩
{f⟨4,2⟩} ↦ ⟨*1+, µ2⟩

all items masked by µ3 = ρ

Table 3.2: All updates made to C during the execution of listing 3.3’s computeRule when applied to the
rule {(f⟨a, v⟩ ↩ 1) ⇐ ⟨g⟨a⟩ ↦ v⟩ ∣ a, v ∈ H} given the results from Lookup in the header row. Execution
proceeds top-down within each column, visited left-to-right (corresponding to larger default answers). The
phases labeled with ∩ are the calls to capclose. An applyV entry may be labeled “masked” to mean that
the rule answer, αv, which gave rise to the head in question, is a subset of the mask set already associated
with that head (the second component of the tuple returned by C). See §3.4.4.2 for additional discussion.

The fourth leaf of the tree generates contributions nominally for rsjZo (yellow
box), having constrained y = 0 in ρ. Again {rs⟨0⟩} masks this contribution (the 0 from
the head and from y being sufficient to send the first subgoal to {r⟨0,0⟩}). The application
of these contributions to the output heads rsjZo and rsjNo rely on the set difference on
heads (rather than groundings) in AnswerFor in a way that no prior entry has: it is not the
case that the masked εs for the non-ground rule query ⟨rjZ,Zo,{s⟨0⟩}⟩ and for these heads
are uniform: every rsjNo other than {rs}0 has one contribution of ⊗⟨2,6⟩. Once again, the
diagonal strikes, but now from the masks: the rs⟨0⟩ entry in these heads is associated with
r⟨0,0⟩, which is already masked! However, {rs⟨0⟩} is already an answer in the output BF,
and so we may obstruct it from AnswerFor’s consideration. The same phenomenon recurs in
the lavender box from the next and final answer in the search tree.

3.4.4.2 Functional Dependencies Within Keys

µDyna clearly privileges the functional dependence between keys and values, but it is nev-
ertheless possible to induce other functional dependencies within the keys of items, and it
is informative to consider the system’s behavior under such circumstances. Notably, this
scenario strongly separates (the head projections of) θ and ε and highlights the masking
behavior of our algorithm. Concretely, we will consider the rule {(f⟨a, v⟩ ↩ 1) ⇐ ⟨g⟨a⟩ ↦ v⟩
∣ a, v ∈ H} and query fjH,Ho, when Lookup returns the answers {g⟨4⟩} ↦ 2, gjZo ↦ 3, and
gjHo ↦ 2 (in that order, and so describing a BF). We deliberately reuse the value 2 in this
collection of answers. Initially, C ← {fjH,Ho ↦ ∅} (line 7 of listing 3.3). Execution then
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proceeds as shown in table 3.2.
After all that, we are able to extract the resulting C by reading the most recent

update to each key from the chart (and apply aggregators, but here, the only aggregation
is to send *1@m+ to 1). We can render the result as follows; boxed nodes have value 1, all
other nodes have null, and subsets are positioned to the right of (rather than beneath)
their supersets.

fjH,{2}o fjZ,{2}o {f⟨4,2⟩}

fjH,Ho fjZ,Ho fj{4},Ho

fjZ,{3}o {f⟨4,3⟩}

We see that the algorithm constructs a kind of minimal BF, though it is operating without
lookahead. This explains the striking absence of fjH,{3}o in the figure above: there was no
rule answer to justify its presence. The lack of lookahead does, however, result in this BF
containing some redundancy: the fj{4},Ho and fjZ,Ho elements of the base, added out of
an abundance of caution on the part of applyM, can be eliminated as they are not serving to
override their (unique) parent. These base points were created as, naïvely, the the algorithm
was preparing for the possibility that other {fj{4}, τo ∣ τ} or, later, {fjτ, τ ′o ∣ τ ∩Z ≠ ∅, τ ′}
items may be proven by less-specific results from Lookup. Simplifying the result as described
yields a rather natural picture:

fjH,{2}o fjZ,{2}o {f⟨4,2⟩}

fjH,Ho fjZ,{3}o {f⟨4,3⟩}

We can read off the answer from this picture: all fjH,Ho are null, except fjH,{2}o are 1
instead, except fjZ,{2}o are null instead, because fjZ,{3}o are 1 instead, except f⟨4,3⟩
is null instead, because f⟨4,2⟩ is 1 instead.

3.4.5 Possible Optimizations

3.4.5.1 Running Aggregation

As mentioned in §3.2.1.2, for simplicity of the pseudocode listing, we are deferring aggrega-
tion to the end and, instead, storing bags of results within our accumulators. As these bags
are only enlarged during execution, we could exploit the AC-reducer property of aggregators
and store the aggregated result (modulo concerns about inexact values). This is quite likely
a winning strategy when values are relatively “static,” in the sense that there are no, or
very few, updates to items within the larger context of the solver’s execution. (Despite our
focus on backward-chaining in this chapter, we hope that these algorithms can find a home
in a mixed-chaining solver!) In the case of more volatile Iinp, however, indexing (by name)
the partial sums within the C accumulators may lead to an asymptotic improvement vs.
recomputing all values for every update. The indices would, by necessity, be functions of
the replacement (prefix) or its pre-answers (αk), rather than answers, because the indices
must retain a notion of object identity even as items’ values change.
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3.4.5.2 Completed Results

If ever the masking set µ for some τ in C within a run of computeRule(r,_) is such that
ρr[τ/head] ⊆ µ, then τ will certainly never receive another contribution: everything is
certainly masked (i.e., all subsequent ψ for τ will be ∅). Moreover, this property must be
true for any τ ′ ⊆ τ also being considered or yet to be considered (i.e., yet to be added by
capclose), so we can prune entire ∩-closed sections of C from iteration by the foreach-es in
both applyV and applyM without altering the answer. For simplicity of exposition, we have
omitted this handling from the pseudocode.

3.4.5.3 Non-decreasing-Specificity Search

The algorithm presented herein iterates over the collection of L-replacements in a non-
increasing-specificity topological order. The aggregands that are computed from decreased-
specificity replacements are “fanned out” (copied), by the foreach-es within applyV and
applyM, to heads derived from increased-specificity replacements (in addition to being ap-
plied to the head derived from the decreased-specificity replacement in question); this pro-
cess respects the masks accumulated at these increased-specificity heads. (The similar
foreach loop within capclose merely copies existing aggregands and masks out to newly
created elements of the base.) This is perhaps a sensible order when one assumes that there
will be few (as yet uncompleted) overrides, and it seems required for the use of running
aggregates as suggested above. However, especially if one is maintaining index structures
for fast update processing, it may be beneficial to traverse the replacements in the other
order. In this case, the analogue of capclose would merge the index structures from more
general heads (removing conflicting values; the structure of the problem guarantees that
the correct replacements will arrive as we continue traversing replacements). applyV and
applyM would update (and remove) entries in the structures maintained for more-specific
heads, which would then be copied out to, and subsequently revised for, even-more-specific
heads.
Example 39: To understand the difficulties that might arise in attempting this kind of
non-decreasing-specificity operation, consider the rule {(f⟨x⟩ ↩ v) ⇐ ⟨g⟨x, y⟩ ↦ v⟩ ∣ v, x, y}
with all f/1 items aggregating with summation. Suppose, further, that L = {gjH,{0}o ↦
4,gjH,{1}o ↦ 5,{g⟨3,0⟩} ↦ 6}. We can conclude, from the first two elements of this
definition of L that the result of backward-chaining will include fjHo ↦ ∑*4,5+ = 9. From
the second and third elements, we see that there is an override, {f⟨3⟩} ↦ ∑*5,6+ = 11.
That is, the gjH,{1}o element of L contributes to {f⟨3⟩} but the gjH,{0}o element did
not, because it was completely masked for the head {f⟨3⟩} by the {g⟨3,0⟩} element of L.
Had we aggregated the fjHo contributions as we found them, it would have been difficult
to remove the aggregand 4 and replace it with 6. ◊

3.4.6 Aside: Relaxing Aggregator Agreements

We required, as part of the development of §3.4.4 (in particular, see footnote 93 therein),
that we could define a notion of “bulk aggregation” to a set of heads. For simplicity, we
did this by ensuring that any two items which were in the same rule’s head were assigned
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the same aggregator; this meant that we had only one aggregator to consider in line 4 of
listing 3.3. However, there are two relatively straightforward extensions that could be made,
should that restriction be perceived as onerous.

First, we could instead require that the input µDyna program assign aggregators
to items using a (finite) backed-off function. That is, we would require that aggr(⋅) be
amenable to encoding by a finite collection of defaults and overrides. Rather than seeding
our Y accumulator with the single entry κ ↦ ⟨∅⟩, as we do at present at line 2 of listing
3.3, we could initialize it to have as keys each set from the BF encoding of aggr(⋅) that
had non-empty intersection with κ. The remainder of the algorithm would work without
modification. Formally, we are thus computing the application-join, ∧$, of aggr(⋅) (viewed
as its BF encoding) and Y; that is, we compute A∧$Y ∈ Ider→̂H′ where $ represents function
application, i.e., $(g)(x) def= g(x). This modification combines compatibly with running
aggregation above.

On the other hand, perhaps even the notion of a single aggregator assigned stati-
cally to an item is too much (though we tend to think it will not be, in practice). In such a
case, one could imagine making the result of a rule the pair the aggregand from a rule with
the desired aggregator. A single “meta-aggregator” then could check that all aggregands
to a given item had voted the same way and, if so, use the selected aggregator to combine
results. In the event of conflicts, the meta-aggregator could return null or an error value
(to be discussed in §6.1).

3.5 Partial Memoization

In §2.2, Lookup operated on a per-item basis; i.e., it had type I → H ∪ {null}. Internally,
it had read/write access to a memo table M, a dynamic, total function of type I → H ∪
{null,unk}. unk was, like null, an assumed symbol outside H; it was used to represent
a lack of cached value in the memo table (rather than making M partial). If Lookup was
invoked on t ∈ I and M(t) = unk, Lookup was obligated to call Compute to derive a value
for this item.94 Now that we have assumed an extended Lookup which both operates on
and returns sets of items (as well as their associated cached values), we are left with the
question of how memoization behaves within this procedure.

Both extremal memoization policies—all or nothing—are trivial. If an entire query
Σk∈κ τk is uniformly not memoized, Lookup should invoke Compute on the entirety of κ and
filter the result for intersection with the τks.95 If the query is entirely memoized, the call to
Compute can be skipped and filtering can be done using the cached values. The interesting
cases are policies between these, where the queried set of items κ may contain memoized
and un-memoized items (these being potentially different sets at different points in the
program’s execution, even).

94The extension described in §2.5, and in Filardo and Eisner [60], for handling cyclic circuits permits
Compute, but not Lookup, to abort the computation and “guess” a value.

95In actuality, because Lookup is invoked with the sg.i projection of σ which is then immediately refined
with the result, this filtration could be done implicitly within the refinement operator. We prefer our more
modular treatment in general but admit that, in practice, one would want to inline across function call
boundaries.
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In terms of set theory, for maximal impact of the memo table, we would like
for Lookup(Σk∈κ αk) to invoke Compute(β) with β being the difference between κ and the
contents of the memo table; formally, β = κ∖{k ∈ κ ∣ M(k) ≠ unk}. However, operationally,
this set is potentially complex to describe and to subsequently use within Compute (in a way
that sets arising from rules are not likely to be). Thankfully, there are two degrees of
freedom here at runtime which may be useful for optimization, though we leave proper
treatment of the details to future work. First, Compute distributes over unions; that is, we
may partition β into simpler sets and invoke Compute on each, separately. This requires no
post-processing on the part of Lookup since it only promises to return a function on some
partition of κ, unpredictable by the caller. Secondly, it is acceptable to under-approximate
the memo table and discard (or merge, potentially, in the case of marked answers as in
§2.2.4.2) superfluous work done by Compute. Thus, we may choose to approximate β (or one
of its subsets, having applied the prior transform) with a simpler, larger set; for example,
we may take a co-sparse β and replace it with a rectangular superset. Of course, these
transforms can be combined and iterated as appropriate.

The algorithms given in this paper remain correct (but possibly inefficient) regard-
less of the application of these kinds of operations; all that matters is that Lookup functions
as the correct black box.

3.6 Future Work

3.6.1 Head-Value Covariance

Let us expend a little ink considering what it would take to permit rules with head-value
covariance, such as {(f⟨x⟩ ↩ x) ⇐ ⟨⟩ ∣ x}. Some relatively straightforward changes to the
definition of backed-off functions and rule answer sets suffice to allow the system to consume
such covariant results (e.g., the kv-pairs {⟨f⟨x⟩, x⟩ ∣ x} in response to a call to Lookup). The
aggregation and production of such results are more difficult.

The definition of backed-off functions that we gave in §3.4.2.2 was restricted to
the piecewise-constant case. In particular, we took B ∈ (K ∖{∅}) → α to encode a function
f ∈ (⋃K) → α. However, there is nothing fundamental about this kind of non-monotonic,
smallest-containing-set-wins encoding that requires that the enclosers be associated with
constants. If, instead, we took B ∈ Πκ∈K∖{∅} κ → α, we could decode f(x) from B by
passing x twice: f(x) = B(⌈{x}⌉B)(x).

The definitions of §3.4.3.3 are easily extended to use this extended definition of
backed-off functions. The concept of a replacement, being a function only of the encoding
domain K, needs no revision. However, the non-ground rule answer corresponding to a
replacement τ⃗ ∈ Rr,L is now ετ⃗r,L

def= ρr[L(⌈τ1⌉L)/sg.1]⋯[L(⌈τnr⌉L)/sg.nr]. While this defi-
nition does not make it quite so explicit, it is still true that ετ⃗r,L ⊆ θτ⃗r as the refinements of
{sg.i.1 ∣ i} within the definition of the latter quantity are all implicitly replicated by the
domain of L(⌈τi⌉L) in the former’s refinement of sg.i.

Procedurally, we should replace line 34 of listing 3.3 and the next with
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34 else foreach f ∈ Lookup(αv⇃sg.i) toposorted by ⊆ ascending on f⇃1 do
35 go(αk[f⇃1/sg.i.1], αv[f/sg.i], i + 1)

where we have replaced the match of Lookup’s result against σ ↦ v with simply a function,
represented as a set of ordered pairs, f . We use f⇃1 to obtain its domain for refining αk and
refine αv using f itself.

If the functions we permit are arbitrary, we have not really solved anything: the
replacement operations in the definition of ε above are not obviously tractable for arbitrary
functions viewed as sets of kv-pairs. If, however, we are careful to discriminate between equi-
covariance, à la {(f⟨x⟩ ↩ x) ⇐ ⟨⟩ ∣ x ∈ τ}, and general covariance, à la {(f⟨x⟩ ↩ x + 1) ⇐ ⟨⟩ ∣
x ∈ τ} with τ ⊆ R, there may be a chance. The former is likely easily discharged by whatever
runtime theory of sets exists within the solver, as such equalities are already rampant. The
latter is a kind of delayed constraint [33] and requires potentially vast, new machinery.

All we have said so far pertains to the consumption of backed-off functions encod-
ing (equi-)covariant functions. To produce such things in general would require that our
aggregators be able to consume, manipulate, and produce expressions involving not just val-
ues (with multiplicities) but projections of the head (with multiplicities) as well. Consider,
for example, the combined effects of the rule {(f⟨x⟩ ↩ 1) ⇐ ⟨⟩ ∣ x ∈ τ} with our recurring
example {(f⟨x⟩ ↩ x) ⇐ ⟨⟩ ∣ x} with f/1 aggregated using some ⊕ operator. We would have
to yield an encoding of f⟨x⟩ ↦ x⊕1, which we have just said was potentially complicated to
handle. Similarly, a program containing two copies of the latter rule would have to encode
f⟨x⟩ ↦ x ⊕ x. We have not endeavoured to engineer such an algebra, and speculate that
such effort will be replete with special cases. Perhaps the simplest answer would be to per-
mit programs to define infinitely-covariant rules only for items that provably did not need
aggregation: that is, for which we are guaranteed there is at most one aggregand. (Recall
that we require aggregators f to obey ∀x f(*x+) = x.) However, such a modest extension in
expressiveness does not seem to justify the engineering effort; any program written in the
extended language could be transformed by inlining (“unfolding”) the aggretion-free items’
definition into rules using those items as subgoals.

3.6.2 Forward-Chaining

Forward chaining in generalized logic programs, as supported by µDyna, opens some rather
complex issues, even before we consider set-at-a-time reasoning as we have done in this
chapter. Consider again the rule from example 27 (in §3.1.3), {(f⟨a⟩ ↩ 1) ⇐ ⟨a⟨⟩ ↦ a⟩ ∣ a ∈
H}. When revising the value of a⟨⟩, were we to follow the algorithms of §2, we might ask for
“the set of a⟨⟩’s children,” which includes the infinitely many f/1 items. However, certainly
only two f/1 items, f⟨ao⟩ and f⟨an⟩, corresponding to old and new values of a⟨⟩, respectively,
are actually subject to change in response to a notification departing a⟨⟩. However, if we
are able to flush the memoized value of a⟨⟩, it may not be possible to reconstruct this set
of “current children” thereof. Thus, even in the case of a quantification-less rule, we must
either couple the behavior of the agenda and flushing, or we must be prepared to demand
that all f/1 items recompute their values, classify the differences between old and new values
for this infinite set, and push (finite) messages to the agenda.
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Generally speaking, we envision constructing update propagators for each sub-
goal of each rule. The job of a propagator for the ith subgoal of rule r is to characterize
the influence of an update to an item, whose name is an element of ρr⇃sg.i.1, on the items of
ρr⇃head. The ith subgoal is said to be driving this propagator (not to be confused with the
external driver program controlling the solver). These propagators run refineRuleSuffix
on the other (i.e., not i), passenger, subgoals of the rule to determine the full effect, the ith
subgoal having been refined by the update itself. Unlike backward-chaining, the head is not
refined prior to refineRuleSuffix. This implies that we may need additional conditions on
a program beyond K-sufficient (non-ground) range restriction in order for forward-chaining
to operate successfully. Furthermore, planning of subgoal order is required and may differ
for each propagator; recall §3.2.1.1 and see §5.3.

The algorithms of this chapter, especially that of §3.4, build up complex internal
data structures in order to answer backward-chaining queries. Efficient forward-chaining
would seem to require chasing notifications through these structures. In order to facili-
tate these revisions, we would likely wish to index the (partial) aggregations within these
structures, as mentioned in §3.4.5, along the lines given in §2.3.3.1 and §2.4.1. Because
we can now have infinite-multiplicity aggregands, some additional care is required. These
aggregands must be indexed by source (i.e., preanswer) so that they can be retracted. Items
with finite multiplicity (or even any finite-multiplicity contributions in addition to infinite-
multiplicity contributions) are free to count, à la “baggregators” (recall example 15, in
§2.4.1), so long as the system does not mix named and counted aggregands. (That is, if
some aggregands were indexed by name, they must be retracted by name, too.)

3.6.2.1 Update Propagators using Explicit Message Representations

We envision reifying the notification taxonomy of table 2.1 (in §2.2.3) as terms that are used
only during the propagation of notifications. That is, we imagine that we add to H some
representation of pair of an aggregator and aggregand and terms of forms like $notif⟨o, n, d⟩
or $notif⟨d⟩ where o and n represent the old and new values of an item’s notification
and d its delta. So armed, we could create the pair ⟨f⟨3⟩,$notif⟨1,2,$delta⟨⊕,1⟩⟩⟩ to
represent f⟨3⟩ ∶ ^ 2;was1;⊕1. We could endow our arithmetic primitives with the ability
to manipulate such objects, for example, defining the item $notif⟨$delta⟨⊕, d⟩⟩∗x to have
value $notif⟨$delta⟨⊕, v⟩⟩ where v is the value of d ∗ x.

The hope is that, by refining the driving subgoal of a rule to such a pair and
then using the existing backward-chaining machinery of this section, that the system will
naturally produce updates (albeit, pronounced as $notif/k terms) in the hr projection
of the rule-answer-analogue set so computed. There are several known complexities here.
First, a subgoal may not be able to handle the particular form being asked, but may be
able to handle a different form. If it is possible to transmogrify the form at hand into an
understood form (perhaps by the operations of figure 2.10, in §2.4.1), that may be sufficient
to resolve the difficulty. Secondly, if such transformations are not possible, as might occur
if the subgoal is unable to handle $notif/k terms at all, one needs to split the subset of
ρ being considered within the recursive behavior analogous to that of refineRuleSuffix,
tracking separately the former and current values. Thirdly, such $notify/k objects may
enter the head, not just the res. In that case, one needs to split the update object itself
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into old and new components for further processing within the system. Fourth, the system
must handle old and new values of unk itself, without this mechanism (and might handle
null itself, but one could perhaps imagine adding a $null⟨⟩ for explicit representation of
such). Fifth, and last, one must ensure that values computed incrementally, in response to
notifications, would match the values computed from scratch; this is particularly difficult
to ensure when using inexact values and delta notifications.

3.6.2.2 Aside: Item Repetition in Rules

A naïve application of the forward-chaining algorithms of §2 to programs suggests generating
a propagator per subgoal and, further, suggests that these could operate independently of
each other. However, as we were reminded during the 2013 Dyna prototype’s construction,
the result will be incorrect when subgoals describe overlapping sets of items. Consider the
µDyna rule {(a⟨⟩ ↩ r) ⇐ ⟨b⟨x⟩ ↦ v,b⟨y⟩ ↦ w, v ⋆w ↦ r⟩ ∣ r, v,w, x, y}, which contributes
to a⟨⟩ the product (⋆) of the values of b⟨x⟩ and b⟨y⟩ for each pair ⟨x, y⟩ such that both
b/1 items have a non-null value. Importantly, the diagonal pairs contribute their product
once. Backward-chaining as given in this section will obtain the correct result. Consider in
particular the case that b⟨1⟩ has updated from null to 2. We expect the resulting stream
of additional aggregands to contain one 2⋆v and one v ⋆2 for each v the value of some b⟨x⟩
with x ≠ 1 and one 2 ⋆ 2 arising from the case that x = y = 1. If, however, the propagators
operate independently, there will be two copies of the latter result added. Instead, one must
carefully control when passenger queries see the world as impacted (or not) by the update
being propagated.

In the 2013 prototype, we handled only replacement notifications and so were able
to address the diagonal duplication by inserting explicit tests in one of the two propagators
(in general, all-but-one of any overlapping propagators). These tests caused the subsequent
propagators to skip the diagonal rule answers, leaving only the first propagator to contribute
the unique value. More generally, however, when delta notifications are considered, one must
arrange that the kth subgoal’s propagator invoke subgoals 1 through k − 1 such that they
obtain the updated value and all subgoals after k such that they obtain the not-yet-updated
value. For details, see Eisner, Goldlust, and Smith [51, §4].

3.7 Related Work

3.7.1 Answer Subsumption

Some Prolog systems [15, 29, 192, 193] have been have been extended with mechanisms
collectively known as “Answer Subsumption,” which provide for aggregation of (projections
of) answers from the solver [169]. These extensions allow Prolog programs to compute
shortest paths, for example, even in the case of cyclic input graphs (without negative-weight
cycles, as is usual). For example, in XSB [adapted from 181, Example 2], the program

1 :-table p(_,_,lattice(min/3)).
2 p(X,Y,1) :- e(X,Y).
3 p(X,Y,D) :- p(X,Z,D1), p(Z,Y,D2), D is D1 + D2.
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will, given a set of e/2 facts, assign each an additive cost of 1, and compute their min-
weighted transitive closure. The “table” pragma specifies that, for p/3 items, the first two
arguments thereof form the index or domain of the resulting table and that, given x and
y, the third argument of all {p⟨x, y, z⟩ ∣ z} items proven should be aggregated by the min/3

(semi)lattice operator (i.e., minimized). Intuitively, we expect that the result set α from a
query pjH,H,Ho should then obey a functional dependence between its elements’ first two
arguments and its third (i.e., ∀{⟨a⇃1,a⇃2⟩∣a∈α} ∃!w∈H⟨a⇃1, a⇃2,w⟩ ∈ α).96

Only recently was a formal semantics proposed for these extensions [181]. (We now
give a compressed summary of these semantics, assuming familiarity with Prolog semantics;
readers unfamiliar may wish to review §1.4 first, having possibly skipped it on first reading,
or may wish to simply skip to the consequences in the next paragraph.) The described
semantics operates on a stratum-by-stratum basis; a stratum of a Prolog program is a
collection of items which depend upon each other only positively (i.e., without negation or,
here, without answer subsumption) [9]. Within each such stratum, the described semantics
first find a fixed-point of a modified immediate-consequence operator, which first computes
the standard Prolog consequences and then adds any answers that are a consequence of the
lattice join. Having computed that fixed-point, the subsumed answers are all discarded,
leaving only the preferred answers to be presented to the next stratum.

Answer subsumption thus has fundamentally different semantics than the privi-
leged functional dependency of weighted logic languages like µDyna. First, the reliance on
the Prolog fixed-point operator implies that non-idempotent aggregators, such as sum, are
not admissible: the programs “p(1). p(1).” and “p(1).”, which have identical answer
sets, must also have identical subsumed answers.97 Weighted logic languages use bag seman-
tics, rather than set semantics, to interpret multiple justifications of a particular aggregand
for the same key. Equivalently, we can think of weighted logic languages as describing (par-
tial) functions for each head, mapping the space of rules (refined by head singleton) and
non-trivial rule queries thereof to the resulting values; the bag of values to be aggregated
for the head is then the range bag of this function.

A second difference, though of less significance, is that the post-processing to
remove answers means that justification of the surviving answers is less obvious. In a pure
Prolog program (without the use of answer subsumption) or a weighted logic program, an
item’s value is always a fixed function of its parent items’ values; with answer subsumption,
one must refer back to subsumed answers for justification. Consider this program (also
adapted from Vandenbroucke et al. [181]):

96In idiomatic µDyna, one would not use an indexing position to hold the weight and instead would
rely on the privileged functional dependence between item and value. A weighted transitive closure
would be written as the pair of rules {(p⟨x, y⟩ ↩ 1) ⇐ ⟨e⟨x, y⟩ ↦ true⟨⟩⟩ ∣ ⋯} and {(p⟨x, z⟩ ↩ v) ⇐
⟨p⟨x, y⟩ ↦ l,p⟨y, z⟩ ↦ r, l + r ↦ v⟩ ∣ ⋯}. Of course, one of the selling points of µDyna is that it is possi-
ble to mix values into key positions, and the rule {(p⟨x, y, v⟩ ↩ true⟨⟩) ⇐ ⟨⟩ ∣ ⋯}p, x, y, v will derive p/3

items equivalent to those of the Prolog program from the p/2 items derived above.
97It may seem, at first glance, that only selective operators could be supported. However, the semantics

of Vandenbroucke et al. [181] in fact work for arbitrary semilattices (i.e., idempotent operators); the desire to
support non-selective operators necessitates the repeated addition of facts computed from semilattice joins
during fixed-point computation. See Example 3 therein for more detail.
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1 :-table p(lattice(max/3)).
2 p(0).
3 p(1) :- p(0).

which has the answer {p⟨1⟩}. The justification for p⟨1⟩ is that p⟨0⟩ was true during com-
putation but has been subsumed. The related idiomatic µDyna program, consisting of the
rules {(p⟨⟩ ↩ 0) ⇐ ⟨⟩} and {(p⟨⟩ ↩ 1) ⇐ ⟨p⟨⟩ ↦ 0⟩}, with p⟨⟩ aggregated by max, makes the
ill-founded recursion more explicit.98

Possibly the most striking difference between our work and answer subsumption,
however, is that the semantics of answer subsumption are incompletely specified if one al-
lows variables in indexing argument positions. To recover semantics compatible with the
view taken in this chapter, it would be necessary to invoke a notion of set subtraction, à la
disjoin, when a ground-indexed answer was to (partially!) subsume a non-ground-indexed
answer. However, such operations are, at least, not readily apparent in Vandenbroucke et al.
[181] nor obviously available to typical WAM-based representations of non-ground terms
(see §4.1). However, an alternative view, thanks to Dr. David S. Warren (in private com-
munication), is that one can permit the answer-subsumption tables to contain overlapping
keys whose associated subsumed projections are interpreted as constraints on the associated
value rather than as the associated value itself. Consider the following program, which is a
variant of the above allowing edges to specify their own weights, together with some input
assertions:
1 :-table p(_,_,lattice(min/3)).
2 p(X,Y,W) :- e(X,Y,W).
3 p(X,Y,D) :- p(X,Z,D1), p(Z,Y,D2), D is D1 + D2.
4

5 e(1,2,1). e(2,3,1). e(_,3,10).

This will elicit the following answers from XSB (in potentially different order):

1 p(1,2,1). p(2,3,1). p(1,3,2). p(X,3,10).

The last three answers overlap in their index positions. Because tabled subsumption is a
complete search strategy for this program (that is, if it finishes, it has found all aggregands, as
we would call them), we know that the resulting set of answers is a complete set of constraints
on the values. Essentially, this view takes advantage of the AC-reducer properties of the
semilattice operator to eagerly aggregate aggregands routed to equal indicies, but otherwise
leaves the operations of §3.4.3.6 implicit. Because all permitted operators are idempotent,
a dramatically simpler form of §3.4.3.6 could be used, which need only distinguish zero and
nonzero multiplicities.

98It is also possible to explicitly plumb “unless subsumed” subgoals into rules of a µDyna program to
emulate answer-subsumption semantics. The resulting program is cyclic, so while items’ values are still
functions of their parents’, the path by which a solver arrived (or not) at a particular fixed point is no longer
readily apparent, intermediate values as lost as the subsumed p⟨0⟩ answer. One could unroll the cycle with
time-stamp indices, if the entire trace is essential to have on-hand in-program.
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3.7.2 Other Weighted Logic Languages

The weighted logic languages we are aware of work solely with ground answers, making no
attempts at set-at-a-time reasoning. These languages include several Datalog derivatives
with aggregation [32, 36, 82, 127] and the predecessor of our current effort, Dyna [51].

3.7.3 Default Logics

Reiter [155] defines a logic for reasoning with defaults in the light of incomplete data. This
logic can capture assertions like “most birds fly” and “emus are birds but do not fly” and will
deduce, given a proof that Tweety is a bird, in the absence of a proof that Tweety is an emu,
that Tweety can fly. As this is a boolean logic, it does not concern itself with multiplicities
beyond “zero or non-zero,” as truth is an absorbing element of disjunction. Jaeger [102]
extends default logics to handle probabilistic reasoning. The BFs of this paper use defaults
not as a compensation for incomplete knowledge—indeed, we must have complete knowledge
of the contributions for items in order to assure that we obtain the correct answer—but
rather as an encoding of structured sparsity without set subtraction.

3.7.4 Lifted Explanations for Problog

Problog [151] is a probabilistic extension of Prolog, assigning probabilistic weights to items.
Like µDyna, Problog encounters the need to aggregate over unique outcomes, and could
benefit from counting rather than enumerating outcomes. Nampally and Ramakrishnan
[133] consider the construction of “lifted explanation graphs” which use the structure of the
Problog program and existential quantification (over finite domains) to compactly summa-
rize the support sets of results for rules. The cardinality of the supports are then extracted
by solving recurrences on these structures. As noted in that work, these structures are
generalizations of binary decision diagrams and likely can be further extended to encode
multi-valued decision diagrams over infinite domains, in which case it may be possible to
use them as an implementation of our set theory for (a subset of?) µDyna programs. (For
both flavors of decision diagrams, see, e.g., [167].)

3.7.5 Lifted Inference in Statistical Relational Models

Van den Broeck [177] discusses the use of “weighted first-order model counting” as a building
block for “lifted” exact (as well as approximate) probabilistic inference. If the sets of our
system admit description in first-order logic, then our AnswerFor(⋅, ⋅, ⋅) oracle can likely
be implemented using the same “knowledge compilation” mechanism of that work, which,
amusingly, reduces the problem to weighted circuit solving.
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Chapter 4

Computational Representation of
Sets of Terms

This unification of logic and programming is called the propositions as types principle. It is the
central organizing principle of the theory of programming languages. Propositions are identified
with types, and proofs are identified with programs. A programming technique corresponds to a
method of proof; a proof technique corresponds to a method of programming. Viewing types as
behavioral specifications of programs, we may see propositions as problem statements whose
proofs are solutions that implement the specification.

Robert Harper. Practical Foundations for Programming Languages. 2012. [88, ch. 30].

In the last chapter, we assumed some runtime representation of the rule sets (ρ),
the query sets given as arguments to Compute (κ), the projections of subgoals used as ar-
guments to Lookup (Σk τk), and the answers returning from Lookup (σ ↦ v). While the
systems we describe are not tightly coupled to their computational implementations, it is,
nevertheless, worth spending some time thinking about options available to us.

First, we should note that there is no fundamental computational difficulty in
representing a given, finite set of terms: simply record the members. One can design en-
coding and compression schemes of various complexity, but, in the worst case, the trivial
answer remains available. All operations we used in the past chapter (singleton construc-
tion; refinement, ⋅[⋅/⋅]; projection ⋅⇃⋅; union; subset testing; cardinality counting; and even
our oracular functions, RuleToInstr, from §3.3.3, and AnswerFor, from §3.4.1) are trivially
implemented by iterating over these finite collections. The challenge emerges when sets are
infinite and must, yet, be finitely described. Clearly, we will have to compromise: there
are only countably infinitely many Turing machines, and so, just by a counting argument,
it is obvious that we cannot even describe every element of ℘Z, much less ℘H. The task,
then, is to design a finite encoding of useful infinite sets and to ensure that this encoding is
amenable to the operations we need to perform.

Of course, it is possible to view a Prolog program P as a description of a set of
terms τP : t ∈ τP iff P proves t. Such a description of a set has an unfortunate drawback:
membership of t ∈ τP is potentially undecidable, as is deciding whether τP = ∅. In the
treatment below, we consider only representations where membership testing is certainly
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decidable (though possibly expensive).

4.1 Warren’s Abstract Machine for Prolog
Prolog specifies logic programs using a syntax of terms built from some set of functors, F ,
as well as a disjoint, countably infinite set of nullary variable symbols, X . That is, within a
Prolog program, a syntactic term is an element of HF∪X . (In most textual representations,
functors begin with a lower-case letter and variables begin with an upper-case letter, as in
example 9, in §2.1.2.1.) Such a tree stands for the set of terms with the given structure and
whose variable leaves (covariantly) range over H. For example, f(X,Y,g(Y,Z)) (or, strictly,
f⟨X⟨⟩,Y⟨⟩,g⟨Y⟨⟩,Z⟨⟩⟩⟩, but we will elide the empty tuple of children from variable symbols)
stands for {f⟨x, y,g⟨y, z⟩⟩ ∣ x, y, z ∈ H}. We use J⋅K in this section to describe this mapping.
For present purposes, there are two key features of this representation: 1 all quantification
must be over H, 2 sets are otherwise disjunction-free.

One possible manipulation of these objects is by a substitution, a mapping from
variables to variable-ful terms. The substitution ζ = {X ↦ t} (the use of lowercase Greek
characters for substitutions is standard) replaces each occurrence of the variable symbol X
within its argument by t. This substitution may also be written as [t/X], and substitutions
are often written in post-position, so sζ = ζ(s) = s[t/X]. The set of variables within a term
t is {x ∈ X ∣ ∃π x = t⇃π}. A substitution applied to a variable not in a term does not alter
that term; formally, for any s, t, and Y, t[s/Y] = t if Y not in t.

Given any two variable-ful terms t1 and t2, the unification algorithm [159, 121]
constructs the unique (up to isomorphism) substitution ζ such that t1ζ = t2ζ and Jt1ζK =
Jt1K ∩ Jt2K, assuming this intersection is not empty. In the event of an empty intersection,
unification is said to fail; no substitution is returned, as it is impossible to explicitly code
for the empty set in this syntax. ζ is called the most general unifier (MGU) of t1 and
t2, and, indeed, any other ζ ′ such that t1ζ ′ = t2ζ ′ is isomorphic to ζ itself or to further
substitutions in addition to ζ. The unification algorithm is straightforward to describe (and
admits efficient implementation). The unification of equal t1 and t2 is simply the empty
substitution, i.e., the identity function. To unify unequal t1 and t2, first, find any π s.t.
t1⇃π ≠ t2⇃π, and proceed by cases.

● If these projections are both variables, say, X and Y, respectively, then add ζ = [Y/X]
to the substitution obtained from the unification of t1ζ and t2ζ. That is, replace all
Y in t1 with X and try again.

● If only the t1 projection is a variable, say, X, and X does not occur in t2⇃π, then
add ζ = [t2⇃π/X] to the unification of t1ζ and t2ζ (the t2 variable case is symmetric,
naturally). If the occurs check above fails (that is, if ∃π′ t2⇃π ++π′ = X), then unification
fails: there are no finite trees which contain themselves as a subterm.

● Otherwise, both projections have non-variable outer functors. If these differ (either
in symbol or arity), unification fails, as the terms’ corresponding sets have empty
intersection. Otherwise, there must exist an extension of π which also distinguishes
t1 and t2; consider that path instead.

118



If any of the recursive unifications fail, so does the caller; this can be thought of as a
consequence of the non-disjunctive nature of the sets under study. This algorithm stops
either when a point of disagreement has been found or when there are no more differences
to be found.

A noteworthy feature of the unification algorithm as given is that variables are
scoped more widely than a particular term. That is, the algorithm does not differentiate X
within t1 and within t2. Thus, when we ask for the unification of f⟨X,1⟩ and f⟨Y,X⟩, the
resulting term is f⟨1,1⟩ (the MGU is [1/X][1/Y]), rather than some description of the set
fjH,{1}o. This is both a blessing and a curse, in practice: it permits one to operate on frag-
ments of variable-ful terms as if one were operating on the whole, but when one requires a
true copy of a variable-ful term, i.e., one that will not covary under subsequent substitutions
applying to variables within the original, one must explicitly “freshen” variables, choosing
new identifiers. Some literature refers to this as “capture-avoiding substitution,” follow-
ing studies of the λ-calculus and imagining that all variables within a term are implicitly
quantified at its root.99

This machinery provides straightforward implementations of the operators needed
in the previous chapter, with the sole constraint that projection and refinement paths do
not descend through quantified structure:100

● Projection is preserved by the interpretation mapping, and so term projection imple-
ments set projection: Jt⇃πK = JtK⇃π. (The caveat about needing to freshen variables
applies here if one wishes the projection to lose its association with the larger struc-
ture.)

● Refinement (of two terms whose sets of variables are disjoint) is carried out by uni-
fication: to compute u = t[s/π] let ζ be the most general unifier of t⇃π and s and
take u = tζ if ζ exists (otherwise, the result of refinement is empty). Thus, refinement
generalizes substitution.

● The empty set cannot be represented explicitly, but, as seen, is easily detected during
refinement, the only operation that could produce it.

● Subset testing among non-empty sets (described by terms whose sets of variables are
disjoint) is easily done: Jt1K ⊆ Jt2K if the action of the most general unifier of t1 and
t2 on t1 is an invertible renaming of variables. (To see why inverses matter, consider
the terms f⟨X,Y⟩ and f⟨Z,Z⟩. The latter is a strict subset of the former, and any ζ
which equates X, Y, and Z is bijective when restricted to the domain {Z} but not when
restricted to {X,Y}.)

● Cardinality of a set is degenerate: if the set does not contain variables, it has cardinal-
ity 1; if it does, it is ∣H∣. However, because Prolog’s sole aggregator, or, is idempotent,

99Precisely what is meant by “substitution” and “capture-avoidance” is difficult to articulate despite
seeming intuitive. One has to track whether a variable in one position “means” the same thing as the same
variable in another, even if these are in different terms or, in the λ-calculus, separated by a binder that
(re)introduces this variable. The curious reader is pointed to Gabbay and Mathijssen [71].

100By descending through quantified structure, we mean asking to compute X⟨⟩⇃π or (X⟨⟩)[τ/π] for some
π ≠ ⟨⟩. When viewing a Prolog rule cast into the form of a µDyna rule, there is no need for these operations,
and, by inspection, unification does not attempt them either.
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Prolog has no need for multiplicity counting: any non-empty bag of true answers
produces the same result. As such, the oracular functions of the last chapter, while
they may still be difficult to compute, may be removed by use of arithmetic identities.

All told, the family of sets so described has decidable tests for subset testing and cardinality
counting. This family is closed under (at least) projection and refinement (and intersection),
but is not closed under union (e.g., fjHo and gjHo are both representable, but the only
representable set that contains their union is H).

The most common Prolog runtime formalism, the Warren Abstract Machine,101

operates essentially using this variable-ful term representation. Variables are represented
by mutable pointers in memory; an undo log, called the trail, is used to implement “un-
unification” to back-track up the search tree (and across rules). The use of the trail obviates
the need to copy sets between recursive calls of refineRuleSuffix, for example.

4.2 Tree Automata

Other classes of sets of trees can be described using a tree automata (TA) formalism.
These encodings permit disjunction and recursion to express quantification over (structured)
subsets of H and, as such, are useful tools for analysing potential behavior of a logic program
or its solver. The curious reader is again invited to read Comon et al. [35] for a more
thorough treatment of the topic, but we summarize the material we need and describe some
additional extensions.

4.2.1 Motivation

As mentioned, the WAM is somewhat limited in its expressive power: all quantification is
over all of H, and there is no mechanism to capture choice within a single term. The latter
implies that all choices must be “lifted up” to the root of the term, where they are amenable
to backtracking search. This is a kind of “disjunctive normal form”102 and, while effective,
can carry an exponentially large temporal (possibly spatial as well) cost relative to other
families which permit choices elsewhere than the root. We hope to be able to avoid this
cost by increasing the expressivity of our runtime set representation.

Separately, many existing treatments of Prolog execution and static analysis, no-
tably including [137], make heavy use of variables in their theory. They work with variable-
ful terms and carefully associate these terms with binding contexts, mapping variables to
metadata. We were, however, curious to see what could be done without; if we truly believe
that variable-ful terms represent sets of terms, how far can we get without needing such a
different representation?

101Warren [189] introduces the eponymous machine. However, we advise the curious reader to look at Aït-
Kaci [8] first; this later work is much more pedagogically motivated than the original research publication(s).
Readers especially interested in the topic are encouraged to read Demoen and Nguyen [42], which compares
several variants of the WAM design, and Schrijvers and Demoen [161], which describes some insightful
engineering specifically for the representation of variables within WAM-like representations.

102The origin of the phrase seems lost to the sands of time. Certainly the existence and significance of
such a normal form was recognized, though not given its current name, as early as 1968 by Tseitin [174].
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Our refinement operator, ⋅[⋅/⋅], is a generalization of substitution in the more tra-
ditional sense of the WAM and “term-rewriting systems.” Substitution takes place only at
the leaves of these variable-ful term structures and must be carefully defined on multiple
variables at once to preserve covariances. On the other hand, we engineer the structures
we manipulate to achieve the same effect with the mechanism of refinement at internal
positions. These structures permit us to reason, abstractly, about disjunction and covari-
ance in ways that the traditional augmented terms and maps approaches would struggle to
describe.

The trade-off, however, is that for fundamental computational reasons (see, e.g.,
[58] for a generalization of [35, thm 4.4.7]), our runtime and analysis must be incomplete
(with respect to the full formalism). That is, these expressive sets are able to encode
undecidable problems into questions we might naturally wish to answer, such as “is a given
set empty?”

One of the roles of static analysis (§5) is to discover when a program asks too much
of us. We suspect that most programs do not ask for much beyond the WAM’s capabilities,
and that those programs that do only do so briefly, so in a sense our work towards providing
complex runtime types is likely to go un-noticed. However, we suspect that there is more to
be gained by the correspondingly richer static analysis framework built using the formalism
of automata.

4.2.2 Automata

An automaton can be considered a mechanical description of a collection of objects. That
is, they are procedural encodings of indicator functions a ∈ τ → {⊺,�}, which discriminate
between t ∈ τ . {t ∈ τ ∣ a(t) = ⊺} is called the language of the automaton and is said to
be recognized by the automaton. The automaton family constrains the internal compu-
tational form of the function so encoded, and so places limits on the kinds of sets that can
be described. An automaton is similar to an agent of §2.3; it consists of a set of possible
configuration states (often, just states), Q, and a transition function, d, which steps
from one configuration to another in response to some feature of the input t under test.
A central feature of the automaton formalism is that the set and order of observations
performed on t is fixed by the automaton family and the input, t, and is not subject to
alteration by the automaton during operation. That is, the automaton, in general, cannot
ask to revisit things it has seen before; it must carry all the state it needs within its con-
figuration. The automaton accepts t ∈ τ if, after all transitions, its configuration is one
of a designated QF ⊆ Q; other elements or subsets of Q may be endowed with additional
significance depending on the kind of automaton under discussion.

4.2.2.1 Review: String Automata

A deterministic, finite string automaton, denoted ⟨σ,Q,QF, d, q0⟩, processes tuples
of arbitrary length (also called strings) over the alphabet σ (and so acts as a function
σ∗ → 2) by means of a finite state space Q, accepting states QF ⊆ Q, and transition
function d ∈ jσ,Qo → Q. In order to start the process, a single initial state q0 ∈ Q is also
designated.

121



A run of a string automaton ⟨σ,Q,QF, d, q0⟩ on s⃗ ∈ σ∗ is a tuple which records the
execution of the machine, of the form ⟨q0, s1, q1, s2, q2, . . . , sn, qn⟩ where qi = d(si, qi−1). A
run is said to be accepting if qn ∈ QF, in which case s⃗ is accepted (i.e., is in the language
of this automaton, a(s⃗) = ⊺). One can, equivalently, think of folding d across the string,
starting from q0, i.e., computing d(⟨sk, d(⟨sk−1, ⋯ d(⟨s2, d(⟨s1, q0⟩)⟩)⋯⟩)⟩) ∈ QF.
Example 40: Transitions in string automata are often rendered as edges labeled by elements
of σ within a graph whose nodes are states from Q. For example, the automaton rendered
as

qevenstart qodd

a

a

b b

has Q = {qeven, qodd} and accepts strings formed from σ = {a,b} which contain an odd
number of a’s. In this rendering style, the doubly-circled node(s) are elements of QF and
q0 is indicated by the “start” label. ◊

The fact that Q is finite has as an immediate consequence a “Pumping Lemma”
[first published as 149, Lemma 8] which constrains the kinds of sets that can be recognized
by machines of this sort. Any finite set can be recognized, but infinite languages must
contain tuples sufficiently long to force the machine to revisit a configuration, and so must
also contain “pumped” versions of this tuple. That is, for any accepted tuple t whose length
is greater than ∣Q∣ there must exist a, l, and z such that tlen(l) ≠ 0 and t = a++ l++ z such
that a++ z and a++ l++ l++ z (and indeed, any a++ l++ l++⋯++ l++ l++ z) are also accepted. a
must advance the machine from q0 to a revisited state q∗, l walks a cyclic path through Q
from q∗ to itself, and z walks from q∗ to some state qf ∈ QF.103 This provides simple proofs
that certain languages are outside the class of so-called regular languages (i.e., those that
can be accepted by machines of this form). For example, there is no finite string automaton
recognizing the set of “all palindromic tuples,” {⟨s1, . . . , sk⟩ ∣ ∀i si = sk−i+1 ∈ σ} when ∣σ∣ > 1
(otherwise this is trivial).

4.2.2.2 Nondeterminism

The automata described above are deterministic: the transition must select a single suc-
cessor configuration for each state and input. A nondeterministic automaton instead
produces a set of possible successor configurations; t ∈ τ is recognized if there exists a choice
of successor states at each step of the computation that results in an accepting state at the
end of the computation.
Example 41: A nondeterministic finite string automaton has, as its transition function d, an
element of jσ,Qo → ℘Q (which differs from the type of a deterministic machine’s transition
function in having ℘). One now asks whether there exists a run ⟨q0, s1, q1, s2, q2, . . . , sn, qn⟩
in which qi ∈ d(si, qi−1). For string automata, nondeterminism is not essential: a search

103q∗ is guaranteed to exist by the pigeon-hole principle. a may be ⟨⟩ if q0 = q∗, and z may be ⟨⟩ if q∗ ∈ QF.
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procedure for a nondeterministic automaton with state space Q can be implemented by a
deterministic finite string automaton with a state space of ℘Q [149, Ch. 2].

In the graphical depiction of string automata, nondeterminism permits multiple
out-edges with the same label, each targeting an element of the set of states into which
the automaton will transition. One traditionally also permits so-called “ε arcs” which do
not consume a symbol; if q0

ε7−→ q1, then entering state q0 implies entering state q1 too, i.e.,
∀q,s q0 ∈ d(s, q) ⇒ q1 ∈ d(s, q). ◊

4.2.3 Regular Tree Automata

We begin our discussion of tree automata with a review of regular tree automata, a
direct generalization of regular string automata to the case of ranked trees. That is, their
languages {t ⊆ HF ∣ a(t) = ⊺} are sets of trees.

A bottom-up, deterministic regular tree automaton over the symbols F , denoted
⟨F ,Q,QF, d⟩ is a F-algebra (§2.1.1.1) with its state set Q as its carrier and with interpreta-
tion function d. That is, d ∈ Πf/n∈F(Qn → Q).104 As before, QF ⊆ Q is the set of accepting
states. A run of such an automaton on input tree t is a function r from each position π
within the tree to a state label; r must respect the interpretation function d, i.e., if t⇃π
has root symbol f/n, then r(π) = d(f/n)(⟨r(π.1), . . . , r(π.n)⟩).105 As before, a run on t is
accepting if r(t) ∈ QF. These automata are called “bottom-up” because they admit, like
algebras, a procedure for interpretation which begins at the leaves and works towards the
root.106 A nondeterministic bottom-up tree automaton is defined as might be expected,
with d yielding ℘Q and a tree being in the language if there exists an accepting run, i.e.,
where every position is mapped by r such that r(π) ∈ d(f/n)(⟨r(π.1), . . . , r(π.n)⟩), where,
again, t⇃π has root symbol f/n.
Example 42: By analogy to string automata, the pictorial analogy of a tree automaton’s
transition function should be a B-hypergraph (recall §2.1.2.2) with a linear ordering on
each edge’s tails. For whatever reason, this presentation has apparently never gained much
traction, and a TA is presented as a series of rules, corresponding to different possible
inputs. Thus, by writing the six rules107

104Recalling footnote 34 (in §2.1.1.1), one may prefer to think isomorphically, with d ∈ (Σf/n∈F Q
n) → Q.

Such a formulation is closer to the string automaton case, where transition functions were in jσ,Qo → Q, and
opens the door to a more general notion of deterministic automata as algebras f(Q) → Q for some categorical
functor f . A great deal of very interesting work has gone into studying these so-called “structured recursion
schemes” [95].

105For deterministic automata, in which equal trees will always have equal runs, r is equivalent to a
function of the subterms themselves, rather than paths, i.e., r(f⟨t1, . . . , tn⟩) = d(f/n)(⟨r(t1), . . . , r(tn)⟩).
Recalling example 6 (in §2.1.1.1), we see that such r are an algebra homomorphism from the initial algebra
on HF to the algebra defined by d on Q.

106And because, again, computer scientists invariably draw our trees upside-down. However, unlike §2.1.2,
here, “bottom-up” reasoning actually proceeds upwards from the bottom of the drawing.

107The traditional notation used in most documents on the topic is to use → rather than our ↦. However,
because we so heavily use → within the type of functions, we consider ↦ to be more appropriate. Separately,
it is apparent that these rules do not define a total function; the case leaf⟨qt⟩ is, for example, unhandled.
This is a common short-hand taken in presentation; it is possible to complete the definition by adding both
a “dead state” qA ∈ Q ∖QF, which is the target of missing cases, and rules which send any input involving
qA to qA [see 35, Thm 1.1.7].
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node⟨qt, qe, qt⟩ ↦ qt

node⟨qt, qe, qt, qe, qt⟩ ↦ qt

leaf⟨qe⟩ ↦ qt

leaf⟨qe, qe⟩ ↦ qt

a⟨⟩ ↦ qe

b⟨⟩ ↦ qe

and taking F = {a/0,b/0,leaf/1,leaf/2,node/3,node/5}, Q = {qt, qe}, QF = {qt}, we encode
essentially the Algebraic Data Type description of a 2-3 tree [7] (though without any height
or ordering constraints, so the trees accepted by this automaton are a superset of valid 2-3
trees). This automaton is easily seen to be deterministic.

Consider these two trees from the Herbrand universe built from the above F :

node

leaf

a

b node

leaf

b a

b leaf

a

a leaf

b

qt

qtqt

qt qt qtqe

qe

qe qe

qe

qe

qe

qe

node

node

a b a

leaf

a

leaf

leaf

b a

leaf

a

The tree on the left is accepted by this automaton (and is annotated with its run, with the
states for each path shown to the right of the node symbol). The tree on the right is not: at
several positions in the tree, there is no rule which could possibly fire, given the (necessarily
unique) analysis of the immediate children of the root functor at that position. ◊

Because trees, unlike strings, fundamentally differ when viewed in different direc-
tions, we might ponder a top-down deterministic tree automaton, ⟨F ,Q,QF, q0, d

′⟩ with
q0 ∈ Q and d′ ∈ Πf/n∈F(Q → Qn).108 A run of a top-down automaton is still a function r
from each position of a tree t to a state label, but with different consistency conditions:
the root must be labeled q0 and for every position π (including the root) with r(π) = q and
t⇃π having root symbol f/n, if d′(f/n)(q) = ⟨q1, . . . , qn⟩, then ∀i∈Nn

1
r(π.i) = qi. The run r is

accepting if r sends all leaves to QF.
A nondeterministic top-down tree automaton yields multiple choices of joint label-

ing of children at each transition, rather than a set of possible states for each child. That is,
d′ ∈ Πf/n∈F(Q → ℘(Qn)), rather than Πf/n∈F(Q → (℘Q)n). Again, the automaton accepts
the tree if there exists a run with labels drawn from the offerings of the transition function
at every step. The automaton of example 42 above is also top-down deterministic.

A central result for regular tree automata is that only three of the four cases
are equal in recognition capability. For bottom-up regular tree automata, nondeterminism
is not essential [35, theorem 1.1.9], just as it was not for string automata. The same
class of languages is recognizable by a nondeterministic top-down automaton [35, theorem
1.6.1], but top-down deterministic automata can recognize only a subset of the languages
recognizable by the other three classes [35, prop 1.6.2].

108This is, notably, not the type of an unfold or stream, which would be Q→ Σf/n∈F Q
n. That is, because

top-down tree automata continue to consume a tree, rather than generate it, they are not the categorical
dual of bottom-up automata. In fact, we are unaware of a categorical reading of top-down automata.
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4.2.4 With Local Constraints

One is often interested in knowing whether two different positions within a tree have equal
projection; one may, in fact, wish to describe sets of trees with properties of this form. One
way of describing such sets would be to equip a (bottom-up) automaton’s transition func-
tion with the ability to test equalities of subterms. A robust study of such automata was
undertaken by Mongy-Steen [128], and introduced the moniker RATEG (“Reconnaisseurs
Avec Test d’EGalité”) for such automata.109 The complement-closure of RATEG, called
AWEDC (“Automata with Equality and Disequality Constraints”) permits tests of equality
and disequality of children [35, ch. 4]. While the closure properties of RATEG and AWEDC
are attractive, their interesting decision problems, including whether an automaton recog-
nizes any tree at all, are generally undecidable. Subsequently, a wide variety of sub-classes
of AWEDC has emerged, with varying expressive power, closure properties, and decidability
of decision problems; notable examples include “AWCBB” (“constraints between brothers”;
also called “REC≠”) which permits testing of (dis)equality only between immediate sub-
terms [20], “reduction automata” [41], “equational constraints” [101], and several classes
pertaining to homomorphic equalities [78]. An excellent overview of AWEDC, AWCBB,
and reduction automata can be found in chapter 4 of [35].

A transition within AWEDC is now gated by a set of constraint path-pairs. Thus,
while within regular TAs, a transition is represented by a rule f⟨q1, . . . , qn⟩ ↦ q0 (for states
qi ∈ Q and f/n ∈ F), an AWEDC rule is of the form

f⟨q1, . . . , qn⟩
πe,1=π′e,1, ⋯, πe,j=π′e,j , πd,1≠π′d,1, ⋯, πd,k≠π′d,k7−−−−−−−−−−−−−−−−−−−−−−−−−→ q0.

Here, we have j equality constraints, each between the subterms at πe,i and π′e,i, and,
similarly, k disequality constraints. The various paths here are interpreted relative to the
subterm (of the input tree) being considered for the transition; in order for a subterm
t = f⟨t1, . . . , tn⟩ to be labeled q0 by the above transition, not only must each ti be labeled
by qi, it must be that ∀i t⇃πe,i = t⇃π′e,i and ∀i t⇃πd,i ≠ t⇃π′d,i . This justifies the phrase “local
constraints” to describe these gates on transitions.
Example 43: Consider an automaton defined by the three rules nil⟨⟩ ↦ qn, cons⟨qe, qn⟩ ↦
ql, and cons⟨qe, ql⟩

1=2.17−−→ ql, with ql being the unique accepting state. This automaton
recognizes lists cons⟨x,cons⟨x, ⋅cons⟨x,nil⟨⟩⟩⋅⟩⟩ in which all elements are equal. During
analysis by the automaton, all cons/2 nodes, other than the bottom-most, can be seen as
being in state ql if and only if their associated element (at relative position 1) is equal to
the next element in the list (at relative position 2.1). Because this automaton requires an
equality constraint on a recursive rule (here, with ql on both the left and right of ↦), it
is excluded from many sub-classes of AWEDC. If we were to replace the third rule with
cons⟨qe, ql⟩

1≠2.17−−→ ql, then the resulting automaton accepts lists in which no two adjacent
elements are equal. ◊

109The definition of RATEG in fact is more of a generative model, proceeding top-down and allowing
duplications by, as far as this author can discern, repeated application of local tree rewrites. The bottom-up
automaton view came later and is now sufficiently prevalent that one might call it standard.
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Example 44: AWEDC can also recognize the language of “lists of equal pairs,”

{cons⟨p⟨t1, t1⟩,cons⟨p⟨t2, t2⟩,⋯cons⟨p⟨tn, tn⟩,nil⟨⟩⟩⋯⟩⟩ ∣ n ∈ N,∀i ti ∈ τ}

(and similarly, the language “lists of pairs of unequal elements”). The pair would be recog-
nized by p⟨qe, qe⟩

1=27−→ qp; the list is built by the recursive rule cons⟨qp, ql⟩ ↦ ql. This, quite
simple, language is also within the expressive power of many of the sub-classes, including
AWCBB, reduction, and homomorphic-equality automata. ◊

Local constraints allow for the creation of unboundedly many, arbitrarily-large
equality classes of positions within recognized trees. The first (equality) example above
contains exactly one equivalence class, which equates arbitrarily many positions within the
tree (one for each cons/2 node). On the other hand, the second (equality) example above
demonstrates that there may be any number of equality classes.

Determinism retains its meaning on AWEDC and sub-classes; the languages recog-
nized by nondeterministic AWEDC are a proper superset of those recognized by determin-
istic AWEDC. Recall that a deterministic TA has the additional property that every tree
has at most one run. Thus, within the analysis carried out by a deterministic automaton,
two sub-terms are equal only if they are analysed into the same state at their roots. As
a consequence, some decision predicates (notably, emptiness of an automaton’s language)
are straightforward. Nondeterminism, on the other hand, is full of subtleties for AWEDC
and sub-classes. With local constraints and nondeterminism, it is quite straightforward to
define automata which are empty iff some Turing machine does not halt (first shown as
Thm. 4.4.7 of Comon et al. [35]; see Filardo [58] for increased applicability of the proof).

Further, the local nature of constraints makes projection (from a nondeterministic
automaton) non-trivial. In the case of unconstrained TAs, projection is as simple as walking
the rules from the accepting states to find the set of states which accept the projected sub-
terms. However, during traversal of rules of an AWEDC, one now accumulates constraints
which may mean that not all trees accepted by the states at the end of the projection path
are actually within the set projection. (Though they are certainly a superset.)

4.2.5 With Global Constraints

Another option, rather than adjusting the transition function to permit the use of local
tests, is to redefine what it means for a run to be accepting. This opens the door for global
constraints. Introduced by Filiot, Talbot, and Tison [64] (with further results in Filiot,
Talbot, and Tison [65]), the first class of this sort was “Tree Automata with Global Equalities
and Disequalities” (TAGED). A TAGED automaton ⟨σ,Q,QF, d,=Q,≠Q⟩ is equipped, in
addition to the usual pieces, with two relationships, =Q and ≠Q on pairs of states. A run r
on the tree t is defined as accepted exactly when, for every pair of positions of t, π and π′,
r(π) =Q r(π′) ⇒ t⇃π = t⇃π′ and r(π) ≠Q r(π′) ⇒ t⇃π ≠ t⇃π′ .

The languages recognizable by TAGED is neither a superset nor a subset of those
recognizable by AWEDC. In the interesction of the two sets of languages we find all regular
tree languages (unsurprisingly) as well as some non-regular tree languages.

The fragment of TAGED automata without disequality constraints (i.e., those for
which ≠Q is empty) is equivalent in recognition power to a class known as “Rigid Tree
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Automata” (RTA) [100], in which, essentially, =Q is constrained to be a subset of the
diagonal relationship on Q. That is, each occurrence of a so-called “rigid state” in QR ⊆ Q
within a run must label the root of equal subterms (so =Q is {⟨q, q⟩ ∣ q ∈ QR}). Inclusion of
RTA into TAGED is immediate, and inclusion in the other direction proceeds by a variant of
the typical powerset construction. (Thus, a rigid automaton recognizing the same language
as the TAGED automaton A may be exponentially larger in description than A.)

The emptiness problem for an RTA automaton is, despite the presence of equality
constraints, essentially identical to that of regular TAs [100, §6.2]; for TAGED automata it
is more expensive [see 65, theorems 1, 2, and 4] but in all cases decidable [17]. Universality
(i.e., the acceptance of all trees), and therefore pairwise subset and equality testing, are
undecidable for nondeterministic RTA.

As part of our effort to design automata for Dyna’s use, we developed “Rigid
Tree Automata With Isolation,” which allows the automata to sever equality constraints
between different regions of the tree [62]. This family can recognize a strict superset of
RTA-recognizable languages and has a polynomial time emptiness test, but is not closed
under intersection. The motivation, in particular, was considering the closure of RTA under
a Kleene-star-like operator (recall footnote 22, in §1.3). RTA can recognize, for example,
pairs of equal trees, {f⟨x,x⟩ ∣ x}, and being supersets of regular automata, can recognize
regular lists. However, they cannot recognize lists whose elements are equal pairs: given
a sufficiently long list, eventually, any putative RTA for this set would be forced to reuse
a rigid state in violation of the definition. Adding isolation allows the resulting family to
express this set.
Example 45: Consider a rigid tree automaton with Q = {ql, qp, qn, q

′
n}, QF = {ql}, q′n the sole

rigid state, and the transition rules are shown below on the left.

z⟨⟩ 7−→ qn

s⟨qn⟩ 7−→ qn

qn
ε7−→ q′n

pair⟨q′n, qn⟩ ↦ qp

nil⟨⟩ ↦ ql

cons⟨qp, ql⟩ ↦ ql

cons

pair

s

z

s

s

z

cons

pair

s

z

z

nil

ql

ql

ql

qp

qpq′n

q′nqn

qn

qn qn

qnqn

This automaton accepts lists of pairs of Peano naturals, with the constraint that all first
elements of those pairs are equal. On the right, above, is an accepted tree, labeled with its
accepting run. We can see that q′n is consistently assigned the term s⟨z⟨⟩⟩ as required by
RTA, while ql, qp, and qn are free to vary at each occurrence. It happens that this language is
recognizable both by AWEDC (but not, for example, by the so-called “reduction automata”
subset thereof) and TAGED. ◊

Hybrids Of course, hybrid models have been considered; Barguñó et al. [17] considers
hybridizing AWCBB and TAGED and finds that emptiness is decidable and that it remains
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decidable when sporting global arithmetic constraints on the number of occurrences of states
or number of equivalence classes of trees reaching some state.

4.2.6 With State Variables for Prenex Polymorphism

Both the algorithms given so far and the analysis yet to come rely centrally on propagation
of constraints within sets. In particular, properties of the form ∀t∈τ φ(t), where φ makes
no reference to τ , are subset-closed, i.e., ∀σ ⊆ τ ∀s∈σ φ(s). The equality constraints we so
heavily relied upon in our earlier work (e.g., ∀t∈τ t⇃1 = t⇃2), albeit typically covertly expressed
by repeated use of a variable within a set comprehension (e.g., {⟨x,x⟩ ∣ x}), are of this form.
While τ[τ ′/1]⇃1 ⊆ τ ′ holds for all τ and τ ′, given the above universal equality constraint on τ ,
we also have that τ[τ ′/1]⇃2 ⊆ τ ′. This is what allowed answering one subgoal in a rule body
within, e.g., block 3.1, to narrow subsequent query projections. However, while the equality
constraints of AWEDC or TAGED do give rise to this kind of constraint propagation, there
are other sources of such propagation that we might wish to use, especially within static
analysis. To capture these kinds of type-level covariance relations, we might broaden the
class of objects we are willing to consider to include things beyond merely sets of terms.

Consider attempting to describe the set of pairs of finite lists which are reverses
of each other and within which all elements are members of some set τ , i.e.,

v(τ) = {v⟨c⟨x1,c⟨x2,⋯n⟨⟩⟩⋯⟩,c⟨xn,c⟨xn−1,⋯n⟨⟩⟩⋯⟩⟩ ∣ n ∈ N,∀i xi ∈ τ}.110

Due to the unboundedly many equalities (one for each list element), any set v(τ) is outside
the reach of TAGED automata, when ∣τ ∣ > 1. A little less clearly, perhaps, these sets are also
beyond the reach of AWEDC. There can be only finitely many rules in any purported v(τ)-
recognizing automaton A, and in particular only finitely many rules that could recognize
the root, v/2, term. Thus, there are only finitely many sets of constraints that can be tested
and there must be a finite path of longest length k ∈ N, and so lists with sufficiently many
elements must have some elements not compared for equality, violating the definition of
v.111

Even if we drop the “reverse” requirement and aim to describe the superset of α
containing pairs of lists with equal sets of elements (even without constraining length), or
the yet larger superset containing pairs of lists where the set of elements of the first list (say)
is a superset of the set of elements of the second, we find that we are still outside the reach
of AWEDC or TAGED. Indeed, it is not even clear how to attempt to express the notion of
“sets of elements” to these automata: while they can constrain individual positions, their
only tool for describing sets of trees is, unsurprisingly, an automaton state, which does not

110The function v(⋅) has a convenient feature: while it is, indeed, an element of ℘H → ℘H, it has a purely
syntactic definition: there is no analysis of its argument, which is merely used as-is in its definition. Several
constructions within the upcoming static analyses will have this behavior.

111“Sufficiently many” may be larger than k, as the automaton may attempt to encode information about
elements’ identities or equalities within the list in the state labels. However, taking any n ∈ N such that n ≥
log∣τ ∣(∣Q∣+1), there must exist two distinct lists of length 2k+n with elements ⟨p1, . . . , pk, c1, . . . , cn, s1, . . . , sk⟩
and ⟨p1, . . . , pk, c′1, . . . , c′n, s1, . . . , sk⟩, differing only in the middle, which (nondeterministically can) take the
machine into identical states at their roots (i.e., just under the v/2 node at the top of the tree). Thus, given
an accepting run with one of these lists as (say) the left list in the pair, we can produce an accepting run
using the other, and so the purported recognizer of v(τ) is not, in fact, such a recognizer.
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immediately appear useful here. Notably, there is no notion of coverage of a state by the
trees labeled thereby within a run.

We can, however, describe a function which takes a machine (of some family)
describing some set τ to the machine (of the same family) describing pairs of lists whose
elements are all from τ , i.e.,

v′(τ) = {v⟨c⟨x1,c⟨x2,⋯n⟨⟩⟩⋯⟩,c⟨y1,c⟨y2,⋯n⟨⟩⟩⋯⟩⟩ ∣ n ∈ N,∀i xi ∈ τ,∀i yi ∈ τ} ⊇ v(τ).

v′(τ) is a strict superset of all of the alternatives offered above, as we no longer have any
relationship between the elements of the two lists or even their lengths, but nevertheless,
we have the joint upper bound τ on each set of elements. This automorphism has a kind
of “template” structure: it specifies the rules for recognizing the p/2 root node and the
list “spines” (the c/2 and n/0 nodes), but uses the root state(s) of the automaton provided
as its input (as well as all of that automaton’s rules) to describe the elements of the lists.
Unfortunately, v′(τ) does not lend itself to constraint propagation by refinement: α′(τ)[β/1]
leaves the π = 2 projection unaltered. However, v′ itself (i.e., the function) can be described
using an augmented automaton formalism with state variables (i.e., variables that range
over states of the automaton), and it is straightforward to take such a representation to
produce either v′(τ) for some TA (possibly with constraints) τ or v′ ○w for some other such
augmented automaton (i.e., with its own parameter(s)). See Xiao, Sabry, and Ariola [191,
§5] for details.112

It is worth spending a moment to discuss the “first-order” nature of this kind of
parameterization of an automaton. As noted, these automata with state variables describe
functions from types to types; in traditional programming literature they would be described
as parametrically polymorphic types,113 such as Haskell’s “Maybe α” type, “data Maybe α
= Nothing | Just α” (or as we might write it, {α ↦ nothingjo∪justjαo ∣ α}). Because all
parameters are given up front, these types are said to be “prenex polymorphic” or “prenex
quantified.”114 That is, by contrast, we could imagine yet-further-augmented constructions
which allowed parameters to range over set automorphisms as well. While these so-called
higher-ranked types are not very useful for data they are potentially useful, and increasingly
expressive, in the presence of functions, since polymorphism can be used to derive so-called
“free theorems” about functions ascribing to polymorphic types [185].115

112In the automaton construction given for computing a TA for v′(τ) given one for τ and the parametric
TA for v′, in general, the result will be a nondeterministic automaton. If both the template TA for v′ and
that for the parameter τ contain a rule with common left hand side symbol, then some trees will be analysed
by different states in the result.

113At this point, our insistence that types are just sets of terms mires us in terminological difficulties.
The use, in the broader programming language community, of the phrase “parametric type” is perfectly
sanctioned: parametric types are those objects described by a type grammar which has been extended to
permit parameters (i.e., type variables). Here, rather than enlarging some grammar, were we to desire
“polymorphic types,” we would have to add n-ary type automorphisms to our universe of types. This poses
problems, however, as there is no purely set-theoretic model of the second-order typed λ-calculus [157] (at
least, without restricting to constructive set theories [147]). In §5.2.3.1 we will consider an alternative,
approximating formalism.

114The exact origin of the term “prenex” is uncertain. Possibly it stems from Latin “praenexus” (“bound
in front”) and entered modern usage through Hilbert and Bernays [93].

115Parametric polymorphism is often denoted by a universal quantifier, as in ∀α(α→ α). This is something
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4.2.7 Primitive Base-cases

Xiao, Sabry, and Ariola [191] also introduces two practical notions for extending tree au-
tomata to describe real-world use-cases.

1 Real-world programming languages typically have types for infinite collections, such as
the integers.116 Because the elements of these primitive types are nullary functors,
they can readily be handled via “built-in” states, which are, conceptually, backed
by infinitely many non-recursive rules. For example, we might define qint for Z and
allow this state to be referenced on the left within other transition rules. Another
popular primitive set is H itself. As there are potentially unboundedly many functors
in F , it makes sense to bundle all terms together in the case where structure is not
differentiated by the automaton. (Any automaton with such a universal state is, by
definition, nondeterministic.)

2 Tree automata as presented so far work well to describe sets built up from their base
cases. While general complementation is, typically, out of reach, it is nevertheless
viable and occasionally useful to describe a co-finite set, by describing an infinite set
(possibly a primitive infinite set as above) less a finite set of exclusions.

These extensions are orthogonal to the extensions described in previous sections and gen-
erally theoretically benign (i.e., may be readily added with only small changes to proofs or
algorithms).

4.3 Automata as Circuits
Automata, though traditionally understood as descriptions of a process for deciding some
property (i.e., set membership) of an object under study, are amenable to an algebraic
interpretation as well as an interpretation as arithmetic circuits.

4.3.1 Aside: An Algebraic View of Tree Automata

We can classify automata by viewing them through the lens of an (categorical) algebra
(recall §2.1.1.1 and, in particular, example 6 therein). We recast transition functions as
(total) functions of type (Σf/n∈F X

n) → X, for some carrier set X. If the automaton has

of a pun on the logical universal quantifier of the same name; in System F [76, 158], it represents the type-
level function {α ↦ (α → α) ∣ α}. (This function is also purely syntactic: it simply copies its argument and
pushes it into place within some fixed syntax.) Most type systems are “predicative,” in that the domain
over which α is quantified in the above set excludes quantified types, or, at least, permits only smaller
quantified types, using a typical inductive construction. Example “free theorems” arising from prenex
polymorphism include the observations that there is exactly one terminating function in ∀α(α→ α), namely
the (polymorphic) identity function λxx, that there are exactly two terminating functions in ∀α(α→ α→ α),
namely λxλyx and λxλyy, and that the terminating functions of type ∀α((α→ α) → α→ α) are in bijective
correspondence with N. For an example involving non-prenex polymorphism, contrast this latter type and
∀α((∀β(β → β)) → α → α). The former function can make very few assertions about its given function
argument, while the latter can prove that its function argument is a (possibly partial) identity function.

116Some programming languages draw a distinction between (signed) machine words of finite bit-width,
often erroneously called “integers,” and “big integers” of unbounded bit-width. Here, we mean the latter.
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constraints, then X must not only carry the automaton’s (finitely many) states Q but also
sufficient statistics of the tree for those tests, so that Σf/n∈F X carries enough information for
the transition function to operate properly. This type is really only suitable for deterministic
automata; while we might be tempted to use (Σf/n∈F X

n) → ℘X, we do not truly wish our
transition function to have arbitrary tree information in its output, but rather to have the
output view of the tree be derived from the input. This suggests that we use a pair of
(potentially, mutually-recursive) algebras at once, which can be bundled together into a
single transition function. For the deterministic case, this would be (Σf/n∈F jX,Y on) →
jX,Y o; for the nondeterministic case this would be (Σf/n∈F jX,Y on) → j℘X,Y o. The latter
highlights the distinction between the two components of the carrier: any nondeterminism
is solely on the first (X) component.

1 Unconstrained automata can be encoded by taking X = Q and Y = jo. The interpre-
tation function argument’s input type is, then, isomorphic to ΣF Qn and its output
is isomorphic to Q, as might be expected.

2 AWEDC can take X = Q and Y = H. The second component of the interpretation
function, behaves as a free algebra on F : given the functor and immediate subterms of
a node at a position of the tree under study, the interpretation just builds the subterm
under study for the second component of its output.117 These immediate subterms are
also used by the interpreter for checking the constraints and determining the possible
state(s) of the output.

Many other classes work out similarly or with slight tweaks to the presentation
here. We elide the details.

4.3.2 Tree Automata as Finite Circuits

A different, though surely related, view of an automaton assigns a set (of classified objects,
e.g., strings or trees) to each state and takes the automaton’s language to be the union
of the sets assigned to the accepting states. Of course, not just any assignment will do:
the assigned sets must be mutually compatible according to the transition function (i.e.,
rules) of the automaton. That is, we can encode an automaton into a set-valued finite
circuit. The states of the automaton form the items, and the transition function describes
the edges (in the string case) or hyperedges (in the tree case) present. The states aggregate
their many incident hyperedges using union. The edges construct their labeling sets using
any constraints on the transition. The mechanistic description corresponds to the minimal
fixed-point of the circuit, in which, among other properties, all objects in the value sets are
finite.
Example 46 (Translating a String Automaton): The graph shown in example 40 (in §4.2.2.1)
is exactly the graph we would build: the states are items, the edges are possible transitions
in the automata. The interpretation of an edge e from q1 to q2 labeled as x is that it
contributes lee = {s++⟨x⟩ ∣ s ∈ lnq1} to q2; the initial edge, with no source, contributes {⟨⟩}.

117One could certainly imagine classes of automata for which this is not true – grammars which track
head-words of constituents or keep only the most recent k nodes of each subterm available, for example.
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The least fixed-point solution of the circuit then asserts that lnqeven is, exactly as we expect,
the set of strings containing an even number of a symbols: the empty string comes from the
initial edge, any string ending with b and whose prefix is also in lnqeven is present due to the
self-loop, and any string ending with a and whose prefix is accepted by lnqodd

is also present
due to the edge from qodd. ◊
Example 47 (Translating a Regular Tree Automaton): As before, each state corresponds to
a node, and each transition rule corresponds to a hyperedge of the circuit. The label of the
hyperedge is the set built from its tails and the functor of the transition rule: the transition
f⟨q1, . . . , qn⟩ ↦ q0 has tails at each qi ∈ Q, has its sole head at q0, and is consistently labeled
by fjlnq1 , . . . , l

n
qno. Thus, the consistent lnq0 must be a superset of fjlnq1 , . . . , l

n
qno. ◊

Endowing automata-as-circuits with constraints requires changing the picture only
slightly. Local (dis)equality constraints are quite easily added to the above picture. The
consistent edge label is now the subset of the regular construction that obeys the constraints
of the transition. Adding global (dis)equality constraints, à la TAGED or RTA, requires
some deeper revision. One possible mechanism is to alter the definition of the circuit so that
the values are now sets of pairs of trees and finite partial maps from Q to trees. Formally,
the values are, rather than elements of ℘H, now elements of ℘jH, (Q → {null}∪H)o. When
building trees to find the consistent edge label, only those possibilities which jointly respect
the indicated global constraints are accepted. Formally, ⟨f⟨t1, . . . , tn⟩,m⟩ ∈ lne iff all of the
following hold: 1 e derives from the rule f⟨q1, . . . , qn⟩ ↦ q0, 2 there exist ⟨ti,mi⟩ ∈ lnqi for
each i, 3 m is the “coherent merger” of all mi. Informally, all mi must agree at each q, save
that those mi which send q to null do not contradict those that send it to a tree. Formally,
m(q) = t iff ∀imi(q) ∈ {t,null}. If no such coherent merger exists, these {⟨ti,mi⟩ ∣ i} do
not justify any ⟨f⟨t1, . . . , tn⟩,_⟩ ∈ lne (though others may!).

4.4 Tree Set Automata
Recall that the runtime operation of both the WAM and our strategies of §3 manipulate
sets of terms at runtime. In order to describe collections of possible solver states during
analysis (§5.3 and §5.4), we find ourselves needing sets of sets of trees, i.e., elements of ℘℘H.
The interpretation of these objects is that the inner ℘ captures “runtime uncertainty” about
which tree(s), exactly, are being manipulated (the set will be subject to refinement during
the course of the solver’s operation), while the outer ℘ captures “analysis uncertainty” about
which state, exactly, the solver will be in.

In light of our rephrasing of automata as circuits, we can see a mechanism for
computationally representing these sets-of-sets. We shall use automata with two kinds of
states: those that describe sets of trees, and those that describe sets of sets (of trees).

4.4.1 Regular Tree Set Automata

We begin with a notion of Regular Tree Set Automaton (TSA), built using two disjoint sets
of states, tree states, Q1, and set states, Q2. The accepting states of such automata
are set states: QF ⊆ Q2. The value associated with a tree state (in the circuit view of the
automaton) is a set of trees accepted thereby, as with standard tree automata, above. The
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Rule type Transition rule Meaning
Trees from trees lp f ⟨q1, . . . , qn⟩ ↦ q0 lnq0 ⊇ fjlnq1 , . . . , l

n
qno

Sets from trees
free q ↦ q̂ lnq̂ ⊇ {lnq}

ground q ↦ q̂ lnq̂ ⊇ {{t} ∣ t ∈ lnq}
subtype q ↦ q̂ lnq̂ ⊇ (℘lnq ) ∖ {∅}

Sets from sets bound f ⟨q̂1, . . . , q̂n⟩ ↦ q̂0 lnq̂0 ⊇ {fjτ1, . . . , τno ∣ ∀i τi ∈ l
n
qi}

bound⊂ f ⟨q̂1, . . . , q̂n⟩ ↦ q̂0 lnq̂0 ⊇ {(℘fjτ1, . . . , τno) ∖ {∅} ∣ ∀i τi ∈ lnqi}

Table 4.1: Transition rules for Regular Tree Set Automata. In all cases, q ∈ Q1 is a tree state, q̂ ∈ Q2 is a
set state, and f/n ∈ F .

value associated with a set state is a set of sets of trees. Transition rules in a TSA come in
six forms, summarized in table 4.1. In the following, q, qi ∈ Q1 and q̂, q̂i ∈ Q2; we will pun
between the mnemonic of a transition rule and a corresponding set (of sets or trees).

● The simplest form of a TSA rule is an ordinary TA rule, which relates tree states of
the TSA. Written lp f ⟨q1, . . . , qn⟩ ↦ q0, such a rule asserts that (singleton sets of)
each tree of lp f ⟨τ1, . . . , τn⟩ def= fjτ1, . . . , τno (taking τi to be the set of trees which
may be labeled by qi, i.e., lnqi) are aggregands to the value of q0 (i.e., each such tree is
therefore within lnqi). (The mnemonic lp stands for “labeled product.”)

● Similarly, bound f ⟨q̂1, . . . , q̂n⟩ ↦ q̂0 relates set states of the TSA. Such a rule indicates
that each set within bound f ⟨T1, . . . , Tn⟩ def= {fjτ1, . . . , τno ∣ ∀i τi ∈ Ti}, taking Ti = lnq̂i ,
is also in lnq̂0 .

● Three forms are dedicated to populating set states from tree states:

– free q ↦ q̂ asserts that the set of trees which may be labeled by the tree state
q may, itself, be labeled with q̂. (i.e., free τ

def= {τ}).
– subtype q ↦ q̂ asserts that any non-empty subset of the set of trees which may

be labeled by q may be labeled with q̂ (i.e., subtype τ
def= ℘τ ∖ {∅})

– We additionally define ground q ↦ q̂ as asserting that singleton sets of trees
possibly labeled by q may be labeled by q̂. (Equivalently, the singleton subsets
from subtype q may be labeled by q̂. ground τ

def= {{t} ∣ t ∈ τ}.)118

● The last transition form within a Regular TSA is necessary for closure under special-
ization (to be defined): bound⊂ f ⟨q̂1, . . . , q̂n⟩ ↦ q̂0 asserts that any non-empty subset
of any set within bound⊂ f ⟨T1, . . . , Tn⟩ def= {fjτ1, . . . , τno ∣ ∀i τi ∈ Ti}, taking Ti = lnq̂i
(i.e., the set of sets which may be labeled by q̂i), may be labeled q̂0.

The names bound, free, and ground are standard in Prolog analysis literature, come to
us by particular way of Ramakrishnan [152] and Overton [137], and will be further explained

118As presented so far, it is possible to entirely eliminate ground and use only bound instead. However,
when generalizing TSA, it may be convenient to permit more intricate transition rules amongst tree states
than just the lp form given above. If these rules lack analogues at the set state level, ground could no
longer be eliminated. Separately, its presence enables the occasional optimization in implementation.
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when we consider planning subgoal conjunctions in §5.3. (The specific set-based definitions
given above are derived by extending Mercury’s mode system’s concretization function [137,
Def 3.1.3 etc.] to permit typed leaves.)

We impose the following requirement on the structure of the automaton, in addi-
tion to the above: any tree state appearing as the argument to a free or subtype (but
not ground) transition (i.e., on the left of ↦) must form the root state of a top-down
deterministic regular tree automaton. This reduction in expressive power is necessary for
closure under specialization (to be defined).119

4.4.1.1 Operations on Regular TSAs

Outer-Union and Outer-Intersection Given a TSA A, we seek to form two TAs that
describe the union and intersection of the sets accepted by A, denoted ⋃A and ⋂A, re-
spectively. Union is straightforward, and the resulting nondeterministic automaton has the
same basic structure as the input TSA. All bound and lp rules map to TA rules and all
other transition rules map to epsilon rules. Intersection is a little more complicated, but
tractable because set states participating in cycles (formed by bound rules) have empty
intersection.120

Emptiness Testing Regular TSAs inherit emptiness testing from regular TAs: a depth-
first traversal state-marking algorithm suffices to label each state (be it either tree or set)
as (non-)empty. The only tweak is that free q always accepts a set, regardless of q’s
emptiness, while subtype q and ground q accept a set iff q does.

Acceptence of the Empty Set Regular TSAs may use a very similar algorithm to that
of emptiness testing to determine the acceptance of the empty set: free q ∋ ∅ iff q is
empty, and bound f ⟨q1, . . .⟩ ∋ ∅ iff any of its qi does. By definition, ground, subtype,
and bound⊂ rules never justify the acceptance of the empty set.

Projection Projection can be once again extended, this time to operate on sets of sets
of trees: S⇃π def= {σ⇃π ∣ σ ∈ S} = {{s⇃π ∣ s ∈ σ} ∣ σ ∈ S}. Computing this operation on TSAs
is straightforward: having removed bound rules which accept no sets, start from the root
states of a TSA, and walk the projection path to find the new root states of the projected
automaton. If the projection path descends through a free, ground, or subtype rule, the
corresponding component of the output automaton will similarly transition from tree states
to set states. If the project path descends through bound⊂, the corresponding component
of the output will, likewise, use bound⊂ when transitioning to the root (set) state.

119In fact, given this restriction, we can additionally define the last operator from Overton [137], any.
any τ is the union of ground τ and {fjσ1, . . . , σno ∣ ∀i σi ∈ any τi,fjτ1, . . . , τno the f/n-rooted subset of τ}.
The need for this second criterion, that the f/n-rooted subset of τ be a product, is why we impose top-down
determinism on the automaton describing τ . Less formally, it is either a ground (i.e., singleton) subset of τ
or certain to be a set in which all elements share the same root functor. subtype τ is the arbitrary union
closure of any τ . any τ is practically useful as it maps well to the structures encodable by the WAM.

120For example, if bound s ⟨q̂⟩ ↦ q̂ is a rule of A, then if τ can be labeled by q̂ then so can sjτo and
sjsjτoo and so on. The only trees which could occur in all of these sets are infinitely tall, and so, as we
consider only finite trees, the intersection must be empty.
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Subset Testing Testing whether L(A) ⊆ L(A′) for two regular TSAs can proceed by a
straightforward recursive algorithm, largely relying on the subset tests from regular TAs.

Specialization As hinted above, we will use tree set automata to model, statically, the
dynamic behavior of our solver. We will thus need to consider the possible outcomes of
refinement, knowing only the possible inputs. That is, we would like to describe {α[β/π] ∣
α ∈ A,β ∈ B} from (certain) knowledge of π and (uncertain) knowledge of α and β, i.e., A
and B, respectively. We define a specialization operator, A[B�π] to be exactly this set.
To implement this operator, it suffices to implement abstract unification.

Abstract Unification We define an abstract unification operator which computes
specialization at the empty path, i.e., A[B�⟨⟩]. (Much as intersection can be seen as
refinement at the empty path.) We denote this operation ∩×. Simplifying the definition,
we see that A ∩× B

def= {α ∩ β ∣ α ∈ A,β ∈ B}, which helps explain the notation: it is the
intersection along a product of A and B. Given two Regular TSAs, one encoding A and the
other encoding B, we can define an algorithm for computing a Regular TSA which encodes
A ∩× B. This algorithm proceeds much as any other product construction: the tree (resp.
set or accepting) states of the resulting automata are pairs of tree (resp. set or accepting)
states, one from each of the two automata. The transition rules in the resulting automaton
arise from considerations of pairs of transition rules, one from each automaton and largely
follow from the set-theoretic definitions of the directives. We extend notation slightly to
use the directive notation to refer to the set it creates.

● First, we note that (T ∪ T ′) ∩× S = (T ∩× S) ∪ (T ′ ∩× S). This equivalence forms the
basis of handing of multiple rules targeting the same states within TSAs being unified:
recall, in the circuit analogy of §4.3, these states’ values are aggregated by union.

● free q ∩× free q′ = free (q ∩ q′). Our algorithm thus calls out to intersection of the
regular tree automata whose accepting states are q (resp q′) and whose transition rules
come from their respective regualr TSAs. Similarly handled are free ∩× subtype and
subtype ∩× subtype abstract unifications.

● bound f ⟨q̂1, . . .⟩ ∩× bound f ⟨q̂′1, . . .⟩ = bound f ⟨q̂1 ∩× q̂′1, . . .⟩; for mismatched symbols
or arities, the answer is free ∅. The other three bound ∩× bound unifications, in
which one or both is bound⊂ behave identically save that their output directive is
also bound⊂.

● ground q ∩× q̂ is ground of an automaton recognizing the intersection of the language
labeled by the (tree) state q and the outer union of the sets labeled by the (set) state q̂.
Such things are readily computed using TA algorithms and the outer union algorithm
given above. The empty set must be added to the language of sets recognized iff
lnq /⊆ ⋃ lnq̂ .

● free q ∩× bound f ⟨T1, . . . , Tn⟩ relies on q being top-down deterministic: there is
at most one rule targeting q that applies to trees whose roots are labeled with f/n;
selecting lp f ⟨q1, . . . , qn⟩ as its LHS, the answer becomes bound f ⟨free q1 ∩× T1, . . .⟩
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● free q ∩× bound⊂ f ⟨T1, . . .⟩ requires top-down determinism of q and behaves as the
prior case, save, again, that the answer is bound⊂ f ⟨free q1 ∩× T1, . . .⟩.

● subtype q ∩× bound f ⟨T1, . . .⟩ and subtype q ∩× bound⊂ f ⟨T1, . . .⟩ are as above
(and continue to require top-down determinism of q).

4.4.2 Inner-Rigid Tree Set Automata

We can extend Regular Tree Set Automata to handle global equality constraints, borrowing
from Rigid Tree Automata [100]. A particular tree t in a set τ accepted by a TSA can be
given a run labeling: every position is associated with at most one Q1 and at most one Q2;
only the nodes at bridging transitions (e.g., free) will have both. We extend the above
definition with inner-rigid states, both tree, Q1,R ⊆ Q1, and set, Q2,R ⊆ Q2, to obtain
Inner-Rigid Tree Set Automata (IRTSA). The sets accepted by an IRTSA are of trees whose
runs obey the rigidity requirement: for each q̃ ∈ Q1,R ∪Q2,R, all nodes in a run labeled with
q̃ are the roots of equal subtrees. These rigid states allow us to encode the reuse of variables
within a Prolog rule.

Operations on IRTSA The operations given above need relatively little adjustment.

Outer-Union and Outer-Intersection Given an IRTSA A, the same proce-
dure given above will produce RTAs describing the desired sets.

Emptiness Testing State-marking for emptiness testing naturally generalizes
from TAs to RTAs and TSAs and also to IRTSAs; no further changes are needed.

Acceptence of the Empty Set State-marking again suffices.

Projection An analogous walk continues to suffice; projection continues to be-
have well in conjunction with global constraints.

Subset Testing For IRTSAs, no decidable strategy exists, as RTAs do not have
decidable subset tests. Approximations exist, however, and we hope that they are suffi-
ciently capable to handle our needs, in practice.121

121In particular, our sole use of TSAs is as machinery for backing the static analysis of the next chapter.
In such analysis, if an approximation gives up or times out, we will reject (part of) a program or a plan
for execution within that program. Further, we can use approximations with one-sided error (though the
acceptable side will vary by the use in the analysis system) and obtain the same behavior: we reject (part
of) a program or a plan for execution within that program. This is substantially less dire than getting the
wrong answer at runtime.
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Unification The unification algorithm for TSAs continues to hold, though the
handling of ground transitions must shed a little precision due to the lack of decidable
subset testing mentioned above. This is usually no major loss, as the only casualty is
accuracy of the empty set’s inclusion, and our analyses do not pay careful attention to the
empty set, as it carries no terms and therefore cannot impact the semantics of the program
at runtime.

4.4.3 TATA Tree Set Automata

The canonical text on Tree Automata, Comon et al. [35, ch. 5], introduces a concept termed
a “generalized tree set automaton”. These automata recognize “E-valued F-generalized tree
sets” (“GTS”),122 i.e., maps g ∶ H → E. The set E generalizes the use of {⊺,�}, whose use
would make the function g an indicator function of a set of F-trees. These automata are
described in ways that make them (apparently) less amenable to our use case, for which a
more overtly recursive (circuit-like) description seems more natural.

To understand this in more detail, some words must be said about these GTS au-
tomata. (A reader interested only in Dyna loses little to nothing by skipping the remainder
of this section.) We adjust the notation of Comon et al. [35, ch. 5] to be a little more
consistent with the rest of this section. A GTS automaton has a set of states Q and its
transition rules are of the form f⟨q1, . . . , qn⟩

e7−→ q0, where f/n ∈ F , e ∈ E, and ∀i qi ∈ Q. The
usual notion of non-determinism continues to apply.

The first major difference from the other automata of this section is that a GTS
automaton does not have a set of accepting states; instead, it has a set of accepting sets
of states. That is, rather than a set QF, it has Q ⊆ ℘(Q). As a result, the acceptance
condition on a run r can no longer be that r(t) ∈ QF.

Despite recognizing sets of trees, a run of a GTS remains centered around a func-
tion of an individual tree: r ∈ HF → Q. As before, r is a run on a tree t iff there is a
transition rule justifying the label of each subterm in terms of the labels of its immediate
children. In particular, this means that r is a run iff, for all paths π in some tree t and
letting s = t⇃π, if r(s) = q0, the root functor of s is f/n, ∀i∈Nn

1
r(s⇃i) = qi, and g(s) = e, then

the automaton contains the transition rule f⟨q1, . . . , qn⟩
e7−→ q0. The acceptance condition of

a run is now that the image under r of HF is an element of Q. (Formally, (℘(r))(HF) ∈Q;
we do not need to quantify over paths as r is a function and, if π is a path of t ∈ HF , then
t⇃π ∈ HF .)
Example 48: Comon et al. [35, Exs. 5.2.1.1 and 5.2.1.2] demonstrate GTS automata accept-
ing what we would call free τ and subtype τ with τ being the set of lists of Peano-encoded
natural numbers (formally, the minimum fixed-point solution to the simultaneous equations
τ = niljo ∪consjσ, τo and σ = zjo ∪sjσo). We repeat their construction here (with notation
adapted). The automata given use E = {0,1} and Q = {Nat,List,Term}. The first automa-
ton (recognizing only the set τ itself, or, really, the function g ∈ HF → {0,1} defined by

122That is, they are automata for generalized tree sets rather than a generalization of some other class of
tree set automata.
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g(t) = 1 iff t ∈ τ) takes as its transition rules

z⟨⟩ 07−→ Nat

s⟨Nat⟩ 07−→ Nat

nil⟨⟩ 17−→ List

cons⟨Nat,List⟩ 17−→ List

together with rules which encode that all other trees mapped to 0 by g transition to the Term
state. The automaton then accepts g iff there exists a run r such that (℘(r))(HF) = Q.123

We see that g is accepted iff it sends all lists of naturals to 1 and all other trees (i.e.,
naturals and other “non-lists” like cons⟨nil⟨, ⟩s⟨nil⟨⟩⟩⟩) to 0. That is, this automaton
recognizes free τ . If we add the transition rule nil⟨⟩ 07−→ List, then the resulting automaton
recognizes both τ and τ ∖ {nil⟨⟩}. If we then remove nil⟨⟩ 17−→ List, only the latter set
remains recognized. Similarly, adding both nil⟨⟩ 07−→ List and cons⟨Nat,List⟩ 07−→ List
allows acceptance of any subset of τ , including the empty set. In order to exclude the
empty set, we must split the state List to List0 and List1. We then use the transition rule
schemata

nil⟨⟩ i7−→ Listi ∀i
cons⟨Nat,Listi⟩

j7−→ Listk ∀i,j,k k = 1⇔ (i = 1 ∨ j = 1)

and require that List1 be in the r-image of HF . A similar technique lets us ensure that only
singleton sets are recognized, by instead transitioning as cons⟨Nat,List1⟩

17−→ List2 (and ex-
cluding the transition to List1 with identical left hand side and e) and ∀i cons⟨Nat,List2⟩

i7−→
List2, where List2 is a new state not in any of the accepted state sets. Thus, we track in the
automata state whether 0, 1, or more than 1 list subterm of a given term has been accepted
by g. The definition of acceptance then lets us test for whether any tree has two accepted
list subterms, which implies that two lists are accepted by g. ◊

123As typical, the transition rules do not define a total function. Again the construction of a “dead state”
as in footnote 107 is sufficient; this “dead state” is not in the single accepted state set, which remains
Q = {Nat,List,Term}. It is unnecessary, but not incorrect, to enlarge Q from {Q} to ℘Q, as the other
entries do not apply; for analytic reasons, this “subset closure” property of Q is of interest; Comon et al.
[35] calls such GTS automata “simple.”
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Chapter 5

Weighted Logic Program Analysis

Present-day computers are designed primarily to solve preformulated problems or to process
data according to predetermined procedures. The course of the computation may be conditional
upon results obtained during the computation, but all the alternatives must be foreseen in
advance. … The requirement for preformulation or predetermination is sometimes no great
disadvantage. It is often said that programming for a computing machine forces one to think
clearly, that it disciplines the thought process. If the user can think his problem through in
advance, symbiotic association with a computing machine is not necessary.

J. C. R. Licklider. Man-Computer Symbiosis. [113]

5.1 Why Analysis?
Logic languages offer compact, declarative specifications of computational problems. De-
spite the high level of abstraction, however, there remain a number of opportunities for
programmer error when creating a µDyna (or, more likely, Dyna) program. By identifying
these opportunities, we can put safeguards in place so that the compiler can, by auto-
mated, static reasoning about the program, ensure that the programs given are not only
well-founded but “sensible” (colloquially, we might say that they “pass the smell test”). Ex-
amples of things which, while possibly perfectly well-founded, might be cause for concern
include

1 dead code, i.e., useless components of the program, including rules with heads which
are not queried (by the driver or as subgoals) or, dually, rules which contain subgoals
which are, in turn, never given values;

2 vacuity, i.e., a rule whose answer sets can all be shown to be empty; and

3 incomplete definitions, i.e., certainty of subgoal failure when the program indicated
otherwise.

These are not orthogonal concerns; correcting one instance may simultaneously correct oth-
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ers within the same program or may expose others.124 Having the compiler (attempt to) flag
such issues before permitting code to be executed should help minimize divergence between
programmer expectations and actual results from the solver. Because the compiler may
perform a number of complex transformations on the input program (including unfolding of
definitions and subgoal reordering), we will use a simplified model of execution as the basis
for these tests. Reasoning proceeds by over-estimating the sets of queries and answers that
may arise within the program. This reasoning will be our focus in §5.2.

In traditional, more procedural languages, a program being accepted by static
analysis (typically, such programs are called “well-typed”) means that it “cannot be blamed”
[186]; among other things, it neither “goes wrong” (by attempting to use a piece of data
in an unintended way) nor “gets stuck.”125 However, as part of logic languages’ high-
level nature, they tend to be lax in describing programs’ actual execution.126 This is
certainly true of µDyna programs and so a different form of static analysis is required of
µDyna programs in order to ensure that they can actually be executed (recall the discussion
of planning in §3.2.1.1). This analysis, in effect, confirms that every query or update
claimed to be supported can, in fact, be supported—that is, that the dynamic data structure
defined by the µDyna program can achieve its consistency goal under arbitrary streams
of queries and updates. Part of this analysis ensures that we will never encounter an
instantiation error at runtime.127 As part of this analysis, we are in a position to eliminate
runtime overheads, for example, by enabling derivation of efficient storage representations
and converting unification to pattern matching whenever possible. Here, or rather, in §5.3
and §5.4, we put our Tree Set Automata of §4.4 to work, upper-bounding the set of possible
solver states during possible executions.

In both cases, our analyses are framed as set-theoretic operations. While these
operations are presumed to be backed by automata of some form or another as part of their
computational implementations, we do not rigidly specify their form.128 As a result, there is

124This temporally non-monotonic behavior of compiler-reported error and warning diagnostics is likely
depressingly familiar to most programmers.

125The usual notion of progress, that there is always some expression which reduces, merely means that
the program continues to compute. It does not, for example, guarantee that that computation is useful; a
tight infinite loop doing nothing counts as “progress.” More refined notions of “productivity,” of a program
also exist; some languages either are total or have total fragments, wherein expression reduction is certain
to eventually culminate in a non-reducible value.

126Standard Prolog, interestingly, has a specified execution order: each query visits each rule in a top-
down order and, after unifying with the head, proceeds left-to-right across queries. This is not strictly
required by the pure fragment of the language, nor by the notion of SLD resolution, but is required for
sensible handling the extra-logical components of the language, including the procedural operation of “cut”
(see footnote 138, in §5.3). Despite this, extensions such as tabling for negation or subsumption (recall
§3.7.1) typically necessitate alternate execution orders; programmers are discouraged from mixing tabling
and extra-logical facilities. Datalog solvers, by design working with a simpler language than Prolog, typically
also do not specify their execution order up front and use fundamentally dynamic execution techniques such
as semi-naïve bottom-up evaluation (recall §2.2.3).

127We could attempt to add an “instantiation error” value to the codomain of our data structure’s functions
and offer somewhat equivalent functionality. Prolog programs, by virtue of having a defined execution order,
are actually able to describe a semantic instantiation error, while so-augmented Dyna programs, which do
not have fixed execution order (recall §3.1.4), would have a more complicated story to tell. See §6.1 for
discussion of adding exceptions to Dyna.

128We are not the first to propose using automata as the mechanism for reasoning about logic languages;
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a potential divide between the expressive power of our theory and the conclusions that may
be attainable in practice. The salient point is this: we have set out to design the tightest
possible analysis, but recognize that in practice some operations will be approximated. So
long as the approximations are safe, which, typically, would mean that they over-estimate
the conditions that may occur in practice, any conclusions reached by our framework remain
valid.

Both forms of analysis are abstract interpretations [38, 39] of the runtime be-
havior of the program (under the care of either the real solver or an idealized approximation
thereof). Such interpretations rely on the existence of a Galois connection [136] between
the so-called “concrete” and “abstract” domains (respectively, the actual runtime behavior
and the analytic approximation). Somewhat unusually, both our abstract and concrete do-
mains are given in the language of set theory; that is, we do not, as would be more typical,
construct a different syntactic object for our abstract domain. (In practice, of course, we
imagine that an actual implementation of our system will use the syntactic formalism of
tree (set) automata to specify the abstract domain.) Our (implicit) Galois connection is
thus somewhat degenerate, in that the concretization function is the identity function and
our abstraction function may be any function f such that ∀x f(x) ⊇ x.

5.2 Grounding Set Analysis
As mentioned at the very beginning, in §1.1, one of the selling points of logic languages in
general is that the program should (and often does) stand alone, with semantics separated
from any particular algorithm for finding those semantics. It seems appropriate, then,
that we begin our tour of program analysis by attempting to characterize properties of the
program itself rather than its execution. As µDyna programs, like pure Prolog programs,
serve to define partial functions of items (associating with each its assigned value, or, in
the case of Prolog, provability), analysis of programs attempts to find or verify useful facts
about these functions.

The most precise analysis of a program would, of course, be to find all of its
solutions, exactly. Moreover, if, as in the typical use-cases of Dyna, the input is potentially
not available at analysis time, we should fully characterize the map of inputs to solutions,
i.e., find all solutions for all possible inputs. However, coarser analyses are still of utility.

If one yearns for a procedural intuition, one can think of this kind of analysis as
characterizing the behavior of some hypothetical solver which can reason about potentially
infinite disjunction in finite time—some kind of recursive, nondeterministic automaton,
wherein each branch of nondeterminism within each ply of recursion deals with precisely
one ground rule query, obtaining an answer to be combined with the other nondeterministic
branches.

5.2.1 Review: Types for Prolog

There are two, strikingly different, extant approaches for this kind of analysis on Prolog
programs, which emphasize different kinds of properties of the program.

see, for example, Frühwirth et al. [70], Heintze and Jaffar [89], and Talbot, Tison, and Devienne [171].
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On the one hand, one finds systems for which the type of a program is a superset
of all items that could ever be proven. These have come to be called optimistic types [154]
and were introduced by Mishra [126]. While the loosest possible reading of this definition
would imply that a program is well-typed at any superset of its provable items, typically (but
possibly not universally) the type of a program will be a fixed-point of some upper-bounding
approximation of the logical consequences that derive from a program’s rule. Heintze and
Jaffar [90] provides an excellent overview.

On the other hand, one has systems in the school of Mycroft and O’Keefe [132],
notably including that of Jeffery [103], where the notion of “well-typed” is orthogonal to the
notion of provability within the rules of the Prolog program. In these systems, one more
directly appeals to the solver machinery and speaks of the clauses of a program and the
SLD-resolution query (conjunction of pending subgoals) as being well-typed. One of the
central results of a type system of this flavor is that of preservation: SLD-resolution of a
well-typed query using a well-typed rule gives rise to another well-typed query.

5.2.2 Dyna’s New Twist: Weights and Aggregation

As mentioned earlier, Prolog does not distinguish between one and more-than-one derivation
of the same item (formally, its sole aggregator, or, is idempotent). Thus, there are relatively
straightforward upper-bounding approximations of the logical consequence operator that
can be used to drive the “optimistic type” systems. However, when we consider analysis
of a language with aggregation, the analogous approximations would be approximations of
the heads and their aggregands, not heads and their values.

Were we to try to statically analyse Prolog extended with Answer Subsumption
(recall §3.7.1), we would need an approximation of the modified logical consequence operator,
which includes the semilattice used for subsumption. Such an approximation would need
to consider all possible semilattice elements that could be the result of an operation, given
some description of possible inputs. The simplest such description, in keeping with the
optimistic type systems, would be a set of possible inputs, with the interpretation that
any subset could be seen at runtime. One could imagine, however, wanting lower bound
information as well, such as certainty of particular answers occurring in the set.

In the case of Dyna, there is the further twist that our aggregators are not only
potentially not selective but not idempotent. That is, they are (potentially) sensitive to not
just the divide between zero and non-zero occurrences of any input value, but (potentially)
sensitive to the exact number of each aggregand. While we could continue to simply track
the set of possible aggregands, with the semantics that each element may occur between 0
and ∞ times, it is worth looking for a tighter analysis, and we shall do so below.

5.2.3 Simulated Information Flow for µDyna

Before addressing the aggregators’ disjunctive behavior, we first propose some constraints
solely on the conjunctive behavior of rule subgoals. While, ultimately, we will have a pair of
conjunctive constraints on the program, presently, for simplicity of presentation, we consider
only the first in this section.
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We consider a program to respect simulated information flow only if there
exist sets of possible answers, O, and permitted queries K, such that O ⊆ K ⊆ jH,Ho and
such that an approximation of the solver, operating in a strictly-left-to-right manner, makes
permitted queries when it is given possible answers as responses.129 The set O is precisely a
set of optimistic types, extended to the weighted case (i.e., it is not just a set of items, but
a set of possible item-and-value kv-pairs). They are relevant to us in ways they are not to
the SLD-centric type systems because we are enforcing an approximate, type-level notion of
call compatibility by requiring that queries be a subset of K, while the traditional systems
need only consider the intersection of queries and rule heads. Despite handling queries, our
proposal is in fact quite different from these SLD-centric systems: we consider each rule in
isolation, using O in lieu of subgoal-head unifications, because we cannot, in general, simply
unfold a child item’s rule(s) into those of a parent item, as would be done within SLD.

Recall the computeRule operation of our backward-chaining algorithms of list-
ings 3.2 and 3.3 and, specifically, its refineRuleSuffix core, which uses Lookup to obtain
the answers to the current subgoal and uses each response (of answers) to refine the rule.
We are going to ignore the forking of the search tree; that is, we assume that the union of
all Lookup responses is a subset of O, and require that each invocation of Lookup is given
a subset of K. That is, we will track a set constructed from upper-bounds on answers and
ensure that it is, in turn, upper-bounded by the set of permitted queries.

To formalize this, first, define a function which simulates the action of the recursive
behavior of refineRuleSuffix within computeRule(r,K) by upper-bounding (the union of)
the subsets of ρr used therein:

refruletype(r, i) def= ρr[K⇃1/head][O/sg.1]⋯[O/sg.i].

(We assume that the parameters O and K are globally available, and so do not need to
be arguments to refruletype.) So armed, we formally define a program to respect simulated
information flow only if ∀r∈Ξ∀i∈Nnr

1
refruletype(r, i − 1)⇃sg.i ⊆ K.

5.2.3.1 Membership Implications on Sets

However, as alluded to in §4.2.6, the automata with which we typically imagine backing such
a set O are unlikely to be sufficiently expressive to capture many useful kinds of constraints.
We therefore revise our definition above to approximate the refinement operators ⋅[O/⋅] and
subset tests ⋅ ⊆ K using a formalism with more expressive power (and, concomitantly, fewer
decidable properties).

We introduce membership implication constraints on a set. Each such con-
straint on a set σ is an assertion of the form “∀s∈σ,τ⃗ s ∈ p(τ⃗) ⇒ s ∈ q(τ⃗)” for some functions
p and q which each take some tuple of parameters and return a set. Such constraints serve

129Absent in this description is any kind of notion of well-typedness of individual rules; that is, rules
are merely constraints on the possible O and K sets. We credit the BigBang effort at an adjacent lab for
inspiration and reassurance that this was a viable approach. See Palmer [138] for details of the project, and
§3.5 therein in particular for their type system. We violate our typographic convention of using lowercase
Greek letters for sets of trees for the O and K sets; we consider these sufficiently meaningful to merit their
own symbols.
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to exclude ⋃τ⃗ p(τ⃗) ∖ q(τ⃗) from σ; the pi and qi functions are likely amenable to encod-
ing via the parameterized automata of Xiao, Sabry, and Ariola [191, §5] (recall §4.2.6). In
practice, because we will also be manipulating the set σ separately from these attached con-
straints, we will generate our constraints element-at-a-time, from templates. That is, given
(equal-length) tuples of pre- and post-conditions p⃗ and q⃗, we define the (meta-level) function
cbyp⃗,q⃗(t)

def= ∀i ∀⃗τ t ∈ pi(τ⃗) ⇒ t ∈ qi(τ⃗) (in each, tlen(τ⃗) may vary with i). All told, then,
given a set σ and such a constraint template cby, we can define the constraint-respecting
subset of σ, Jσ, cbyK def= {s ∈ σ ∣ cby(s)}.

Importantly, even if σ and all {pi(τ⃗), qi(τ⃗) ∣ i, τ⃗} are languages recognizable by
some family of TAs, Jσ, cbyp⃗,q⃗K may not be recognizable by that family. Thus, even given
imperfect ability to represent tree sets, we may still find power in this constraint construc-
tion. (If we restrict the ranges of the quantification over τ⃗ within the formulae of cby(⋅) to
only those τ⃗ that can be expressed within a TA family, or such that pi(τ⃗) and qi(τ⃗) can be
so expressed, we are then describing a set σ′′, with σ′ ⊆ σ′′ ⊆ σ.)
Example 49: Consider, again, our example from §4.2.6 of pairs of reversed lists. While we
cannot, in general, describe the set given therein,

v(H) = {v⟨c⟨x1,c⟨x2,⋯n⟨⟩⟩⋯⟩,c⟨xn,c⟨xn−1,⋯n⟨⟩⟩⋯⟩⟩ ∣ n ∈ N,∀i xi ∈ H},

even with our proposed membership implication constraints, we can still do better than
approximating it by its superset σ = vjl(H), l(H)o, where by l(x) we mean the least fixed-
point of the equation l(x) = njo ∪ cjx, l(x)o. In particular, it is the case that, ∀a∈v(H),
∀β a ∈ vjl(β),Ho ⇒ a ∈ vjl(β), l(β)o and similarly for the second list. Thus, Jσ, fK, with
f(a) being the pair of formulae just described, is a superset of v(H).

While this approximation does not capture the facts that the lists are of equal
length, nor the fact that the elements are reversed, it enables transfer of upper bounds.
Absent any additional knowledge, the only τ⃗ = ⟨β⟩ for which the implication is not vacuous
is H, but in which case, the implied upper-bound is σ itself, and so the implication is
tautological. However, when we would wish to subsequently approximate the intersection
(say, within refinement) of v(H) with some other set, such as vjl(φ),Ho, with φ ⊊ H,
the constraints let us justify using vjl(φ), l(φ)o as an upper bound, rather than the larger
σ ∩ vjl(φ),Ho = vjl(φ), l(H)o. ◊
Example 50: Analogous reasoning lets us give constraint sets for a membership relation
on lists, i.e., m⟨e, s⟩ if e is an element of the list s. Precisely, we would expect something
like m(τ) = {m⟨e, s⟩ ∣ s ∈ l(τ), i ∈ N, π = 2.⋯.2, tlen(π) = i, s⇃π.1 = e}. However, we may
approximate this set by JmjH, l(H)o,{s ↦ ∀β s ∈ mjH, l(β)o ⇒ s ∈ mjβ, l(β)o}K. There is
only one formula in the associated constraint set: while an upper-bound on the type of
elements in the list (definitionally) transfers to an upper-bound on the type of an element,
an upper-bound on the type of the member element e does not transfer to being an upper
bound on the type of the list elements (of s). ◊

These constrained set expressions have several convenient properties. The family
of sets they describe is closed under intersection, as ∀σ,σ′,c,c′Jσ, cK ∩ Jσ′, c′K = Jσ ∩ σ′,{s ↦
c(s) ∧ c′(s)}K (if one set is not constrained, this simplifies to ∀β,σ,cJσ, cK ∩ β = Jσ ∩ β, cK).
Refinement, being just intersection in disguise, is similarly readily computed, though the
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notation is a little unwieldy. Constraints may be eliminated if their preconditions are
vacuous: that is, if ∀s∈σ,τ⃗ s /∈ pi(τ⃗) (or ∀s∈σ,τ⃗ s ∈ qi(τ⃗), though this seems less likely to arise
in practice) can be shown, then the constraints formed from pi and qi may be removed
without changing the meaning. More importantly, however, they offer a kind of constraint
application: if there exists a pi and τ⃗ such that σ ⊆ pi(τ⃗), then we may justifiably equate the
expressions Jσ, cK = Jσ∩qi(τ⃗), cK. Here, at long last, we find the point: these constrained set
expressions may allow us to arrive at tighter recognizable upper bounds than we could if we
insisted that we have a single automaton after every refinement operator in refruletype(r, i).

5.2.4 Answer Closure

While perhaps interesting to consider in isolation, this notion of “respecting simulated
information flow” has a rather glaring fault. Every program would pass the analysis as
defined so far, simply by taking O = ∅ and K = jH,Ho, because the above provides no lower
bounds on the set of possible answers O.130 While we said that O was supposed to be a
set (possibly encoded using the constraint mechanism just given) of optimistic types about
the program, we did not check that O actually was such a set! Let us consider how to do
so, now. Formally, then, we are revising our definition of respecting simulated information
flow to be an existentially-quantified conjunct: the existence of O and K as given above and
such that the additional constraints below hold of O.

As part of the above test for respecting simulated information flow, we fall just shy
of computing the set refruletype(r, nr) for each rule. Specifically, we are already computing
refruletype(r, nr − 1) for use within the definition of respecting simulated information flow;
another round through refruletype’s recursion will get us refruletype(r, nr). This set repre-
sents an upper bound (optimistic type) for the rule answers of r. (If the program respects
simulated information flow, as defined so far, then we can even say that these rule answers
are derived from permitted rule queries.) Notably, τ = refruletype(r, nr)⇃hr is a meaningful
quantity, especially when viewed as a dependent sum: it describes an upper bound on the
set of aggregands that this rule may contribute to each of (an upper bound of) its heads.

There are, however, at least two challenging aspects to any use of this τ . First,
aggregation is done per head, so we would like to compute something of the form

{⟨h, a(τ[{h}/1]⇃2)⟩ ∣ h ∈ τ⇃1},

for some approximation of aggregation, a. However, τ = Σt∈τ⇃1 σt may be a dependent
sum with an infinite domain (of heads) and may not have a finite partition for piecewise-
constancy of (σ⋅); our automata-based machinery offers us no general mechanism for com-
puting sets of the above form. Second, we are tracking only sets and so have no way to es-
timate the multiplicities of each value associated with a given head. Because refruletype(⋅, ⋅)
is computing the set of possible answers, attempting to replace our ⋅⇃hr with ⋅⇃@hr is unlikely
to help matters; we are not interested in the number of possible rule answers that give rise
to each result, but rather in the possible range of multiplicities that will be seen at runtime,
a fundamentally different question.

130It also provides no (non-tautological) upper bounds on K. For the moment, we continue not to do so;
later analyses will investigate the space of permitted queries within a program more precisely (§5.3).
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The first of these challenges can readily be overcome at the cost of some imprecision
in analysis. Rather than use τ directly, we can coarsen τ to permit such a finite partition;
that is, we can use some τ ′ = Ση∈H ⋃h∈η τh ⊇ τ , with H a finite partition of τ⇃1. By varying
the size of the partition H, one gets coarser or finer approximations of τ . In the most
extreme, but simplest, case, take H = {τ⇃1}, so τ ′ = jτ⇃1, τ⇃2o. Because µDyna rules tend to
have a good bit of programmer-provided structure in their heads, this may not be as poor
of an approximation as it might seem: ρ⇃head ⊇ τ⇃1 might be a reasonably “small” set of
items all of which may, indeed, generally behave similarly.

Before truly addressing the second challenge, let us ponder the most naïve solution
and see it through to the end. Having generated τ ′ as above, we see that each head h in
each η in H are treated uniformly, just as we had at runtime in §3.3. Knowing nothing
about multiplicities of results, we can nevertheless say that each element of τη = ⋃h∈η τh
occurs somewhere (inclusively) between 0 and ∞ many times. Despite the wide range of
uncertainty, it may still be possible to draw some conclusions: for example, if all input
values are integral, then their aggregation by summation is also certainly integral, null (in
the case of 0 of each), or ∞.131 We find ourselves wanting an approximation of the behavior
of each aggregator f , a function apxaggf ∈ ℘H → ℘H′ (“approximate aggregation”) such
that for any set τ ⊆ H and any bag β ∈ ℘+Ū∞τ (i.e., such that Uβ ⊆ τ) we have that
f(β) ∈ apxaggf(τ). Our observation above on summation thus manifests as constraining
a∑(τ) ⊆ N∪{null,∞} for any τ ⊆ N∪{∞}. (This is not a complete definition, as we might
also wish to special case a∑({0}) = {null,0}, for example.)

Armed with apxaggf for a rule’s aggregator, f ,132 and, supposing, for the moment,
that there are no other rules in the program, we can process τ = refruletype(r, nr), and in
particular its hr projection, into a more-directly useful quantity. Assuming, as above, that
τ⇃hr ⊆ Ση∈H τη, with H a finite partition of τ⇃head and τη defined for each η ∈ H, then
Ση∈H apxaggf(τη) is the set of items paired with their possible values, post-aggregation. In
order for O to truly be the set of possible answers, we will require that it be sufficiently
large that Ση∈H apxaggf(τη) ⊆ O. This, as is so often the case, is a recursive definition:
τη is defined as an upper bound on a projection of a subset of refruletype(⋅, ⋅), which is
in turn defined by O. Because we are not using equalities, but rather subset bounds, we
cannot appeal to the usual notion of fixed-point solutions to recursive equations, but we can
instead require that O be closed under this operation of computing refruletype(⋅, ⋅) and then
apxaggf(τη).

In the above, we confined ourselves to a single rule. Given multiple rules, we
can redefine the early quantities per-rule (by adding r indexes): τr = refruletype(r, nr) and
τr⇃hr ⊆ Ση∈Hr τr,η, with Hr and τr,η defined as above. However, while we could compute
each βr,η = apxaggf(τr,η) separately, we lack any good option for combining the resulting
partial aggregations. The only tool at our disposal for manipulating sets of aggregands
is apxaggf , but we know that, for each head h ∈ η, only one value from each βr,η will

131For simplicity, here and probably in the eventual Dyna standard library, we take the sum of infinitely
many non-zero values to be the single ∞, which is of ambiguous sign, i.e., neither positive nor negative. We
neglect any more sophisticated definitions like ζ-summation (e.g., Euler [56]).

132Recall that, while µDyna formally assigns each item an aggregator, we required in §3.3.2.1 that all
items in the head of any rule were assigned the same aggregator, and so we may sensibly speak of the rule’s
aggregator.
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actually arise, so our “0 to ∞” reasoning within apxaggf is rather loose. Instead, we
follow, by analogy, the disjoint-answers work done in §3.3.3. We can collect the possible
answers across all rules by computing a partition HΞ of ⋃r∈Ξ τr⇃head which associates each
η ∈ HΞ with the union of the appropriate bins from each rule’s partition. That is, we
take HΞ such that ∀η∈HΞ,r∈Ξ((η ∩ τr⇃head = ∅) ∨ (∃!η′∈Hr η ⊆ η′)), and associate each η with
τη = ⋃{τr,η′ ∣ r ∈ Ξ, η′ ∈ Hr, η ⊆ η′}. (Rather similar to the case of disjoin from block 3.2,
in §3.3.3, we take the set of possible contributions to items outside a rule answer’s head
to be ∅.) Further, we require that all items in each η ∈ HΞ have the same aggregator,
aggr(η) = selt(aggr(h) ∣ h ∈ η). From this, we can conclude that O′ = Ση∈HΞ

aaggr(η)(τη) is
an upper bound on the set of answers. As before, we would require that O be closed under
the operation that sends O to O′.

5.2.4.1 Cardinality Estimation for Improved Answer Closure

In the preceeding, we assumed that any bag of aggregands of the right type could arise
when it actually came time, at runtime, within the machinery of §3, to aggregate results
from rules. While correct, such reasoning is quite limited: it cannot exclude the empty bag
(and so a null result), and it cannot exclude infinite bags (and so ∞ as a result when
summing). Let us now spend a little time considering one approach to a tighter analysis.

We will want to know the answer to questions of the form “given a set τ and a
tuple of paths ⟨π1, . . . , πk⟩, how many t ∈ τ are there for each element of jτ⇃π1 , . . . , τ⇃πko?”
Such questions are of a kind with the AnswerFor oracle assumed in §3.4.1 and §3.4.3.6.
Thankfully, while AnswerFor needed to be exact, so that we would get the right answer,
here, we can tolerate some imprecision as, again, we are only interested in upper-bounding
possible answers. Thus, rather than a single multiplicity, we expect our question to be
answered with a set of multiplicities, e.g., “There are (inclusively) between 1 and 30 such
t ∈ τ for each j⋯o.” Let us proceed by example before giving a formalism for such reasoning.

Even the simplest µDyna rule, {(a⟨⟩ ↩ 2) ⇐ ⟨⟩}, provides an opportunity for useful
static analysis. In any program containing this rule, a⟨⟩ will never have an empty bag of
aggregands. We would like to conclude, in fact, that at least 1 copy of 2 is always present
(there may be more, from other rules). As most aggregators yield null only when applied
to ∅, this is sufficient to exclude null from the space of possible results. We would wish
to draw similar conclusions for each ajτo given a rule {(a⟨x⟩ ↩ 2) ⇐ ⟨⟩ ∣ x ∈ τ}.

In the presence of subgoals, several things must be considered:

1 If the head and result are independent of subgoals, e.g., {(a⟨⟩ ↩ 1) ⇐ ⟨r⟨x⟩ ↦ v⟩ ∣
x ∈ τ, v}, we wish to know the cardinality of the rule answers (i.e., of the subgoals).
The rule just given contributes *1@m+ to a⟨⟩ assuming that the subset of rjτo given a
non-null value has cardinality m. If we knew something about r/1, we may be able
to bound m; perhaps we know it is total (m ∈ {∣τ ∣}), a “one-hot” predicate (m ∈ {1}),
or that it has only finite support (m ∈ N∞ ∖ {∞} = N).

2 If the head covaries with subgoals, as in {(a⟨x⟩ ↩ 1) ⇐ ⟨r⟨x, y⟩ ↦ _⟩ ∣ x ∈ τ, y ∈ σ},
then the cardinality of the subgoal keys themselves are no longer interesting, but
rather the cardinality of subgoal keys conditioned on some already being specified. In
the example, we wish to know how many y exist for any choice of x. We may wish to
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split the domain of x, i.e., τ , to allow finer distinctions; e.g., perhaps only some τ are
associated with any ys at all.

3 If the value is non-constant, such as in {(a⟨x⟩ ↩ v) ⇐ ⟨r⟨x, y⟩ ↦ v⟩ ∣ x ∈ τ, y ∈ σ, v}, we
additionally want to partition our cardinality estimates by values: that is, we want to
know for each head, for each value, how many rule answers may occur?

Let us presume that we can approximate (i.e., bound, both from above and from
below) the number of answer terms—as opposed to potentially non-ground types—that will
return from a subgoal query. More specifically, let us assume that we can condition on some
paths into the subgoal, so that we are asking about the bounds on the number of answers
to each subgoal when these indicated paths are taken to have singleton projections from
the query (and therefore have singleton projections from the union of all answers). Given a
query κ, we know that its answers will be from κ ∩O. While we could manipulate formal
statements of the form “κ conditioned on the paths π⃗ returns (inclusively) between n and
m answers from κ ∩ O,” it costs us little to instead manipulate multiple, concatenative,
bounds on different subsets, as in “…returns (inclusively) between n1 and m1 answers from
α1 ⊆ κ ∩O and (inclusively) between n2 and m2 answers from α2 ⊆ κ ∩O and ….” We need
not require disjointness of the {αi ∣ i}. While we should be considering answer streams
without repeated elements (as returning the same answer twice would do nothing, given
the semantics’ and algorithms’ use of answer sets), for simplicity we consider samples taken
with replacement.

Evidently, we will be manipulating pairs of N∞ representing upper and lower
bounds. It behoves us to define a type for such pairs, with the second not smaller than the
first: B = Σn∈N∞{m ∈ N∞ ∣ m ≥ n}. Earlier, our aggregator-behavior-bounding function af
was an element of ℘H → ℘H′; we now wish for one which can consume multiplicity bounds
instead, i.e., elements of jB,℘Ho → ℘H′ such that apxaggf(⟨⟨n,m⟩, α⟩) ∋ x if there exists a
bag β ∈ ℘+Ū∞α such that n ≤ ∣β∣ ≤m and f(β) = x. (If α = ∅, then the only β is ∅, too, and
so the only x is null, regardless of the multiplicity bounds.) The concatenative bounds
above are seen to be finite bags of these kinds of bounds-annotated sets; we can extend
the definition of apxaggf to handle these, too: take apxaggf(*⟨bi, αi⟩ ∣ i ∈ Nk1+) ∋ x if there
exist {xi ∈ apxaggf(⟨bi, αi⟩) ∣ i ∈ Nk1} such that f(*xi ∣ i ∈ Nk1+) = x. (We have exploited
the AC-reducer property of f : we reduced sub-bags of the possible results implied by the
concatenative bounded-sets and then reduced the bag of results therefrom.)

Assuming we could obtain such an object describing the res projection of the rule
answer set (with singleton head projection), we would be in a grand position to bound the
possible aggregands to that head. One possible method for obtaining such would be to aug-
ment the definition of refruletype(r, nr) such that each refinement by O bounded the number
of terms would survive at runtime (i.e., were further considered by the search tree formed
by the solver’s refineRuleSuffix), assuming that the refinements to the left had reduced
the subgoals to the left to singletons.133 We presume the existence of a function sgc(κ, π⃗)
(“subgoal cardinality”) which can return bounds that correctly describe the behavior of the
query κ when the components at paths in π⃗ are fixed (i.e., are grounded). More specifically,

133That is, we are interested in bounding the out-degree of all nodes in the search tree corresponding to
the ith subgoal.
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what we mean is that, if sgc(κ, π⃗) = *⟨⟨ni,mi⟩, αi⟩ ∣ i+, with {αi ∣ i} disjoint, then, for
any choice of t⃗ where each ti ∈ κ⇃πi , the answer obtained from Lookup(κ[{t1}π1/⋯][tk/πk]),
where k = tlen(π⃗), must describe a set of pairs of items and their values containing between
ni and mi pairs from αi. (In the case of the ground reasoning of §3.2, the description
is overt: Lookup returns a finite set of items paired with their values. In the non-ground
systems of §3.3 and §3.4, Lookup returns finite encodings of infinite sets of items paired with
their values and some decoding is necessary to recover the set considered here.)134

We can now simulate the search tree of computeRule on the rule r and query κ using
this sgc function: each ⟨b,α⟩ in the return of sgc forms a branch of this tree. Letting b⃗ and
α⃗ denote the bounds and sets along a root-to-leaf path within this tree, the leaf associates
ρr[κ/head][α1/sg.1]⋯[αnr/sg.nr]⇃res with bounds formed by the monoid product of the
bounds b⃗, where ⟨n1,m1⟩ ⊗ ⟨n2,m2⟩ = ⟨n1 ∗ n2,m1 ∗m2⟩ and the identity is ⟨1,1⟩. The
paths π⃗ for each call to sgc are obtained by considering equality constraints within ρr. In
a rule like {(f⟨x⟩ ↩ v) ⇐ ⟨g⟨x, y⟩ ↦ a,h⟨c, y⟩ ↦ a,⋯⟩ ∣ ⋯}, the first call to sgc, at the root
of the search tree, will take π⃗ = ⟨1.1⟩ (the first child of the key component of the kv-pair),
corresponding to the variable x, which is presumed to be assigned by the head; the second
call will take π⃗ = ⟨1.2,2⟩, corresponding to the variables y and a, which have both been set
by sg.1. The bag containing all the leaf-associated bounds forms a concatenative bound on
the aggregands this rule contributes to each element of κ and may be combined with the
results of this analysis on other rules and then reduced as above.
Example 51: Let us revisit the four example rules we gave at the start of this section to
briefly study the system we have just given.

0 For {(a⟨⟩ ↩ 2) ⇐ ⟨⟩}, there are no subgoals and so the entire “search tree” collapses
to being just the root, leaving us with *⟨{2}, ⟨1,1⟩⟩+ as the only bound.

1 For {(a⟨⟩ ↩ 1) ⇐ ⟨r⟨x⟩ ↦ v⟩ ∣ x ∈ τ, v}, there is only one internal node in the search
tree; if sgc(rjτo, ⟨⟩) returns *⟨αi, bi⟩ ∣ i+, then the result of the above simulation of the
search tree is *⟨{1}, bi⟩ ∣ i+.

2 In {(a⟨x⟩ ↩ 1) ⇐ ⟨r⟨x, y⟩ ↦ _⟩ ∣ x ∈ τ, y ∈ σ}, there is still just one internal node, but
now we use sgc(rjτ, σo, ⟨1.1⟩), capturing the knowledge that x has been set by the
head.

3 When the value is not constant, as in {(a⟨x⟩ ↩ v) ⇐ ⟨r⟨x, y⟩ ↦ v⟩ ∣ x ∈ τ, y ∈ σ, v}, the
result of the res projection at the leaves of the simulation above will depend upon the
α on the root-to-leaf path under consideration. We can see that the system properly
transfers bounds on the number of answers to the r/2 subgoal into bounds on the
number of aggregands contributed to the head.

◊

134To stave off concerns about vacuity of definitions, one always has the option of defining sgc(κ, π⃗) =
*⟨O ∩ κ, ⟨0,∞⟩⟩+, which recovers the “0-to-∞” behavior of the earlier system.

149



5.2.5 Aside: Constancy

It is worthwhile to track an under-estimate of the set of queries whose answers will never
be revised within a solver’s runtime. Items which are guaranteed to have only one possible
value are said to be constant. Such items include any inputs that are promised to be set
once (in a sense, prior to the solver’s startup). In this class we find things like the definitions
of arithmetic operators. Not all constant items need be quite so Platonic, however: even
user-specified parameters which vary over time may be included, provided that no instance
of the solver sees the variance.

Once we move from Iinp to Ider, the notion of constancy bifurcates. Because the
solver may, as per §2.5.2, guess a derived value and revise its guess later, even items which
are, mathematically, guaranteed to have only one fixed-point solution might still trigger
forward-chaining. Still, there is likely some utility to acknowledging that there is exactly
one converged value of these items; we call such items constant-at-convergence. Any
items which are acyclically defined solely by constant-at-convergence items are themselves
constant-at-convergence, thanks to the guarantee of unique solutions to expression trees.135

Cyclically defined items are constant only when it can be shown that there is a unique
fixed-point to all cycles participating in the definition (i.e., including transitive ancestors);
we generally consider such analysis to be not worth-while.

Such constancy-at-convergence is, however, of little utility to our eventual goal of
code generation, wherein we might have hoped that an item being constant meant that we
could elide forward-chaining machinery for it. We call the subset of constant-at-convergence
items whose values are guaranteed to never be revised, even by guessing, immediately-
available. All constant Iinp items are immediately-available. Those acyclically-defined Ider
built up exclusively from immediately-available items are so as well, so long as the solver
promises to not guess their value during backward-chaining. These items will not need
forward-chaining machinery generated for them.

5.2.6 Related Work

Refinement Types Our membership constraints are a kind of “refinement types” (see,
e.g., Freeman and Pfenning [69], Lovas [118], and Vazou et al. [182]). Given a type Jσ, cbyK,
cby generates formulae which hold of elements of the unrefined (presumably, TA-based) type
σ. These refinements are conditional, whereas typical refinement types are typically not
(e.g., the standard example of a refinement type is the set of even naturals {n ∈ N ∣ n even},
where the predicate “n even” holds of all members of the subset). Dunfield [46, §2.3.5]
introduces a notion of “guarded types” which convey type information only when some
predicate holds; the first example of such given therein is that of a list type constructor,
which takes the length of the desired lists and, as such, is only sensibly typed when this
argument is ≥ 0.

Prolog Type Systems Hill and Topor [94] describes a Mycroft-O’Keefe-style system for
SLDNF and incorporates a notion of subtyping. In the course of this work (Ex. 1.4.13,

135One must, however, be careful computationally, when inexact values are in play. To be sure of recovering
the same result, one must use the computational operations in the same order every time.
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in particular), it is shown that, in the presence of set-theoretic (“inclusion”) sub-typing,
that, essentially, it is unsound to erase type information at runtime. In Dyna, this amounts
to requiring that our runtime system indeed represent the type of free variables (i.e., of
non-singleton projections of θ and ε) so that Lookup and refinement behave according to
their set-centric specifications.136

Schrijvers et al. [162] attempts to bring type systems of other languages into Prolog
(SWI and YAP, in particular). While it glosses over some details, it does have the usual
features one might expect of a modern type system: prenex polymorphism, recursive types,
a higher-order pred type, and any for H. It remains in the Mycroft-O’Keefe school of type
systems.

Hadjichristodoulou [86] describes another, recent type system for Prolog. It ex-
tends the traditional Mycroft-O’Keefe systems with universally- and existentially-quantified
subtypes, giving a sense of “directionality” to types. Universally-quantified subtypes are
used to indicate that rules invoking a subgoal get to refine the type as they wish, while
existentially-quantified subtypes are used to convey that the subgoal may produce any sub-
set of the upper bound. The intuition is that predicates like list append should be as-
signed universally-quantified types while scans of the input database should be assigned
existentially-quantified types. This directionality is intended to ensure that the recipient
of a term, be that either the subgoal definition or the successive subgoals, is prepared to
deal with any eventualities. Our system instead assigns, essentially, two types to subgoals,
namely, refinement by O and by K; from these two we have a similar form of directionality,
without needing to bring additional quantifiers into play. A stronger sense of procedural
execution, and of preparedness for eventualities especially, for our system is forthcoming
in §5.3; in particular, we may generate new subgoals to ensure that information flow is
well-typed.

Prolog Type Systems using Tree Automata We are not the first to recognize the
applicability of tree automata to analysing the grounding set of a Prolog program. As early
as 1990, Heintze and Jaffar [89] recognized the utility of finitely-presented, recursive descrip-
tions, i.e., (non-deterministic) tree automata, for (optimistic) types for Prolog programs.
Frühwirth et al. [70] uses a restricted form of Prolog as the meta-language for describing
(optimistic) types for Prolog programs; the restrictions give these programs precisely the
expressive power of regular sets and the algorithms given make use of “alternating” tree
automata [165] (the curious reader also directed to Comon et al. [35, Ch. 7]; theorem 7.4.1
therein shows that alternating tree automata are exactly as expressive as regular bottom-
up tree automata). Talbot, Tison, and Devienne [171] builds on Frühwirth et al. [70] and
explicitly uses tree automata in its implementation.

136In particular, what Hill and Topor [94] shows in Ex. 1.4.13 is that erasing type information and using
an “untyped” runtime as provided by, e.g., the WAM (§4.1) results in additional answers that should be
excluded by the type of the query.
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5.3 Planning Conjunctions
The analysis considered so far concerns itself with approximating the circuit described by
a µDyna program, rather than on the particular actions taken by a solver algorithm. As
brought up in §3.2.1.1, however, when a solver algorithm goes to evaluate the impact of a
rule in a program (and, in particular, on a query set of items), steps must have been taken
in advance to ensure that this computation is possible and terminates.

We can construct a problematic example without leaving the confines of our high-
level language. Consider the two Prolog rules

1 length(nil,0).
2 length(L,N) :- L = cons(_,T), length(T,M), N is M + 1, N >= 0.

B. 5.1

While this appears to be a sensible definition for the length of a list built up of nil/0

and cons/2 functors, it works only when given a list. That is, if invoked as the subgoal
length(cons(a,cons(B,cons(c,nil))),N), the recursive evaluation of backward-chaining
will leave B unbound and will bind N to 3. If invoked as length(L,1), we would expect
to obtain a finite stream containing solely the answer that L is bound to cons(X,nil) (for
some fresh variable X). Instead, because Prolog always executes its subgoals left-to-right,
we find that length(L,1) will call length(T,M) with both T and M free; while the initial
call will, indeed, return the answer length(cons(X,nil),1), it will then not terminate,
forever searching for another way to build a length-1 list. While any individual element of
the set represented by length(T,M) is a sensible query, as are those for which only one of
the arguments is ground, the entire set represents a query which is certain to have infinitely
many answers for which there is no finite stream representation.137 In fact, there is no single
order of subgoals such that both query modes of length/2 queries (list-known or length-
known) can be supported. In a Prolog standard library, meta-logical tests are invoked to
probe whether the arguments to a length/2 query are variables or bound.138 In the interest
of retaining the declarative nature of the language, we would like the compiler (rather than
the programmer) to generate different code for the different query modes and to use analysis
of the program to assign a call-compatible implementation to each subgoal invocation.

Call-compatibility concerns also arise at the “procedural fringe” of the language.
Some built-in items within Iinp—for example, those describing arithmetic facts—are han-
dled specially by the solver. The solver in this case returns a stream of results computed by
some procedural implementation rather than by program rules. A Prolog solver may refuse
to answer certain queries of built-in items, often because the answer streams would be in-

137The answer length(cons(X,nil),1) to the query length(L,1) also represents infinitely many answers
(namely, each substitution for X), but the stream itself is finite.

138The curious reader is pointed at, for example, the SWI Prolog implementation at http://www.
swi-prolog.org/pldoc/doc/_SWI_/boot/init.pl?show=src#length/2 or the XSB Prolog implementa-
tion at https://sourceforge.net/p/xsb/src/HEAD/tree/trunk/XSB/lib/lists.P. Both use Prolog’s cut
control-flow operator (written as the subgoal “!”) to explicitly prune the search tree, achieving an “if-then-
else” partitioning of search strategies based on whether the list or the length is known. The implemen-
tation in https://sourceforge.net/p/xsb/src/HEAD/tree//trunk/XSB/syslib/basics.P uses an explicit
if-then-else construction which relies, underlyingly, on similar mechanics. All implementation use meta-
logical predicates such as var/1, which is true only when its argument is currently uninstantiated (i.e., a
variable), or integer/1, which is true only when its argument is instantiated to an integer.
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finitely long and would cause the solver to not terminate. Consider executing the (Prolog)
subgoal sequence B=2, C=1, A is B+C: by the time the solver invokes the is/2 subgoal
query, that query has been specialized to A is 2+1, which easily returns α = {3 is 2+1}.
If, however, the subgoal sequence had been reversed, the un-specialized is/2 query would
have been obligated to produce an infinite answer summarizing all addition facts. Encod-
ing that answer into a finite stream (so that the solver terminates) would require a highly
expressive representation for non-ground terms (an approach adopted in constraint logic
programming, e.g., Colmerauer [33]). Most Prolog implementations instead generate an
instantiation error (a runtime exception) if this kind of problematic query arises at run-
time. Again, to retain the declarative nature of the language, we reject the notion of an
instantiation error that arises only because of procedural concerns (e.g., subgoal ordering);
either the program can be transformed into executable form or the program is ill-specified
(e.g., for some query, there is no suitable subgoal order) and should be rejected by the
compiler.

Static analysis of programs and reordering of subgoals can rule out exceptional
cases that might arise at runtime. The compiler can, with such static work, ensure that
the two query modes of length/2 above always operate inductively, by destructing on a
given list (spine) or by decrementing a natural number. Similarly, it can ensure that,
within the execution of a query mode, there will be no instantiation-faulting subgoals.
These guarantees permit the use of specialized code to implement particular query modes;
conditions known to be statically true are left untested in these specializations, typically
resulting in performance gains relative to a generic runtime implementation.

Prolog static analysis of this form has a rich history, stretching back decades: Apt
and Marchiori [12] claims that “modes” as we know them are due to Mellish [123]. Our
effort follows most closely that of the Mercury project [124], and Overton [137] in particular,
and can be thought of as a set-centric retelling of this work as applied to weighted logic
languages. Working on sets directly gives us some generalization power, and obviates the
need for a separate notion of variable aliasing within the analysis (see, e.g., Overton [137,
§5]), as that is handled by the underlying tree (set) automata;139 however, such gains come
at the expense of tractability.140

5.3.1 Procedures, Instantiation States, and Contents

Recall that Lookup from §3.3 and §3.4 took a set of kv-pairs encoding a query—a request
for item names and associated values—and, in turn, returned zero or more sets of kv-pairs
encoding the corresponding answers—those item names and associated values that were, at

139However, as pointed out in Overton [137, §5.4.1], once one begins to consider a particular solver runtime
system, it may, in fact, be necessary to augment analysis to track whether certain positions within a runtime
type are subject to equality constraints or not. Certain operations within the solver—certain, typically faster,
special cases of unification, especially—may require that a subterm be independent from other subterms,
and so must only be applied at positions π with singleton projections or devoid of constraints that reference
trees both within and without π. For present purposes, we are ignoring this possibility and assume that the
runtime automata implementation will sort out anything asked of it.

140Throughout Overton [137], the languages used for abstract interpretation are given set-theoretic con-
crete readings. As mentioned in §5.1, we do most of our work in the concrete domain and leave to the future
the task of designing suitable abstract representations.
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least at the present point in the program’s evolution, true. We gave Lookup a complicated,
dependent function type with domain of ℘(jH,Ho) and presumed that it could answer any
query we gave it (subject to some informally-defined notion of planning). As we see from
the above examples, this presumption of a single Lookup function is too imprecise; we must
give more specific procedures which handle particular “shapes” of queries, i.e., particular
subsets of ℘(jH,Ho).

The relevant attribute of a subgoal under consideration in both cases above is
its instantiation state. (Following Overton [137], we use the shorthand inst.) That is,
we wish to know which parts of a subgoal query are known and which are uncertain (and,
when uncertain, how uncertain, i.e., over what domain). The known aspects can be pattern-
matched within rules, used by the “procedural fringe” items, and even used by conditional
behavior within the solver. If a subgoal is entirely known (i.e., is a singleton subset of
jH,Ho), the solver’s action reduces to confirming that the given item (key) indeed has the
given value (or returning the empty stream, causing refineRuleSuffix to consider other rule
queries, if any).141 Uncertain aspects of the query, on the other hand, must be explored.
An uncertainty in the value component may cause the solver to have to compute, rather
than merely confirm, an item’s value. An uncertainty in the key component will cause the
solver to find the set of items and associated values that match the query.

In Prolog, an instantiation state describes which variables have become bound to
other structures (which may, in turn, involve more variables); one can think of insts as
being properties of some input rule (or term, more generally) and the substitutions made
thereupon. In our set-centric retelling, we are interested in knowing when every tree in a
type shares a root functor (e.g., fjτ1, . . .o) or when the projection along a given path is a
singleton set (e.g., ⋅⇃1 applied to fj{t}, τ2, . . .o).

The especially prognosticative reader may, in light of the above, anticipate our
reintroduction of our Tree Set Automata, or at least their transition rules, from §4.4. Each
set constructed (from other sets) by a bound f ⟨τ1, . . . , τn⟩ (or bound⊆ f ⟨τ1, . . . , τn⟩)
transition rule contains exclusively trees rooted by f/n ∈ F . A ground transition from
a tree state to a set state generates singleton sets; when combined by bound transitions,
projection along appropriate paths remains a singleton set (or becomes empty, as might
happen if the empty set is selected elsewhere within the bound transition, or as might
happen in an IRTSA when global constraints are taken into consideration). free and
subtype transitions encode two different degrees of uncertainty about subterms. A free τ
represents a subterm certain to be otherwise unbound, i.e., a free variable, while subtype τ
represents not only uncertainty within the query, but even uncertainty of the exact shape
of the query. Thus, we see that the form of our TSA of §4.4.1 and §4.4.2 are well-suited for
encoding the kind of knowledge we require about subgoals when we attempt to dispatch
to a sufficiently-capable procedure.

In order to reason inductively about refineRuleSuffix, we require knowing not
just what a query procedure can take as input, but the kinds of answer streams it might

141It is also not incorrect for the solver to return a stream containing only empty sets or even sets of kv-pairs
whose intersection with the query is empty; both of these alternatives would cause the set of potential rule
answers to become empty, again triggering refineRuleSuffix to move on. While correct, we generally
consider these to be inferior alternatives to merely returning an empty stream.
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return. There are numerous dimensions we may care about here, but chief among them is
the shape of the answers within the stream. That is, we care about the instantiation states
of the answers as well. In Overton [137] and most Prolog mode analysis, each procedure is
associated with its own possible output instantiation states. However, because we view our
program as specifying a map from items to values, we believe that, given a program and
a query instantiation state, there is only one possible corresponding answer instantiation
state. That is, we believe that it is more appropriate to describe the map itself with an
instantiation state, called the contents C.142 Then, the answers to any query set κ given
to Lookup will certainly be from the abstract unification of {κ} and C, i.e., {κ} ∩× C. During
analysis, when κ is unknown, we instead know the query instantiation state K ∋ κ, and so
model the answers as coming from K ∩× C.

Our analysis mimics that of our grounding set analysis (§5.2). Just as that analysis
assumed access to an upper-bounding answer set α, we assume access to the upper-bounding
answer inst C. So armed, we approximate the behavior of computeRule(r,κ ∈K) with a
function which returns the set of possible rule answers (i.e., the instantiation states of the
µDyna rule ρr) after processing the first i subgoals. As before, we do this by approximating
the action of the recursive refineRuleSuffix core of computeRule. At the beginning of
execution of the rule, there is precisely one possible answer set, ρr itself, i.e., the instantiation
state is free ρr. We then specialize by the knowledge of possible query heads K⇃1 to obtain
the instantiation state after i subgoals have executed:

refruleinst(r,K, i) def= {ρr}[K⇃1�head][C�sg.1]⋯[C�sg.i] (5.1)

In such a state, we wish to find a procedure for the (i+1)th subgoal, whose instantiation state
is refruleinst(r,K, i)⇃sg.i+1. refruleinst is an approximation of refineRuleSuffix in that every
invocation of its success callback (contribRuleAnswer in listing 3.2, applyV in listing 3.3) is
an element of refruleinst(r,K,nr)⇃res.

There is nothing special about the left-to-right order; it is merely syntactically
convenient. We could, instead, speak of a tuple of subgoal indices having been visited:

refruleinst(r,K, v⃗) def= {ρr}[K⇃1�head][C�sg.v1]⋯[C�sg.vtlen(v⃗)]. (5.2)

The instantiaton state of the ith subgoal having answered the subgoals indiciated by v⃗ is
refruleinst(r,K, v⃗)⇃sg.i. If ever refruleinst(r,K, ⋅) is ∅ or {∅}, then there are certainly no
answers from the rule r for the query K and we need not consider that pair further.

Now, at last, we arrive at the heart of planning. Just as C is our assumed analogue
to our answer type approximation α, we will assume that we have been given a procedure
table,P, whose entries describe permitted subgoal query modes.143 The task of the planner,
given a rule r and a query inst K, is to find an order of the nr subgoals thereof, such that, at
the time each is made, it is compatible with the permitted procedures. Again, just as with

142We again deviate from our usual typographical convention (this time, that of using capital Roman
letters for instantiation states), as we additionally feel that C is sufficiently meaningful that it deserves a
more distinguished symbol.

143For simplicity of exposition, we identify a query procedure and its input inst. In practice, one may
wish to permit multiple procedures at the same inst, and so P entires would become pairs of input insts and
procedure names.
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grounding set analysis, we assume that these K come from our permitted queries, so K ∈P.
If we take compatibility to simply be inclusion in P (and insist that ∅ ∈P), then our formal
requirement is ∀r∈Ξ∀K∈P ∃v⃗∈(Nnr

1 )nr (∀i∈Nnr
1
(∀i,j vi ≠ vj) ∧ refruleinst(r,K, ⟨v1, . . . , vi−1⟩)⇃sg.vi ∈

P). (The first half of the conjunct simply ensures that no subgoal is revisited.)
There is no fundamental reason that a single order must be used for all results,

despite that we have assumed as much for simplicity of exposition. The planner is free to
partition the inst refruleinst(r,K, ⟨v1, . . . , vi−1⟩) and consider each subset separately; at run-
time, the solver must test which case has arisen and dispatch to the appropriate remainder
of the plan. Such capability might be especially of interest within an optimizing compiler,
where, even if different orderings of subgoals are not required, the ability to reorder subgoals
may allow the planner to generate more performant plans for one or all branches. Similar
behavior is considered within a subgoal call, below, with the proc-case rule.

5.3.2 A Little Language for Call Compatibility

What, exactly, do we mean when we say that the planner ensures that a subgoal is “com-
patible” with the available procedures? We mean that there is a piece of procedural code
capable of taking any type within an inst and determining the subset thereof which is jus-
tified by the current state of other items within the circuit (by, ultimately, either Lookup
of these current states in the memo table and/or backward-chaining Compute-ation). In
general, given a procedure for answering some inst, I ∈P, there are several “implicit proce-
dures” that wrap this procedure and allow it to be used to resolve subgoals in some other
inst, I ′. To detail this “wrapping,” we construct a little procedural language, an exten-
sion of the λ-calculus, for manipulating sets of terms; we give a proof system for deriving
implicit procedures within this language. Our proof system is neither deterministic nor
syntactically-driven, so will, in practice, be backed by heuristic search.

5.3.2.1 Call Adaptor Language

The syntax of our adaptor language is one of expression trees (E) built using the following
grammar. Herein, I ranges over insts and x over variables.

E ::= x ∣ ℘H ∣ E (E) ∣ fjE , . . . ,Eo ∣ case x of {Ii ↦ E ∣ i}
∣ call I ∣ upcast I I ∣ (upcast I I)−1 ∣ embed I I ∣ filter E E

The values (i.e., irreducible expressions) of this language are defined similarly:

V ::= ℘H ∣ fjV, . . . ,Vo ∣ case x of {Ii ↦ E ∣ i}
∣ call I ∣ upcast I I ∣ (upcast I I)−1 ∣ embed I I

Static semantics of this language are given by the ⊢pcs judgement in figure 5.1 and (big-step)
dynamic semantics are given by ⊢pcd ⋅ ⇓ ⋅ in figure 5.2. We define, as syntactic sugar, λxe to
mean case x of {_→ e}, that is, a case analysis with only one possible outcome. Similarly,
we define function composition f ○ g as sugar for λxf (g (x)).
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5.3.2.2 Generating Call Adaptors

We define a judgement C;P ⊢proc e ∶ I which can be read as “given contents C and procedure
table P, the call compatibility language expression e answers the query with input inst I.”
(By definition, it yields answers in I ∩× C.) Below, we give inference rules of the form

x y
z l,

which should be read as “the inference rule l constructs a proof of z from proofs of x and y.”
Occasionally, we will need, as preconditions, proofs of several related assertions; we write
“(∀⋯)⋯” to indicate that each quantified set of values requires its own proof. Our inference
rules tend to be named by a composition of the judgement they define (e.g., proc, uc) and
some salient feature or syntax upon which they operate.

1 The simplest thing that can happen is that the current subgoal instantiation state (I)
is already exactly known to be possible, backed by some procedure p in the procedure
table:

I ∈P
C;P ⊢proc call I ∶ I proc-call (5.3)

2 An only-slightly-more-involved possibility is that the procedure table may have an
entry capable of responding to a strict superset instantiation state I ′ ⊋ I. In this case,
we must generate not only the call, but a wrapper which first upcasts all of I into I ′,
calls the existing procedure, and then downcasts the results from I ′ ∩× C back to I ∩× C.
This last operation, despite the apparent risk of losing an answer, is sound, as we will
show in the next section.

I ⊊ I ′
⊢uc upcast I I ′ ∶ I → I ′

uc-subset
(5.4)

⊢uc u ∶ I → I ′ C;P ⊢proc p ∶ I ′ ⊢uc v ∶ I ∩× C→ I ′ ∩× C

C;P ⊢proc v
−1 ○ p ○ u ∶ I

proc-upcast
(5.5)

We rely on a judgement ⊢uc to provide our upcast procedural code; it may be read
similarly to ⊢proc but needs no context. There is no utility in permitting proc-upcast
recurse directly to itself; any such derivation can be rewritten by fusing together the
two upcasts into one and the two downcasts similarly.

3 It may be that no single option in the procedure table covers a call we wish to make,
but that we can condition on the actual query made at runtime and dispatch to a
procedure capable of handling that query. That is, if we can find a covering (not
necessarily a partition) of the inst I from other procedures, then we can answer any
query τ ∈ I (assuming that we can test τ ∈ Ii for each cover element Ii). It is not
required that the case analysis pick any specific i such that τ ∈ Ii; it may even be
nondeterministic at runtime.

I1 ∪⋯ ∪ Ik = I (∀i)C;P ⊢proc pi ∶ Ii (∀i) ⊢uc ui ∶ Ii ∩× C→ I ∩× C

C;P ⊢proc case τ of {Ii ↦ ui(pi(τ)) ∣ i ∈ Nk1} ∶ I
proc-case

(5.6)
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4 The operations so far have been at the level of whole queries; we are able to look
for procedures accepting larger (proc-upcast) or smaller (proc-case) instantiation
states. Another possibility is that there may exist a procedure, p, capable of handling
a subsuming instantiation state, I ′, i.e., one that contains supersets of the sets in the
intantiation state we seek to handle, I. To avail ourselves of p, we must widen or
embed our queries into queries it understands and then filter any sets that result to
remove extraneous answers.

⊢ee embed I I ′ ∶ I → I ′ ⊢uc u ∶ I ′ → I ′′

⊢eu u ○ embed I I ′ ∶ I → I ′′
embed-up ∀τ∈I ∃τ ′∈I′ τ ⊆ τ ′

⊢ee embed I I ′ ∶ I → I ′
embed

(5.7)
⊢eu e ∶ I → I ′ C;P ⊢proc p ∶ I ′

C;P ⊢proc f ∶ {junifyjτ, σo,truejoo ∣ τ ∈ I ′ ∩× C, σ ∈ I}
C;P ⊢proc λτfilter (f ○ junifyj⋅, τo,truejoo) (p(e(τ))) ∶ I proc-filter

(5.8)
In particular, these adaptor rules let us use a procedure expecting a free τ ′ query
to answer queries for any τ ⊆ τ ′, so long as we can also find a procedure which lets us
filter the results (elements of I ′ ∩× C = free τ ′ ∩× C) for just their results within τ .

In the above, our auxiliary judgements (⊢ee, ⊢eu, and ⊢u) were given rules that
enforced only set-theoretic conditions on the procedural code they considered. In an ac-
tual implementation, one must take additional constraints into consideration, including the
ability to (efficiently) carry out the required operation. For example, if an implementation
derives inst-specific storage layouts for its terms in memory, the operation of upcasting τ ∈ I
to τ ∈ I ′ may be quite expensive, as it may involve unpacking and repacking the representa-
tions of τ in the two layouts. The system given above remains sound (though less capable)
if these auxiliary judgements are arbitrarily otherwise constrained, so implementations are
free to add their own requirements.

5.3.2.3 Soundness of Generated Adaptors

Theorem 3: Under the assumptions (⊢uc u ∶ I → I ′) ⇒ ∀τ∈I τ = uτ , (⊢eu e ∶ I →
I ′) ⇒ ∀τ∈I τ ⊆ eτ , case executes exactly one of its options in all cases, and the type
{⟨unify⟨x,x⟩,true⟨⟩⟩ ∣ x ∈ H} is both always provable at runtime and the only set in C
containing unify/2 terms paired with true⟨⟩ values, then, if all procedures in P map an
input τ ∈ I to the set of answers C ∩× {τ} ⊆ C ∩× {τ} ⊆ C ∩× I, then so do all procedures derived
by ⊢proc.

Proof. This proof is inductive on the last rule used in the call compatibility derivation.

proc-call By supposition.

proc-upcast By assumption and uc-subset, u{τ} is just {τ} in a different inst. By induc-
tion, p sends this to C ∩× {τ}. This is ⊆ C ∩× I and will therefore be within the
total portion of the downcast v−1, and so (v−1 ○ p ○ u) sends {τ} to C ∩× {τ}.
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proc-case Because ∩× preserves subsets and ∀i Ii ⊆ I, we know that ∀i ⊢uc ui ∶ ⋯ will be
derivable (by uc-subset). Exactly one pi will be invoked for a given input τ ;
this procedure, by induction, will produce the set of answers C ∩× {τ} which
will then be upcast to the right type.

proc-filter Combining assumptions yields that (p○e) sends τ to the stream C ∩× {e(τ)} ⊆
C ∩× I ′. The subsequent filter builds types in the query inst

{{⟨unify⟨t1, t2⟩,true⟨⟩⟩ ∣ t1 ∈ σ, t2 ∈ τ} ∣ σ ∈ C ∩× {e(τ)}}.

Unification with {⟨unify⟨x,x⟩,true⟨⟩⟩ ∣ x ∈ H} ∈ C, by executing the query,
yields

{{⟨unify⟨t, t⟩,true⟨⟩⟩ ∣ t ∈ σ ∩ τ} ∣ σ ∈ C ∩× {e(τ)}},

which equals (by assumption on e), {{⟨unify⟨t, t⟩,true⟨⟩⟩ ∣ t ∈ σ} ∣ σ ∈ C ∩×
{τ}}. We can see that the types which survive the filter and projection are
exactly those in C ∩× {τ}.

5.3.3 Relating Grounding Set Analysis and Conjunction Planning

The systems of §5.2 and this section have been presented as orthogonal developments.
However, there should be some association between the possible answer types, C, and the
possible answer terms, α. Similarly, we should expect a relationship between the permitted
query insts, P, and the permitted query terms, κ.

● Because α is supposed to be a superset of all possible answers, we may wish to ensure
that it is a superset of ⋃C. While we have not discussed the appropriate closure of C,
it stands to reason that whatever analysis we perform with knowledge of types should
be at least as precise as the analysis we can perform without types.

● Dually, we should permit fewer queries in our more-informed analysis, and so should
set ⋃⋃P ⊆ κ.

● Internally to the two systems, it is the case that α ⊆ κ and ⋃C ⊆ ⋃⋃P.

5.3.4 Planning Forward-chaining

The bulk of the analysis discussed above is written from the perspective of backward-
chaining, where a known query from K has specialized the rule answer inst before the
planner gets to work. However, the situation in forward chaining is very similar. To plan
the propagation of a notification arriving at the ith subgoal, free ρ is refined at sg.i using
the information from the notification (the head is left otherwise unrefined). The remaining
subgoals are planned as if backward-chaining, and then the hr projection is used to form
the resulting update object(s).

The 2013 prototype of Dyna 2 implemented this algorithm (with a very simplistic
inst system). It did not have the explicit message representations of §3.6.2.1; instead,
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(∀i)Φ ⊢pcs ⊢pcs ei ∶ τi
Φ ⊢pcs ⟨e1, . . . , en⟩ ∶ jτ1, . . . , τno

pcs-tup
(∃n) Φ ⊢pcs e ∶ jτ1, . . . , τno k ≤ n

Φ ⊢pcs ⋅⇃k (e) ∶ τ
pcs-proj

(∀i) ⊢pcd ei ⇓ Vi
⊢pcd ⟨e1, . . . , en⟩ ⇓ ⟨V1, . . . , Vn⟩

pcd-tup ⊢pcd ⋅⇃k (v) ⇓ V ⇃k
pcd-proj

⊢s split I J⃗ ∶ τ
Φ ⊢pcs split I J⃗ ∶ τ

pcs-split ∀i .Φ ⊢pcs ei ∶ ◇Ii ⋃i Ii = I
Φ ⊢pcs merge {e1, . . . , en} ∶ ◇I

pcs-merge

⋃i σi = τ ∀i,j≠i σi ∩ σj = ∅
⊢pcd split (τ) ⇓ σ⃗ pcd-split

∀i . ⊢pcd ei ⇓ Vi
⊢pcd merge {e1, . . . , en} ⇓ ⋃i Vi

pcd-merge

Figure 5.3: Addenda to figures 5.1 and 5.2 for the language additions for handling query split and merge.
The auxiliary judgement ⊢s is defined in equation (5.10) (in §5.3.5).

because it was a fully-materialized system (i.e., the memo table never stored unk), it ran
every propagator twice, once with the old value and once again with the new value, giving
it a kind of DRed-like feel (recall §2.6). The hr projection obtained from the first, old-
value-based, pass removed aggregands from child items, while the second pass added (new)
ones. The prototype was, otherwise, much as suggested in §3.2; notably, it ensured that
each propagator generated finitely many updates to items.

5.3.5 Aside: Query Split and Merge

In the above proof of soundness of our adaptor logic, we had to assume a seemingly unusual
requirement of the behavior of our runtime system, specifically, that the only representation
of true⟨⟩-valued unify/2 items in the system is {⟨unify⟨x,x⟩,true⟨⟩⟩ ∣ x ∈ H}. (We did
not, however, have to assume that every possible subset of ℘(junifyjH,Ho,Ho), or even
℘(junifyjH,Ho,truejoo), had a usable procedure inP; the use of proc-filter is conditional
on there being such a procedure.) Had we assumed that there could be several different
answer types covering unification (so that, instead, merely, junifyjH,Ho,truejoo ∩ (⋃C) =
{⟨unify⟨x,x⟩,true⟨⟩⟩ ∣ x ∈ H}), we would have found that proc-filter could have split our
responses from the larger procedure. That is, while it may have been that {α} = {τ} ∩× C,
and so our notion of a procedure would require that any procedure handling τ would have to
have an output inst containing α, our use of proc-filter may have instead returned subsets
of α corresponding to the fragments found within the different unify/2-keyed kv-pair types
of C. Importantly, this would not have been incorrect, in the sense of violating the semantics
of the language. It would merely frustrate analysis: we could no longer assume that the
results from a procedure with input inst I would be given by I ∩× C, but rather, we would have
to assume the subset-closure of that result, i.e., sc(I ∩× C) where sc(T ) def= {α ⊆ τ ∣ τ ∈ T}.
This, in turn, would mean that we would have to redefine refruleinst as

refruleinst(r,K, v⃗) def= {ρr}[K⇃1�head][sc(C)�sg.v1]⋯[sc(C)�sg.vtlen(v⃗)]. (5.9)

This is readily seen to be equivalent to asserting that C is itself subset-closed and so repre-
sents a loss of precision within our static analysis. Given the options, we consider imposing
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the constraint on unify/2-keyed kv-pair sets in C to be the less drastic option.
Nevertheless, the requirement on procedures (that they send τ to {τ} ∩× C) might

only be required of procedures in the set P. That is, so long as we can guarantee by the
end of aggregation (see §5.4) that the outcome of a plan for the query inst I has generated
answer types in I ∩× C, we may find the terms of those types by hook or crook. We can
consider splitting queries into a finite collection of sub-queries, each of which can then
be discharged by an existing procedure, and the results can be merged. This requires a
relatively simple modification to the analysis above.

We augment our call adaptor language with new powers. We enrich it with tuples,
adding, as expressions (E), both a constructor form, E∗, and eliminator forms ⋅⇃n (with
n ∈ N); as might be imagined, only V∗ and ⋅⇃n are values, and we may write e⇃n as sugar for
(⋅⇃n)(e). Further, we add procedural forms to carry out the splitting of queries, split I I∗,
and merging of results, merge ℘finE . Of these, only the former constitutes a value form (V).
The static and dynamic semantics are straightforward (for tuples) and as might be imagined
from the names given (for the other forms) and are shown in figure 5.3. So equipped, we
duplicate the proof system of §5.3.2.2 and add two more inference rules:

∀τ∈I ∃σ1∈J1,...,σtlen(J⃗)∈Jtlen(J⃗)
(τ = ⋃i σi ∧ ∀i,j≠i σi ∩ σj = ∅)

⊢s split I J⃗ ∶ I → jJ1, . . . , Jtlen(J⃗)o
split

(5.10)

⊢s split I J⃗ ∶ I → jJ1, . . . , Jtlen(J⃗)o (∀i)C;P ⊢proc pi ∶ Ji
C;P ⊢proc (λτ⃗merge{p1(τ1),⋯, ptlen(J⃗)(τtlen(J⃗))}) (split I J⃗) ∶ I

proc-split
(5.11)

The result of §5.3.2.3 does not hold for this augmented system. (As an aside, we note that
the disjointness condition on split, in equation (5.10), ensures that the union within pcd-
merge, in figure 5.3, is guaranteed to be a disjoint union. This is not, strictly, required, as
union would collapse duplicated rule answers, but it is likely convenient in implementation
to avoid the comparisons that would be required to implement a non-disjoint union.)

refruleinst must now be modified to capture which proof system was used for a given
subgoal; rather than pass it a tuple of paths, we will pass it a tuple of pairs each containing
a path and either the function id (i.e., id(x) = x) or sc from above, for application to C.
Thus refruleinst(r,K, v⃗) is redefined to be

{ρr}[K⇃1�head][(v⃗⇃1.2)(C)�sg.(v⃗⇃1.1)]⋯[(v⃗⇃tlen(v⃗).2)(C)�sg.(v⃗⇃tlen(v⃗).1)].

The planner must pass in sc for subgoals which it has planned using this alternate proof
system and should pass id when it uses the original system (though it remains not incorrect
to pass sc, but unnecessary adaptor glue code would be necessary in later subgoals). Thus,
we suggest, operationally, that the planner either 1 try using the first system and, only
if that fails, re-try with the second, or 2 search using the combined system, but favor
derivations that do not use the added power of the second.

5.3.6 Aside: Assurance of Answers via Determinism Analysis

Prolog static analysis also concerns itself with how many answers come back from each query.
The most useful properties to know are whether 1 it is certainly, certainly not, or possibly
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the case that no answers are forthcoming; and 2 if an answer is returned, that it will be the
only one. This gives rise to a six-way taxonomy of the length of the answer stream, which
proves useful in practice while implementing refineRuleSuffix. For example, knowing that
there is no more than one answer to a query (as might arise, for example, when performing
arithmetic) means that there will be no need to refer to the current partially-refined rule
answer set repeatedly, and so it need not be copied or trailed (recall the discussion in §4.1).
This kind of determinism analysis is discussed in Overton [137, §2.5.4] and seems to have
originated in Henderson, Somogyi, and Conway [91] and Nethercote [134, §6]. Such a system
seems directly applicable to the weighted case of µDyna programs.

Determinism is not quite orthogonal to the cardinality estimation analyses in
§5.2.4.1. Clearly, if the estimated cardinality promises at least one answer term, there
must be at least one answer type to carry that answer. If the lower bound is instead zero
answer terms, then there may be no answer types forthcoming. Similarly, if estimated car-
dinality promises at most one answer term, there can be only one (non-empty) answer type.
However, outside of the special cases of 0 and 1 answer terms, the two systems diverge: ar-
bitrarily many (even infinitely many) answer terms fit in one answer type, and the system
is generally free to re-arrange answer types as it sees fit, so long as their union contains the
same answer terms.

A separate, determinism-like analysis that might be worth investigation would be
to not only constrain the length of the answer stream as a whole, but to consider the number
of unique values at various projections within. For example, it may be worth distinguishing
the answer streams {j{f⟨x, y⟩},truejoo ∣ x, y ∈ N10

1 } and {j{f⟨1, y⟩},truejoo ∣ y ∈ N100
1 }, even

though they are both possible given an answer inst of ground jfjN,No,truejoo. While
both contain the same number of answers (i.e., 100), the latter has only one value for its ⋅⇃1
projection, while the former has several (in fact, 10). The uniqueness of value of a projection
may be useful knowledge when analysing later subgoals. Similarly, it may be worthwhile
to track any functional dependence among projections (including, but more generally than,
the implicit value-on-key dependence). We leave such considerations to future work.

5.4 Planning Disjunctions
Having planned the conjunction of subgoals, we are left with an instantiation state de-
scribing the possible shape of rule answers, as computed by refruleinst. The next step is to
extract, from all rules’ possible shapes of rule answers, the possible shapes of aggregated
answers. That is, just as we ensured closure of O under an operation that approximated
the answer terms of the program, we now consider closure of C under our approximation of
the answer types.

The rule answer inst (i.e., set of possible rule answer sets) for a query κ bounds
the inputs to contribRuleAnswer (first extracted with selt(⋅) in §3.2, or as-is in §3.3.3) or
to AnswerFor as-is (in §3.4.3.6). §3.2 had to assume sufficient range restriction in order to
promise that refineRuleSuffix could extract the single rule answer from each answer set;
we are now in a position to verify this range restriction by ensuring that the possible rule
answer inst is (equivalent to) some ground τ .144 Being able to make an analogous assertion

144For the particular query κ, anyway. It is, unsurprisingly, easier to check K-sufficient range restriction
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of the system of §3.3 would be quite challenging, as we would need to be able to model the
behavior of disjoin and would, thereby, seemingly require detailed understanding of the
exact computational limits of the underlying automaton family’s ability to reason about
set subtraction. The system of §3.4 is, on the other hand, designed to work with whatever
heads the rules produce, relying on the machinery of ∩-closure and masking to achieve its
results. (We are also in a position to verify the non-ground range restriction of programs
operating within this system, by verifying that the res projection of the possible answer
inst is ground, even if the res is not.) While determining whether AnswerFor will be able
to consume a given answer type α from the answer inst is likely beyond our capability, we
can bound its behavior: if it returns, it must return a bag containing one of the values from
α⇃res at a multiplicity bounded by the analysis of §5.2. From these three pieces (α⇃head,
α⇃res, and the bounds on the cardinality of the answer), we can characterize the set of
aggregands up to the point of ∩-closure. Seeing detailed analysis through ∩-closure again
seems challenging, as we would need to somehow appropriately summarize the behavior of
potentially infinitely many possible defaults encoded by the rule answer inst.

For the case of default reasoning, where heads are readily available, it may be
tempting to try to use the answer term set, O, from §5.2 to reconstruct the answer inst
from the heads obtained by conjunctive inst reasoning as in §5.3; that is, given a rule
answer inst I, one would pair each η ∈ I⇃head with the union of all possible values for each
h ∈ η, i.e., ⋃h∈η(O ∩ j{h},Ho⇃2). However, the result is only correct modulo occlusions: it
no longer accurately describes the contents of the answer stream, but only some theoretical
“equivalent” answer stream wherein overrides have already been taken into account.
Example 52: To be concrete for the above concern, consider a default that is completely over-
ridden. Suppose thatO is such that it is certain that both f⟨true⟨⟩⟩ ↦ 1 and f⟨false⟨⟩⟩ ↦ 2
(and that these come from ground rules). Further, suppose that the µDyna program spec-
ifies that f/1 items aggregate by minimization. If the program additionally contains the
rule {(f⟨b⟩ ↩ 3) ⇐ ⟨⟩ ∣ b ∈ {true⟨⟩,false⟨⟩}} a default-reasoning-based solver may return
an answer (to be overridden) jfj{true⟨⟩,false⟨⟩}o,{3}o, but such would be missed by the
above “recovery,” which would construct only jfj{true⟨⟩,false⟨⟩}o,{1,2}o. ◊

That said, one particularly fortuitous possibility is that the result of conjunction
planning shows that all possible rule answers are ground, or ground modulo some orthogonal
freedom in the head (i.e., the sg and res projections are singletons but the head is not).
More generally, if it can be determined that all possible rule answers have disjoint (or
equal) heads (recall “µDyna with Disjoint Sets,” in §3.3.5), and any non-ground aspects of
the heads are well-behaved sets (for the underlying family of automata used at runtime), the
program may be executable given only the ability to represent finite sets and co-finite subsets
of these well-behaved sets. The 2013 prototype of Dyna 2 restricted µDyna programs to
those whose rule answer sets were entirely ground, but the generalization to disjoint heads
should be straightforward.

when given a finite set of possible queries K than it is to generate the set of K for which a given program
is K-sufficiently range restricted.
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5.5 Inexact Values as Keys

In the circuit encoding of §2, we took the parent/child relationship between items as part
of the input specification of a circuit. This allowed our solver to obtain the parents and
children of any item at any point in the solver’s execution without reflecting on the values
of items within the circuit.145 Now that our circuit is defined at the same time as the
values, using the machinery of rules, there is no longer a separation of concerns between
the structure of the circuit and the values within the circuit. In fact, this is a useful feature
of the language and of the design, however, it poses problems for the solver.

In addition to overt use of equality tests within a user’s program as an explicit
subgoal within a rule, our solver relies upon equality within its unification and refinement
operations, within its search through the memo table, as part of cycle detection during
backward chaining, and while probing the agenda for messages to merge when forward-
chaining.

While more refined restrictions may exist, we take a heavy-handed approach. We
prohibit cyclic definition of such items, which generally will mean that the ancestors of
any f/n with inexact keys may not include other f/n items. (Of course, if there are other,
exact keys that partition the sets of items, that can permit such “functor-level” apparent
cyclicity.) Moreover, we require that forward-chaining of items with inexact keys manifests
as a non-ground invalidation notification (τ ∶ ^ unk), where 1 any path π such that π is
a path of all trees in τ (i.e., all {t⇃π ∣ t ∈ τ} are defined), 2 there exists an extension of π
which is not a path in all trees in τ , and, 3 if τ⇃π contains an inexact value or a tree therein
has an inexact value at its leaf, then τ⇃π = H. This somewhat complex set of constraints
means that we can pass any exact-valued information we have about the key forward, but
all inexact information in the key is completely erased.

145Obligation, in §2.2.4.3, introduced a values-dependent subset of an item’s children, but so long as the
solver always over-estimated this set, possibly by simply returning the set of all children, the solver remained
correct. That is, correctness of update propagation was not dependent on the availability or freshness of
values of the circuit being solved, but the effiency of the solver is improved by having tighter (but always
over-) approximations of the obligation relationship.
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Chapter 6

Miscellaneous Thoughts On Dyna

This was our contribution to the proof of the Law of Software Envelopment: “Every
program attempts to expand until it can read mail. Those programs which cannot so
expand are replaced by ones which can.”

Jamie Zawinski, on Netscape Mail and News; https://www.jwz.org/hacks/

6.1 Error Values

“Доверяй, но проверяй” (“Trust, but verify”)

Russian proverb

As mentioned in §5.3, static analysis is key to generating efficient, reusable code as it en-
ables us to perform, once, the expensive search for a call-compatibility-respecting plan for
some procedure, so long as the inputs ascribe to the stated inst. However, such analysis
is necessarily incomplete: we will reject some programs that are correct, but whose proof
of correctness exceeds the capability of our analysis theory and/or its implementation. In
the interest of flexibility, we can add a procedural mechanism of assertions to Dyna’s still-
mostly-declarative core, so that programmers can attest that, by a given point within a rule
body, a given term will be an element of a given type. This gives (potentially) new infor-
mation to the static analyser, and allows it to proceed with increased precision. However,
these assertions may linger on to be executed at runtime, and must do something when
violated. The resulting system permits declarative handling of such errors and integrates
well with the default reasoning algorithm of §3.4.

To begin, we assume a non-empty set of error values, E ⊆ H. Let us, for sim-
plicity, assume that all error values have some unique functor, e.g., any $error/k, at their
root, and that any such term is considered an error value. These error values are values
like any other within the system, and may be used as or within values of a rule, used as
or within values of subgoals, and used within (but not as) keys in the head or a subgoal.
(That is, unlike null. We, somewhat artificially, prohibit the use of an error value as an
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item; attaching a weight to an error value does not seem sensible. As such, we exclude
error values from being the entirety of a head or subgoal key.) These values (or, potentially,
particular subsets) are used to indicate assertion failures. Let us proceed by example first.
Example 53 (Catching Division By Zero): A family of items implementing, say, rational
division has no appropriate result for queries of the form ⟨rdiv⟨x,0⟩, v⟩ with x and v drawn
from any nonempty subset of rationals. In a sense, the query jrdivj{0},{0}o,Qo should
return as is—every rational, when multiplied by zero, produces zero—but we require a
functional dependence, namely that a ground key be associated with at most one value. On
the other hand, any query jrdivjx,{0}o,Qo, for x ≠ 0, should fail: there truly is no such
rational. Given the totality of division on all inputs when the divisor isn’t 0, we may wish
to statically prohibit even asking the question. Thus, we may wish to permit rdiv/2 queries
only of the form τ = jrdivjQ,Q ∖ {0}o,Ho. That is, we set our permitted query set κ such
that κ ∩ jrdivjH,Ho,Ho = τ .

While many subgoals may be obviously correct (e.g., division by a non-zero con-
stant), it may be that analysis is unable to conclude that 0 is outside the range of possibilities
for a non-constant divisor. (Say, because analysis has had to revert to tracking a safe su-
perset and/or because its understanding of mathematics is insufficiently precise.) In such
a case, it may be that the programmer is willing to explicitly assert that the denominator
is nonzero, permitting the query to go through after a runtime test that the denominator’s
value is, indeed, nonzero. Should that test fail, the refinement of the rule (suffix) will abort
before attempting to invoke a non-permitted query and will yield an error value. ◊

An assertion is a special form of subgoal, with explicit, procedural handling within
refineRuleSuffix. Given a term Þ ∈ H that describes a set τ ⊆ H,146 the item $assert⟨s,Þ⟩
has value true⟨⟩ if s ∈ τ . The value for when s /∈ τ is not defined; attempting to ask
the question results in refineRuleSuffix aborting rather than continuing to the next sub-
goal. Such an abort contributes an error value to the current heads of the rule. In or-
der to ensure that the notion of “current heads” is sensible, subgoal reordering is pro-
hibited across assertions that cannot be statically discharged. An assertion can be stati-
cally discharged if the type system of §5.2 can demonstrate that it always holds; in such
a case, the subgoal may be removed entirely, as the runtime test is certainly unneces-
sary. If an assertion cannot be statically discharged, the type system is free to proceed
to additional subgoals under the assumption that it holds, but must add (assertion) er-
ror values to the set of aggregands that may be directed to items in the current head
type. Thus, while the µDyna rule {(f⟨h⟩ ↩ v) ⇐ ⟨g⟨s⟩ ↦ v, h = 2↦ true⟨⟩⟩ ∣ h ∈ η, s, v}
contributes the value of each g⟨s⟩ to f⟨2⟩ (assuming that =/2 implements unification), the
rule {(f⟨h⟩ ↩ v) ⇐ ⟨g⟨s⟩ ↦ v,$assert⟨s,Þ⟩ ↦ true⟨⟩, h = 2↦ true⟨⟩⟩ ∣ h ∈ η, s, v} will con-
tribute an error to all fjηo if there exists an s such that g⟨s⟩ has non-null value and s /∈ τ ,
even though the subgoals could be reordered so that the sole recipient of aggregands was

146We gloss over precisely how this description takes place. One possibility is to define a term encoding
much along the lines of our automata of §4.2. Another is to explicitly add, e.g., regular subsets of H to H
itself and enrich Dyna with operators for manipulating these sets directly. Such additions would allow Dyna
itself to describe automata à la §4.3 and would represent a kind of “Higher-Order Set Syntax,” in which
the Dyna language would inherit the automata capabilities of its runtime library, much as “Higher-Order
Abstract Syntax” (HOAS) [143] allows languages to inherit functional abstraction from the languages of
their implementation.
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known to be f⟨2⟩.
An interesting consequence of our design is that one cannot both throw and catch

an assertion failure within the same rule. Procedurally, rules form the basic blocks enclosed
within exception handlers.

6.1.1 Error Latch-up

Presumably, some aggregators will treat errors as absorbing elements: regardless of other
aggregands, an error input means an error output. In the presence of cyclic dependencies,
this gives rise to what we call error latch-up, whereby error values may never clear, even
after the root cause has resolved itself. Suppose that we have the pair of rules {(a⟨⟩ ↩ v) ⇐
⟨a⟨⟩ ↦ a,$assert⟨a,Þ⟩ ↦ true⟨⟩,2/a↦ v⟩ ∣ a, v} and {(a⟨⟩ ↩ v) ⇐ ⟨b⟨⟩ ↦ v⟩ ∣ v} with Þ
encoding R ∖ {0}. (Roughly, the ill-founded definition a = b + 2/a.) Such a cycle has error-
free solutions in which a = 1

2(b ±
√
b2 + 8). Suppose, initially, that the driver assigns the

value 1 to b⟨⟩, so that the cycle stabilizes with a⟨⟩ having value 2. (a⟨⟩’s value is likely to
evolve through time from an initial null through 1, being the result of ∑{null,1}, to 3,
the result of ∑{1,2}, and so on.) If an update now takes b⟨⟩ to −1, a⟨⟩ is likely to step,
by forward-chaining, to being 0, at which point the assertion trips and makes a⟨⟩’s value
an error (i.e., an element of E). The assertion trips again, because E ∩R = ∅, and a⟨⟩ has
converged at an error value (rather than at −2 or 1). Subsequent updates to the value of
b⟨⟩ will not alter the value of a⟨⟩.

We imagine that such latch-up will be addressed within a Dyna solver by endowing
error values E with causal provenance data, even if these annotations are not visible to the
Dyna program itself. These root cause data can be processed by a reuse of the machinery
the solver uses to address similar latch-up in obligation on cyclic circuits (recall §2.5.4). In
particular, we expect the two errors reported above—the one arising from 0 /∈ R ∖ {0} and
the other from E ∩R = ∅—are observably different to the solver, with the latter seen to be
caused by the first. The cause of the second error is, like that of the first, located at the
$assert⟨⟩ subgoal in the rule for a⟨⟩, but the second error’s cause is the first error; thus,
the solver can detect the (possible) circularity of justification for the error. In light of such
circular justifications, the solver is free to experimentally guess a new value for a⟨⟩ (recall
§2.5.2). If the solver guesses null and continues, the value of a⟨⟩ will subsequently evolve
as −1, −2, −3/2, −5/3, −8/5, etc., converging numerically on −1

2(1 +
√
5).

If the runtime overhead of dynamic detection of self-supporting error values is
judged to be too high, a potentially less expensive option is to allow the driver to cause the
solver to act as though it had guessed new values. In such a case, the interface should allow
clearing multiple (or possibly even all) errors at once, lest there be mutually supporting
error values.

6.2 Modularity

We proposed, in Eisner and Filardo [50], a novel, declarative, prototype-based object sys-
tem for use within the Dyna language itself. Our design is heavily inspired by existing
prototype-based object systems, including Self [176] and JavaScript [47], but is adapted for
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the declarative nature of Dyna. Emphasizing the dynamic-database view of Dyna programs,
we call our objects dynabases. The use of multiple dynabases within a Dyna program pro-
vides for inheritance-based code reuse,147 and also facilitates a kind of “what-if” reasoning
whereby entire programs may be copied and subject to additional input. While the seman-
tics of the system have not meaningfully changed since its introduction, we give a different
presentation here, using the µDyna formalism, and give examples of the system’s behavior
from a language-author’s perspective, rather than the user-oriented examples of the original
text.

A dynabase is, at its heart, a collection of (extended) Dyna rules; every program
that could be given in the language as defined so far would form a dynabase, albeit one not
taking advantage of the object-oriented programming (OOP) features. To the µDyna system
defined so far, we add several new features. 1 Given a handle (reference) to a dynabase,
one may make queries of its program, just as ordinary subgoals query the current dynabase’s
program. 2 A dynabase may be cloned from a progenitor dynabase.148 3 The dynabase
in which a clone is made becomes the owner of the clone and may provide additional
aggregands to items therein. Each of these features necessitates changes to the µDyna
formalism, which we detail momentarily.

First, however, we should point out a key distinction between dynabases and
traditional OOP within more procedural languages. Specifically, dynabases are not stateful:
they, like the broader declarative program in which they exist, do not evolve in time. Of
course, the input to the program may vary with time, and so the values associated with
items of a given dynabase may covary as its definition dictates, but the definition itself
remains static. This point may seem obvious, but it drives a central component of the
design: while a traditional object o may have its state updated by any other object that
holds a reference to o (and has the ability to call a mutating method or write to a field),
this is not tenable for Dyna, as the solver must be able to backward-chain items within a
dynabase and so must be able to find all the places whence aggregands could have come.
Thus, we restrict specification of a dynabase to its (singular) progenitor, its own rules, and
its (singular) owner.

In a typical OOP system, the actual underlying identifiers (e.g., memory addresses)
of objects are not directly available in the source language and so an object can only be
referenced at places in the program where one has been given a name or handle—an indirect
reference—to that object; our dynabase system has the same property. At the beginning
of execution, at least two dynabases exit by construction: these include the primordial
dynabase, denoted ℷ, from which all others are descended, and the root dynabase of the
program, denoted ℸ.149 We will almost always elide ℷ in depictions of dynabase arrange-
ments; one should assume that dynabases without rendered progenitors have ℷ in this role,
unless otherwise stated. While we presume the existence of a set D ⊊ H of dynabase handles

147While we will not discuss the details here, there is a proposed mechanism for encapsulation as well,
wherein the programmer can specify which items are available for external reads and/or writes as well as
visibility to clones. Thankfully, it is largely orthogonal to the core presentation of this section.

148The original work used the term “parent” here, but we now consider it too confusing, given the recent
emphasis on parentage of items within a computational circuit.

149Other dynabases that may exist by construction include links to foreign data sources, encapsulated
within the solver’s dynabase API.
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(with {ℷ,ℸ} ⊆ D), we require that extended µDyna rules (introduced shortly), as generated
from a source Dyna program, be the image of a “purely syntactic” function from dynabase
handles to rule structure. That is, the set ρ may not refer to specific entries of D, but rather
quantify over the entirety of D (and may use the quantified variable non-linearly). (Thus,
for example, ∀d∈D,r,π(d ∈ ρr⇃π) ⇒ (D ⊆ ρr⇃π) is a necessary but not sufficient property of our
extended µDyna rules.)

Extending µDyna rules to support dynabases makes three straightforward changes,
each of which roughly corresponds to the features given above.

1 Much as methods in a traditional OOP system have access to a dynamic notion of
“self” (typically pronounced “this”), an extended µDyna rule will need access to the
dynabase against which its subgoals are to be resolved by default. The pair of hr and
sg is now extended to a triple; hr and sg are unaltered and di def= 3. As mentioned
above, we require that ρ⇃di = D. The outermost pairing operator of a µDyna rule,
which we used to represent with ⇐, will now be depicted as d⇐, where d denotes the
default dynabase for evaluation.

2 Each subgoal explicitly names a dynabase as the environment whither we shall direct
a subgoal query, and whence answers will be returned. The rules we have considered
until now can be thought of as simply using the “this” dynabase for each. The
kv-pairs of at each {sg.i ∣ i} are now also made into triples, ⟨key,value,dynabase⟩.
Mnemonically, we will render ⟨k, v, d⟩ as k d↦ v.

3 Because aggregands now route to heads on a dynabase, we must specify which. The
head kv-pair is extended to be a triple, just as with the subgoals. Our mnemonic
for this will be h ↩

d
r for ⟨h, r, d⟩, i.e., the contribution of r to h on dynabase d. (In

rough keeping with our notation of §2, dynabases above the line source information,
and the one below receives it.) We require that ρ⇃head ∩ D = ∅ for all rules ρ: that
is, dynabase handles are terms, but one may not attempt to use a dynabase handle
as the name of an item. The names of items will become important components of
dynabase handles, below.

All told, the µDyna rule for matrix-vector products from §3.1 might now appear as

{(rs⟨x⟩ ↩
d
v) d⇐ ⟨r⟨x, y⟩ d↦ r,s⟨y⟩ d↦ s,⊗⟨r, s⟩ d↦ v⟩ ∣ r, s, v, x, y ∈ H, d ∈ D},

if all items are on the same dynabase. That is, all subgoals read from d, which will be
specified when the rule is to be interpreted, and all aggregands route to heads on d as well.
If, on the other hand, the r/2 and s/1 items were to be drawn from a dynabase to which a
handle is stored at src⟨⟩, then the rule would then read

{(rs⟨x⟩ ↩
d
v) d⇐ ⟨src⟨⟩ d↦ e,r⟨x, y⟩ e↦ r,s⟨y⟩ e↦ s,⊗⟨r, s⟩ d↦ v⟩ ∣ r, s, v, x, y ∈ H, d, e ∈ D}.

Here we see that d is consulted for src⟨⟩ and its value is used as the dynabase context
for the next two subgoals (r/2 and s/1). Similarly, we could route the rs/1 items onto
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the dynabase named by targ⟨⟩ (assuming that the current dynabase were to be the owner
thereof), writing

{(rs⟨x⟩ ↩
c
v) d⇐ ⟨targ⟨⟩ d↦ c,r⟨x, y⟩ d↦ r,s⟨y⟩ d↦ s,⊗⟨r, s⟩ d↦ v⟩ ∣ r, s, v, x, y ∈ H, d, c ∈ D}.

The two behaviors can, of course, be mixed, and, in fact, the rule

{(rs⟨x⟩ ↩
c
v) d⇐ ⟨st⟨⟩ d↦ c,r⟨x, y⟩ c↦ r,s⟨y⟩ c↦ s,⊗⟨r, s⟩ c↦ v⟩ ∣ r, s, v, x, y ∈ H, d, c ∈ D},

in which the head and all subgoals refer to items in the dynabase referred to (by the
containing dynabase) as st⟨⟩ would yield the same results (on that dynabase) as if that
dynabase contained the original matrix-vector product rule.

As seen, dynabase handles may themselves be values of items. This suggests
that they may be aggregands, too. Indeed, they may, but, for present purposes, only two
operators (playing the role of aggregators) consume dynabase handle aggregands. Both are
defined only on singleton bags.

1 The simplest is selt(U⋅), which takes a singleton bag containing a dynabase handle and
returns this handle. This aggregator lets us give new names to existing handles, if it is
used as the aggregator for the head item of the rule {(b⟨⟩ ↩

d
v) d⇐ ⟨a⟨⟩ d↦ v⟩ ∣ d ∈ D, v ∈

H}, which so provides b⟨⟩ as an alias for a⟨⟩ (indeed, it does so for any value that a⟨⟩
takes on, not just dynabase handles). This aggregator also enables the programmer
to explicitly name the current dynabase, using a rule such as {($self⟨⟩ ↩

d
v) d⇐ ⟨⟩ ∣

v ∈ D}.150

2 The other operator available to us is new and is the side-effecting clone operator.
Given a singleton bag containing a pair of a dynabase handle and a set of rules, e.g.,
*⟨p,R⟩+, it constructs a new dynabase whose progenitor is p and whose rules are R.151

The result is that each head “aggregated” with clone comes to name a unique clone
of the indicated progenitor; the dynabase containing the rule becomes this clone’s
owner.152

150In the surface language of Dyna, one may occasionally want to refer to the current dynabase explicitly
(though heads and subgoals without dynabase qualification will default to referring to the current dynabase,
much as OOP languages typically obviate the need to qualify references to an object’s own methods and
fields with this). To facilitate such explicit mentions, we can assume that the primordial dynabase, ℷ,
contains this rule defining $self⟨⟩, or that the identifier $self⟨⟩ is otherwise equated to the di component
of the µDyna rule, once all parsing and syntactic transformations are completed. (The leading $ is used to
indicate the “special” nature of the item.) In the core µDyna calculus, there is nothing special about the di
position, in that it can covary with other positions like any other, and so this rule remains something of a
curio.

151This differs from the presentation in Eisner and Filardo [50], which lacked an overt mechanism for
handling literals of rules and used a new kind of subgoal, pronounced “new d,” to clone the dynabase d. It
is likely that the surface language will end up looking more as suggested in the original presentation, but
its proposed normal form was difficult to adjust to µDyna, so this (expressively superior) alternative was
chosen instead.

152That is, the dynabase where the handle is stored is not necessarily taken to be the owner. A rule of
the form {(t⟨⟩ ↩

e
p) d⇐ ⟨⋯⟩ ∣ ⋯}, interacting with this operator, creates a clone of p and assigns it to t⟨⟩ on

e while leaving d the owner.

172



f

p

pp po

o

op

Figure 6.1: A possible arrangement of dynabases. The
dynabase under study (the “focus”) is f at the base
of the diagram. Progenitors are shown above-left
(and with a single-tipped solid arrow) and owners are
shown above-right (and with a double-tipped solid ar-
row pointing to the clone). Dashed arrows indicate
other handles held: in order to make the clone from
the progenitor, the owner must have had a handle to
the progenitor. The names given read left-to-right rel-
ative to the focus: “op” is the focus’s owner’s progeni-
tor. We have elided the owner’s owner and so on; they
must exist for the progenitor relationship to have been
established, but they are not yet relevant.

In the following, we shall use Ξd to refer to the rules intrinsic to the dynabase d; these do
not include any inherited rules. That is, Ξd is the set of rules R as above for any cloned
dynabase, or whatever rules are assumed on ℷ. Recall, the program itself, ℸ, is a driver-
constructed clone of the ℷ; the rules of ℸ are those of the given program. We shall use ↑p ⋅
and ↑o ⋅ to access the progenitor and owner of a dynabase, respectively.

The abstract semantics for interpreting a multi-dynabase program will involve
accumulating rules subject to refinements from its progenitors and owners.153 We now
present this procedure first in a simplified way, in which we do not consider the effects of
owners’ owners, and then in its full form, as presented in Eisner and Filardo [50]. We then
ponder whether we can compile these semantics into the default reasoning of §3.4 and finish
with some discussion of the impact of dynabases on static analysis.

6.2.1 Rule-Collection Semantics Without Recursive Owner Writes

Consider the series of dynabases shown in figure 6.1. The accumulated rules that influence
the values of items on the dynabase under focus, f, would seem to be, roughly,

1 The accumulated rules of its progenitor, though with their sense of self (i.e., di and
do) set to f rather than p. (So that child items of parents that differ between p and
f are also influenced appropriately.)

2 The rules of f itself, with f as both di and do.

3 Any accumulated rules of its owner, o, which read from o (di) and route their aggre-
gands to f (do).

There is an apparent asymmetry between progenitors and owners: while a progenitor’s
owner’s (i.e., po’s) influence on the progenitor (p) is copied during cloning, the owner’s

153This procedure defines an order in which rules are visited, despite that nothing so far has indicated
any sensitivity to rule order. In the surface language of Dyna, there is a “last definition wins” aggregator
which is so sensitive; it desugars in µDyna by pairing values with some appropriately ordered index and
maximizing across this component of aggregands. The order given here would, then, influence the selection
of the appropriate indices when this aggregator is in use. So while we are careful to traverse the progenitor
and owner relations in the correct order here, we otherwise ignore the order.
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CollectFull(f,f)

CollectFull(f,p)

CollectFull(f,pp)

{ruleCtx(f, f, ρr) ∣ r ∈ Ξpp}

{ruleCtx(f, f, ρr) ∣ r ∈ Ξp}

CollectOwner(po,p,po)

{ruleCtx(po,p, ρr) ∣ r ∈ Ξpo}

{ruleCtx(f, f, ρr) ∣ r ∈ Ξf}

CollectOwner(o,f,o)

CollectOwner(o,f,op)

{ruleCtx(o, f, ρr) ∣ r ∈ Ξop}

{ruleCtx(o, f, ρr) ∣ r ∈ Ξo}

Figure 6.2: A trace of the rule collection procedure
for f in figure 6.1. Leaf nodes are set-valued and in-
dicate the refined rules for items on f, while the root
and internal nodes are the names of procedure calls.
(All calls which would collect rules from ℸ itself are
suppressed.)

owner’s (not shown) influence on the owner (o) is irrelevant, for the purposes of rule col-
lection. Of course the owner’s owner’s influence is not entirely irrelevant: it influences the
value of items on the owner, which may, in turn, influence items on the focus, but there is
no direct relevance of rules from the owner’s owner on the focus. A more subtle point arises
from inheritance of rules from progenitors: during rule collection, when we are considering
the impact of the progenitor’s owner (po) on the focus, we must grant that this dynabase
does not know the “name” of the focus, only the name of its progenitor (p). We therefore
decree the following: while the output dynabase at do is used during rule collection, it
is then ignored when actually interpreting rules à la refineRuleSuffix and the rest of the
machinery from §3. That is, having collected the rules and set do appropriately, we consider
only the kv-pairs {⟨t⇃head, t⇃res⟩ ∣ t ∈ ε} where ε is a (non-ground) rule answer.

All said, we should define two recursive procedures:

1 CollectOwner, which traverses just the progenitor links, starting from an owner, and

2 CollectFull, which starts at the focus itself and traverses progenitor links and, for
each, additionally collects the influence of the owners.

In both cases, the procedure will need to know the identity of three dynabases: the one
whose intrinsic rules are to be included, the input dynabase for di, and the output dynabase
for do. Moreover, in both cases, we need to set a rule’s dynabase context (i.e., di and do)
to singletons; let ruleCtx(e, h, ρ), for any rule ρ, be ρ[{e}/di][{h}/do].
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Figure 6.3: An extended view of figure 6.1. Notation
and nomenclature is identical, save for the addition of
the greyed f ′, which is f ’s owner’s progenitor’s ana-
logue of f , should that exist. Not considered are any
progenitors or owners of oo or opo; see figure 6.5 for
that case and §6.2.2 for discussion.

These procedures are straightforward. For the first, let CollectOwner(e,h,c) be
the concatenation of the result of CollectOwner(e,h,↑p c) and {ruleCtx(e, h, ρr) ∣ r ∈ Ξc}.
A call to CollectOwner accumulates rules from progenitor-most downwards and restricts all
of them to the same dynabase context. The second predicate is similar, just longer. Let
CollectFull(d,c) be the concatenation of

1 CollectFull(d,↑p c),

2 {ruleCtx(d, d, ρr) ∣ r ∈ Ξc},

3 and CollectOwner(↑o c,c,↑o c).

The first and second components traverse the progenitor relation, as with CollectOwner,
but the third component brings each progenitor’s owner’s influence into play.

So armed, the set of rules that bear on items on the focused dynabase is simply
CollectFull(f,f,f). An execution trace, for the dynabases given in figure 6.1, is shown in
figure 6.2.

6.2.2 Rule-Collection Semantics With Recursive Owner Writes

We now consider how to handle the possibility that the focus’s owner’s owner (and other
owner’s⋯ owner’s⋯ dynabases) may assert aggregands on the focus. We extend the scenario
from figure 6.1 to the one shown in figure 6.3 and wish to adjust the previous section’s
definitions, and in particular CollectOwner, so that oo and opo may directly influence items
on the focused dynabase.

It is clear that we need to add another arm to CollectOwner(e,h,c), specifically,
one that considers rules from ↑o c. However, while directly calling CollectOwner(↑o c,h,↑o c)
is tempting, and would work when considering the link between o and oo, it is incorrect
when considering op and opo. While the focus’s owner’s progenitor’s owner (opo) dynabase
lacks the authority to contribute to the focus directly, it has permission, via op, to write to
an analogue of the focus, created by op, just as o created the focused dynabase. Concretely,
suppose that op (or opp) intrinsically contains the rule that, when collected into o, creates
f. Then this rule, when collected into op, also creates another dynabase, which we denote f′.
If oo clones op to produce o and does not otherwise alter o, the two should produce identical
results in all respects, so the focus must see the aggregands routed to this analogous version.

To engineer a function from f to f′ within figure 6.3 requires that we unpack the
actual identity of f and construct the corresponding identity of f′. Recall that a cloned
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⟨⟨⟨ℸ,oo⟨⟩⟩,y⟨⟩⟩,z⟨⟩⟩

⟨⟨ℸ,po⟨⟩⟩,w⟨⟩⟩

⟨ℸ,pp⟨⟩⟩ ⟨ℸ,po⟨⟩⟩

⟨⟨ℸ,oo⟨⟩⟩,y⟨⟩⟩

⟨⟨ℸ,opo⟨⟩⟩,x⟨⟩⟩

⟨ℸ,opp⟨⟩⟩ ⟨ℸ,opo⟨⟩⟩

⟨ℸ,oo⟨⟩⟩

⟨⟨⟨ℸ,opo⟨⟩⟩,x⟨⟩⟩,z⟨⟩⟩
z⟨⟩

a⟨⟩
a⟨⟩ b⟨⟩

c⟨⟩ d⟨⟩

w⟨⟩ x⟨⟩

y⟨⟩

z⟨⟩

Figure 6.4: A redrawing of figure 6.3 using the naming mechanism proposed in §6.2.2. Each leaf dynabase
is named by ℸ, the dynabase containing the program source, identically to the names we have been using
to date (e.g., opo has the name opo⟨⟩ in ℸ). The primordial dynabases ℸ and ℷ are not, themselves, shown.
Internal dynabases are then named by their owner and the name their owner gave them at cloning, which
is indicated on the double-tipped arrows. Dashed arrows are labeled with the names of the existing handles
to progenitors. For example, oo contains the rule {(y⟨⟩ ↩

t
d) t⇐ ⟨b⟨⟩ t↦ d⟩ ∣ ⋯}, with y⟨⟩ cloning its sole

aggregand. More importantly, opp contains the rule {(z⟨⟩ ↩
t
d) t⇐ ⟨a⟨⟩ t↦ d⟩ ∣ ⋯}, with z⟨⟩ cloning; this rule

not only creates the focus f = ⟨⟨⟨ℸ,oo⟨⟩⟩,y⟨⟩⟩,z⟨⟩⟩, but also the analogous ⟨⟨⟨ℸ,opo⟨⟩⟩,x⟨⟩⟩,z⟨⟩⟩, depicted in
grey.

⟨⟨⟨⟨ℸ,ooo⟨⟩⟩,x⟨⟩⟩,y⟨⟩⟩,z⟨⟩⟩

⟨⟨⟨ℸ,ooo⟨⟩⟩,x⟨⟩⟩,y⟨⟩⟩

⟨⟨ℸ,ooo⟨⟩⟩,x⟨⟩⟩

⟨⟨ℸ,oopo⟨⟩⟩,w⟨⟩⟩

⟨ℸ,oopo⟨⟩⟩

⟨ℸ,ooo⟨⟩⟩
w⟨⟩

x⟨⟩

y⟨⟩

z⟨⟩

⟨⟨⟨ℸ,oopo⟨⟩⟩,w⟨⟩⟩,y⟨⟩⟩
y⟨⟩

⟨⟨⟨⟨ℸ,oopo⟨⟩⟩,w⟨⟩⟩,y⟨⟩⟩,z⟨⟩⟩
z⟨⟩

Figure 6.5: An arrangement of dynabases in which the focus (boxed, lower) has a transitive owner and
a progenitor thereof. To reduce clutter, the progenitor of the focus’s owner is not shown. To properly
accumulate the rules that impact the focus, we must also consider rules that target the analogous version
reachable from the focus’s owner’s owner’s progenitor at the same name (boxed, upper, gray). This requires
changing the notion of owner deeply within the recursive name of a dynabase: ⟨⟨ℸ,ooo⟨⟩⟩,x⟨⟩⟩ is replaced by
⟨ℸ,oop⟨⟩⟩ within a context of ⟨⟨⋅,y⟨⟩⟩,z⟨⟩⟩. The intervening analogue of the focus’s owner, ⟨⟨ℸ,oop⟨⟩⟩,y⟨⟩⟩,
is not explicitly visited by the recursive algorithm.
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dynabase has four things that potentially identify it: its progenitor, its intrinsic rules, its
owner, and the name of the item to which it is initially assigned within its owner. However,
the progenitor and intrinsic rules are functionally determined by the owner and the name
on it: there is only one aggregand to the clone operator, namely, the pair of progenitor
and intrinsic rules! (This is somewhat akin to the names given to sub-expressions within
“Nominal Adapton” [87].) Thus, we may identify a dynabase by the pair of its owner
and initial name. This name is recursive: the owner is itself named by its owner and initial
name. The ownership base case is ℸ. This gives us that D is the least fixed-point of the
equation D = {ℷ,ℸ}∪ jD,H∖Do.154 Using this idea, figure 6.3 can be redrawn as figure 6.4.

The specific case of f to f′ within figures 6.3 and 6.4 is achieved by replacing the
owner component of f. However, this is, in general, insufficient. Consider the case shown in
figure 6.5. Here, we see that the analogous version of the focus has multiple name elements
in common with the focus; the owner field to be replaced is deep within the name. When
traversing an ownership edge, then, we should keep track of the names we have crossed,
so that we can construct this analogous version’s name from the name of the dynabase
whose rules are being collected. Thus, we replace the h parameter of CollectOwner with a
function that sends c to the appropriate analogue of the focus. All told, then, we replace
the definition of CollectOwner(e,h,c) from the previous section with CollectOwner(e,n,c)
(n an automorphism on dynabase names, i.e., n ∈ D → D) defined as the concatenation of

1 CollectOwner(e,n,↑p c),
2 {ruleCtx(e, n(e), ρr) ∣ r ∈ Ξc}, and
3 CollectOwner(↑o c,n ○ n′,↑o c) with n′ = ⟨⋅, c⇃2⟩ = {x ↦ ⟨x, c⇃2⟩ ∣ x ∈ D} being the

function that adds the name component of c to the dynabase name x.

The definition of CollectFull(d,c) is unaltered save to replace the call to CollectOwner
therein with CollectOwner(↑o c,⟨⋅, c⇃2⟩,↑o c). The central distinction between CollectFull
and CollectOwner is in their second components: CollectOwner uses n to reconstruct the
focus (or analogue) from the name of the dynabase whose items are being used for valuation,
e, and sets this reconstruction as do, while CollectFull always equates the do and di
positions. The full collection for a focused dynabase f is CollectFull(f, f). An example
execution trace, for figure 6.3, is shown in figure 6.6.

6.2.3 Semantics of Multiple Dynabases

Having defined how to collect the rules associated with a dynabase (using either the method
§6.2.1 or that from §6.2.2), we are finally in a position to describe the solutions to multi-
dynabase programs. We now think of each dynabase as specifying a map from keys to
values. The ability to specify handles other than the one provided at di for subgoals within
a rule allows these functions to inter-depend. The construction otherwise largely parallels
§3.1.4.

Letting Ed and Id denote the hyperedges and items of the dynabase d, we revise
the definitions of our edge- and node-labeling functions thus:

154We have prohibited the use of a dynabase handle as a bare item name, and may thus exclude D from
H within this recursion.
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CollectFull(f,f)

CollectFull(f,p)

CollectFull(f,pp)

{ruleCtx(f, f, ρr) ∣ r ∈ Ξpp}

{ruleCtx(f, f, ρr) ∣ r ∈ Ξp}

CO(po,⟨⋅,w⟨⟩⟩,po)

{ruleCtx(po,p, ρr) ∣ r ∈ Ξpo}

{ruleCtx(f, f, ρr) ∣ r ∈ Ξf}

CO(o,⟨⋅,z⟨⟩⟩,o)

CO(o,⟨⋅,z⟨⟩⟩,op)

CO(o,⟨⋅,z⟨⟩⟩,opp)

{ruleCtx(o, f, ρr) ∣ r ∈ Ξopp}

{ruleCtx(o, f, ρr) ∣ r ∈ Ξop}

CO(opo,⟨⟨⋅,x⟨⟩⟩,z⟨⟩⟩,opo)

{ruleCtx(opo, f′, ρr) ∣ r ∈ Ξopo}

{ruleCtx(o, f, ρr) ∣ r ∈ Ξo}

CO(oo,⟨⟨⋅,y⟨⟩⟩,z⟨⟩⟩,oo)

{ruleCtx(oo, f, ρr) ∣ r ∈ Ξoo}

Figure 6.6: A trace of the rule collection proce-
dure for f in figure 6.3 (using dynabase names
as in figure 6.4), paralleling figure 6.2. (For
type-setting reasons, CollectOwner is abbre-
viated to CO.) The value f′ is computed as
(⟨⟨⋅,x⟨⟩⟩,z⟨⟩⟩)(opo). The corresponding compu-
tation within the last CO call obtains f itself by
evaluating (⟨⟨⋅,y⟨⟩⟩,z⟨⟩⟩)(oo). (As before, all
calls which would collect rules from ℸ are sup-
pressed for brevity.)

CollectFull(f,f)

⋯

{ruleCtx(f, f, ρr) ∣ r ∈ Ξf}

CO(o,⟨⋅,z⟨⟩⟩,o)

⋯

{ruleCtx(o, f, ρr) ∣ r ∈ Ξo}

CO(oo,⟨⟨⋅,y⟨⟩⟩,z⟨⟩⟩,oo)

CO(oo,⟨⟨⋅,y⟨⟩⟩,z⟨⟩⟩,oop)

⋯

{ruleCtx(oo, f, ρr) ∣ r ∈ Ξoop}

f = ⟨⟨oo,y⟨⟩⟩,z⟨⟩⟩

CO(oopo,⟨⟨⟨⋅,w⟨⟩⟩,y⟨⟩⟩,z⟨⟩⟩,oopo)

⋯

{ruleCtx(oopo, f′, ρr) ∣ r ∈ Ξoopo}

f′ = ⟨⟨⟨oopo,w⟨⟩⟩,y⟨⟩⟩,z⟨⟩⟩

⋯

{ruleCtx(oo, f, ρr) ∣ r ∈ Ξoo}

⋯

.
Figure 6.7: A partial execution trace of figure 6.5. (For
type-setting reasons, CollectOwner is abbreviated to
CO.) The boxed nodes highlight the importance of deriv-
ing the focus (in red, upper) and focus analogue (in blue,
lower) from the current evaluation dynabase (the first
argument to CollectOwner) rather than the dynabase
whose rules are being collected (the third argument).
The names used here are of a kind with earlier draw-
ings, in that they refer to dynabases relative to the fo-
cus, but they take on different actual values than in past
figures: for example, f = ⟨⟨⟨⟨ℸ,ooo⟨⟩⟩,x⟨⟩⟩,y⟨⟩⟩,z⟨⟩⟩ and
f′ = ⟨⟨⟨⟨ℸ,oopo⟨⟩⟩,w⟨⟩⟩,y⟨⟩⟩,z⟨⟩⟩
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1 el ∈ (Πd∈D(Id →H′)) → (Πd∈D(Ed →H′)), and

2 nl ∈ (Πd∈D(Ed →H′)) → (Iinp →H′) → (Πd∈D(Id →H′)).

External input to Ider is only possible on the program’s initial dynabase ℸ. The effect of an
element x = selt({(h↩

o
v) i⇐ ⟨t1

d1↦ v1,⋯, tk
dk↦ vk⟩}) of a rule collected onto the dynabase d

is to set el(n)(d)(x) = v when ∀i n(di)(ti) = vi and null otherwise. (Recall that o need not
equal d: the collection procedure has taken care of ensuring that rules were copied to the
correct place and refined appropriately.) The node labels are determined entirely as before,
within each dynabase, by aggregating the bag of labels of hyperedges whose targets are a
given head.

Conceptually, there is some overlap between external input (Iinp) and dynabase
extension. The present section has been written from the perspective of an extension to the
existing language, which achieved its dynamic behavior through the notion of these external
inputs to circuits. An alternative design would achieve reactivity by temporally evolving the
notion of “current initial dynabase,” viewing each external update as a three-step procedure
of cloning ℸ, asserting new aggregands on this clone, and replacing the notion of the current
ℸ with this clone. (We trust the reader will forgive us some laxity in the description; we are
presuming some “even more initial” dynabase which can own the linear temporal history
of ℸ clones.) While such a description is amenable to an interpretation as an immutable
data structure, and as such is quite attractive, it is, nevertheless, slightly at odds with the
(relatively) simple story given herein for the behavior of dynabases within the solver.

6.2.4 Execution of Multiple Dynabases

While collecting rules gave us a semantic definition of a multi-dynabase program, it does not
provide a reasonable execution strategy. We have sought to develop a strategy in which rules
are not copied, but remain firmly anchored to individual dynabases. Rather, we would like
aggregands to be cloned along the inheritance hierarchy, relying on the AC-reducer nature
of aggregators to combine additional aggregands as they are encountered within clones.
Unfortunately, we have not yet obtained a satisfactory answer.

However, while on the topic of execution, we forsee a significant role for a range-
restriction-like requirement on programs. In particular, we will require that the solver never
needs to make a subgoal query in which the dynabase whence it is to find answers is not
a singleton (i.e., ground). That is, at each stage of backward-chaining’s refineRuleSuffix,
even within the non-ground reasoning strategies proposed, the combination of the specified
do and di, as well as any prior subgoals must be enough to bring the sg.i.3 projection to a
singleton. This restriction means that the solver always knows the unique place to look for
subgoals. When forward-chaining, do will not be specified up front and must, instead, be
ground by the time the rule has been refined by answers from all subgoals, even if the head
is non-ground.

Compiling to Default Reasoning An interesting avenue of future work arises: rather
than introduce the novel complexities of rule collection and the “open” nature of inheri-
tance, can we instead somehow compile a multi-dynabase program to a single-dynabase one
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using the default reasoning of §3.4? This would, seemingly, obviate the need for explicit
accumulation of rules. Likely, such abilities would require dramatically different names than
we have developed for the semantics of this section. Our names here are based on the owner
and the initial name of a dynabase, while default reasoning would seem to necessitate that
the names be centered around the progenitor relationship.

6.2.5 Static Analysis of Multi-Dynabase Programs

When bringing the static analyses of §5 over to the new, multi-dynabase world, mode
analysis will let us enforce our range-restriction-like requirement, that we always know
precisely which dynabase handle is to be used. However, an interesting new question arises:
how do we know that the query we are currently considering making is well-moded in the
selected dynabase?

It must be that the type of a dynabase carries enough information to answer
mode questions. That is, our static analyser must characterize subsets of D not by shape
(as it did subsets of H) but by knowledge of permitted query and update procedures.
Orthogonally, one should characterize d ∈ D as being owned or not by the current dynabase.
As is so often the case, one could choose to enforce that all dynabase handles arising in
the do position are certainly owned by the current dynabase, with the implication that
some clever, dynamic routing of handles throughout the system will not be permitted, or
choose to permit execution of the program even when this is not certainly true, at the cost
of runtime exceptions. Unlike the error handling proposed in §6.1, in such a case there is
no obvious head item to which the resulting error value is to be given; instead, we propose
either a per-dynabase recipient of errors (i.e., some built-in item, $ok⟨⟩, which typically has
value true⟨⟩ but has an error value at least when such a bad contribution has occurred and
has not been superseded by subsequent forward-chaining) or the termination (i.e., crashing
with a sufficiently useful error message) of the solver.

6.3 Looseness of Program to Hypergraph Mapping
The translation of programs to hypergraphs given in §3.1.4 is not a very tight encoding,
in that there is redundancy in the graph structure. Consider a rule wherein a value of one
subgoal covaries with the key of another, e.g., ρr = {(f⟨⟩ ↩ w) ⇐ ⟨a⟨⟩ ↦ v,b⟨v⟩ ↦ w⟩ ∣ ⋯}.
Since the translation derives edges from nontrivial rule queries for each rule, this rule will
give rise to edges φ = {⟨r, ⟨f⟨⟩, ⟨a⟨⟩,b⟨x⟩⟩⟩⟩ ∣ b⟨x⟩ ∈ I}, which may be an infinite collection.
However, within every rule answer, the second subgoal is completely determined by the
first, meaning that, for any given ln⋅ , all but at most one of the φ edges must have consistent
label null.

A tighter encoding, more reflective of both the program’s semantics and the solver’s
behavior, would remove these spurious degrees of freedom from the edge indexes. The notion
of a rule query would be, most generally, replaced by that of a set of singleton refinement
operations on a prefix-free set of paths within ρ that, when combined with ln⋅ , would be
sufficient to identify a single element of ρ. In the above example, the empty set suffices. In a
more intricate example such as {(f⟨h,x, v⟩ ↩ w) ⇐ ⟨a⟨x, z⟩ ↦ v,b⟨y, z, v⟩ ↦ w⟩ ∣ ⋯}, a rule
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query would cover head.1 (h), head.2 (x; sg.1.1 would work as well), sg.1.2 (z), and sg.2.1
(y), these being sufficient to identify (by being used as paths for singleton refinements) a
subset with at most one element consistent with a node labeling.

This encoding has proven itself useful within the planner of a prototype µDyna
compiler, but only on a per-rule basis. Planning subgoals amounts to finding a kind of node
cover of a hypergraph where the paths within a rule query form the nodes (in practice, we
have used a more traditional, variable-based encoding rather than the more general, but
set-theoretic, notion of paths of this paper). One of our collaborators is investigating an
extension to work across rules by unfolding items’ definitions. However, even so, it is not
clear how to map this tighter notion back to the kind of computational circuit model we
started with: if these sets of refinements are the edges of the graph, what are the nodes?

6.4 A Taxonomy of Database APIs
The data structures considered by this document are intended to support exclusively fully-
simplified responses to queries. That is, while “1+2” is indeed a kind of answer to the
question of “Set a to 1 and b to 2; what is a+b?” (as is “a+b”, as unhelpful as that might
be), we consider the only acceptable answer to be 3. Of course, internally, algorithms which
implement the specification given herein are free to use other, partially simplified answers
at points in their computation, but these will not be presented to the user. This has
implications on the space of programs which can be considered valid; e.g., {(goal⟨⟩ ↩ v) ⇐
⟨posint⟨x⟩ ↦ 1,r2⟨x⟩ ↦ v⟩ ∣ v, x} (using as primitive the relations {⟨posint⟨x⟩, v⟩ ∣ v ∈
{0,1} ∧ (v = 1⇔ (x ∈ Z ∧ x > 0))} and {⟨r2⟨x⟩, v⟩ ∣ x, v ∈ R, v = 1/x2}) must be forbidden
by implementations which reach a fixed point by enumeration of values for all possible
instantiations of variables, which are most of the systems we have considered, despite that
more clever systems could conclude that goal, if summed, would have value π2/6 [55].

Much of the development in this thesis is already suitably generalized to support
the case of responses enriched by constructors over projections of the query, i.e., where
the responses to queries may structurally covary with the query itself.155 That is, while
there is no invariant, fully-simplified response to “What is the value of id(X)?”, when id is
defined to be the identity function, there is nevertheless an answer using constructors-over-
projectors: id(X) has value X (i.e., the first subterm projection of the query). However,
the full story—especially the production of these kinds of responses by aggregators—rapidly
becomes sufficiently complicated that we must leave the problem to future work, though we
believe that the steps made in this document shine light in a useful direction.

155The full-simplification constraint of the previous paragraph is a trivial special-case of these answers in
which there are no projectors, just term constructors, used in the responses to queries.
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Conclusion

I realized, the moment I fell into the fissure, that the Book would not be destroyed as I had
planned. It continued falling into that starry expanse, of which I had only a fleeting
glimpse. I have tried to speculate where it might have landed—I must admit, however, such
conjecture is futile. Still, questions about whose hands might one day hold my Myst Book
are unsettling to me. I know my apprehensions might never be allayed, and so I close,
realizing that perhaps the ending has not yet been written.

Cyan Worlds. Myst. Atrus’s opening voiceover.

We have considered the design, theoretical, and practical aspects of a novel, purely-
declarative weighted logic programming language, Dyna. During the course of our work, the
language has evolved from a simple but useful toolkit, as in Eisner, Goldlust, and Smith [51],
towards a language designed for programming “in the large” and capturing entire program
pipelines, with a focus on statistical natural language processing, as shown in Eisner and
Filardo [50]. As might be expected, such an ambitious target is an endless fount of research
topics, some of which we have solved or addressed in this document.

In §2, we explored Dyna’s primordial landscape: finite arithmetic circuits. We
reviewed the natural semantics for acyclic (§2.1.2) and cyclic (§2.5.1) circuits. We then
gave a pair of solver frameworks (§2.2.4 and §2.3) which could smoothly interpolate between
the two existing dominant solver strategies (i.e., forward- and backward-chaining). These
frameworks were shown to be amenable to a series of extensions which brought additional
strategies into scope for the optional use of the solver (§2.4). However, while finite circuits
may be useful, they fall shy of actually describing the complete set of things expressible
within a Dyna program, to which we next turned our attention.

In §3, we considered the surprisingly challenging problem of generalizing our
circuit-based solver frameworks to reasoning on infinite circuits described by Dyna pro-
grams. We gave a formalized, core language and semantics, µDyna (§3.1), which pared
Dyna down to its essence of collecting and manipulating sets of circuit nodes and edges at
once. We then warmed up by revisiting our finite-circuit playground, now viewed through
the lens of µDyna programs (§3.2). Having so warmed up, we then considered the task
of backward-chaining within general µDyna programs. Our first approach (§3.3) assumed
the ability to maintain piecewise-constant functions, using set subtraction within updates
to maintain the requisite partition of the domain. We then showed (§3.4) that this use set
subtraction is not fundamental, by giving an algorithm which uses default reasoning and
eliminates set subtraction, replacing it with a cardinality of subtraction oracle.

In §4, we reviewed some options for computational representations of (in)finite sets.
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Such representations are crucial for both execution and analysis of Dyna. We discussed in
detail the popular WAM design (§4.1) and a larger notion of automaton encodings of set
membership predicates (§4.2). We related these automata to the finite circuits of §2 (§4.3)
and used this insight to guide the design of automata whose languages are sets of sets of
trees (§4.4).

In §5, we considered several different analyses of µDyna programs, operating on
different levels of abstraction over the program’s runtime behavior. In §5.2 we considered
type-based analysis of the semantics of the µDyna program, intended to detect possible
programmer error. In type-based reasoning, we centrally considered a notion of optimistic
types which included all non-null valuations of all items (within the permitted query
set). In §5.3 we considered instantiation-state-based analysis of the µDyna program and,
in particular, the execution of the rule bodies within a solver, by studying the composition
of procedures which back the abstract Lookup procedure of the algorithms of §3. In §5.4,
we turned our attention briefly to statically describing the aggregation of results within the
solver’s execution.

And last, in §6, we considered a series of revisions to Dyna itself. The most
significant of these is the “dynabase” extension, which gives a first-class module system to
Dyna (§6.2).

In addition to the work directly contained within this document, Tim Vieira and
the author have implemented an end-to-end prototype of the Dyna language, in 2013. This
prototype, mentioned at a few points throughout the thesis, was essential to the development
of §3.2 and §5.3 (indeed, the prototype’s Dyna compiler component grew out of an effort
to more fully understand Overton [137]). This prototype was sufficiently useful to have
been used as part of a summer course at the University of Michigan designed to expose
student linguists to computational linguistics, despite its support for a subset of the Dyna
2 language. Separately, there is a “reference implementation” of our first mixed chaining
algorithm, as detailed in §2.2.4, which can be used to investigate possible solver behaviors
when applied to small circuits. The insights gained in the development of these two artifacts
have already contributed to this thesis and to the successor implementations of Dyna.

We hope that the frameworks proposed in this thesis prove useful to those who
will come after us in their efforts to increase the expressive power of the Dyna declarative
weighted logic language (or, indeed, any similar undertaking) and to achieve the grand
vision of executable, mathematical specifications of (numeric) programs.

Dyna 1 vs Dyna 2 Having all of the machinery under our belt, we are, at last, in a
position to offer a more detailed comparison between Dyna 1 and Dyna 2, with focus on
the new expressive power in the latter.

Weight Algebra: Dyna 1 enforced the use of a single semiring throughout the program, using its mul-
tiplicative operator ⊗ to combine the weights of subgoals and its additive operator
⊕ as the aggregator for each item. Dyna 2 has a more generic mechanism of expres-
sions of subgoals and per-item aggregators; in µDyna, these are flattened, without
loss of expressive power, to the conjunctive rule body. Dyna 1 did not distinguish
between null and the semiring 0 element. Dyna 2 introduces null to facilitate the

183



use of multiple semirings within a single program. (Recall §3.1.2.1 and, in particular,
footnote 73 therein.)

Weight Isolation: The elements of the item value semiring of a Dyna 1 program are disjoint from the
Herbrand universe used to construct item names. In Dyna 2, the two may freely in-
termingle, creating novel challenges for both theory and algorithms. The µDyna for-
malism in §3.1 (resp. default-based solver in §3.4) overcomes these challenges through
the distinction between the θ and ε (resp. αk and αv) sets.

Solver Internals: The solver implemented for Dyna 1 was a fully-materialized (i.e., no partial memoiz-
ation), purely forward-chaining (recall §2.2.3) system which used only delta messages
on the agenda (recall §2.4.3). When using semirings without a notion of subtraction
(e.g., the Tropical semiring ⟨R∪∞,min,∞,+,0⟩), the Dyna 1 solver is unable to handle
non-monotonic behavior of aggregands.156

Static Analysis The Dyna 1 system had a relatively limited suite of static analysis capabilities. The
efforts of §4 and §5 have been done with an eye towards making more tailored solver
code for individual programs.

Suggestions for Future Work Throughout the thesis, we have identified several avenues
for future investigation. Further, several of our designs are modular, in that they are
parametric in the choice of underlying machinery. For ease of reference, we enumerate
future work and parametric decisions here, with a brief summary for each.

1 §2.2.4.4 and §2.4.2 suggest that the solver may be able to return answers from queries
even before the agenda has emptied, by either passive detection or active scheduling
of work to promptly bring queried items into convergence. There are implementation
details of metadata maintenance that remain to be worked out.

2 §2.2.4.5 and §2.3 lay groundwork for a multi-threaded finite solver algorithm, but there
is not, of yet, an implementation taking advantage of these ideas.

3 §2.3.4.1 introduces a large space for designs for summary information stored about
items’ values or parents, with the intent of speeding up processing of notifications or
being able to respond to predicate queries of the value. Investigating this space and
the relative merits of designs here likely represents a large piece of future work for the
evolution of circuit solvers.

4 §2.3.5.3 ponders passing increasingly verbose messages backwards along the circuit
with the aim of enabling earlier recognition that changes have no further effect on the
values of the circuit.

5 §2.4 details several theoretical extensions to the (forward) messages of the circuit
solver. The question of when such messages should be used within the solver’s evolu-
tion is a difficult problem, requiring both analysis of the circuit and runtime prediction

156Some special handling, achieved by restarting child-closed segments of the computation, exists for the
external driver’s use.
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of future benefits. Such considerations fall within the realm of ongoing work as part
of the successor implementations of Dyna; see Vieira et al. [183] for further discussion.

6 §3.1 introduced µDyna, a core representation for per-rule reasoning of Dyna programs.
Aggregation was, notably, implicit in this representation; an explicit representation,
along the lines of the “superhomogeneous normal form” of Mercury’s compiler [166],
would increase the utility of this representation for program rewrites. One of the
successor implementations of Dyna has made inroads into this effort, but is not as
set-centric in its formalism as µDyna.

7 The AnswerFor oracle of §3.4.1 will need to be implemented within any implementation
of default reasoning. The algorithm of §3.4 is, in a sense, parametric in this oracle;
more powerful oracles enable more programs to be solved by default reasoning.

8 As first suggested in §3.4.1 but reinforced by §4.2, while it appears that no single
automaton class will be sufficient for a fully general Dyna solver (absent relatively
strong restrictions on programs), it may be possible to extend the compiler’s planner
to consider multiple automaton classes and transfer of representation between classes.

9 §3.4.5 and §3.5 suggest several avenues of optimization of our default reasoning algo-
rithm. Most are straightforward and likely to benefit real-world implementations (at
the expense of simplicity of exposition).

10 §3.6.1 introduces, but does not complete, an extension to non-ground reasoning to
permit lifted forms of head-value covariance, where projections of the head are re-used
in aggregands.

11 §3.6.2 discusses extending non-ground reasoning to forward chaining. We have imple-
mented some of the material of this section in the 2013 prototype, under assumptions
that limited us to (essentially) ground reasoning. Thus, we know the machinery to
be sensible, but have not considered its general extension to compatibility with the
non-ground backward chaining of §3. Combining the two is likely of substantial im-
portance to any implementation of Dyna 2 and will build upon the foundational work
in §3.

12 §5.2.4.1 assumed a function for subgoal cardinalities (sgc) which we have taken as
oracular; such a function must be provided by an implementation of the analysis of
this section.

13 §5.3 details our inst-based conjunctive static analysis from a set-centric perspective;
an implementation must find a suitable abstract representation or tree set automata
family or implement three-way operations (i.e., those capable of indicating “certainly
yes,” “certainly no,” or “could be either.”). The latter offers promising opportunity
for exchanging thoroughness of analysis for shorter compilation times.

14 §5.3.6 discussed, but did not pursue, tracking determinism, within a rule’s answer
inst, of projections beyond the rule’s subgoals. While likely interesting, we lack a use
case that definitely benefits from this increased analysis.
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15 §5.4 leaves open the problem of ensuring, in general, that the program’s purported
contents inst (C) is in fact closed under the program’s operation. Sufficiently coarse,
yet still useful, C are likely verifiable as closed, even so.

16 §6.2.4 raised the question of compiling the complex multi-dynabase rule-collection
semantic mechanism into default reasoning.

17 §6.4 ponders extending Dyna into a kind of term-rewriting system by adding uneval-
uated expressions to the language of answers to queries, an even broader extension
than those of §3.6.1.
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absorbing element, 11
absorption laws, 11
abstract interpretation, 141
abstract unification, 135
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accepting, 122
accepting states, 121
accepts, 121
actor, 44
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aggregate, 74
aggregation tree, 47
aggregator, 74
φ-algebra, 20
all-answers, 5
all-proofs, 5
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answer, 79
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applies, 29
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arithmetic circuit, 22
assertions, 167
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automaton, 121
automorphism, 9
axiomatic, 76

B-hypergraphs, 24
backward-chaining, 25
bag-view projector, 8
baggregator, 55
base, 96
body, 4, 71
boolean circuit, 23

bottom-up, 123
built-in, 152

call compatibility, 143
call-compatible, 152
carrier, 20
chain, 11
chart, 25
child, 77
children, 22
clone, 170
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co-finite, 130
codomain, 9
commutative, 10, 11
comparable, 11
complete, 123
composition, 10
configuration states, 121
consistent, 27
constant, 150

at convergence, 150
contents, 155
continuous query, 33
converged, 42
cover, 96
curried, 10

dead code, 139
deductive database, 1
definite Horn clause, 15
delta updates, 58
dependent product, 9
dependent sum, 8
derive, 1
derived, 22, 73
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descendants, 22
determinism, 164
deterministic, 122
deterministic, finite string automaton, 121
dispatch, 154
distributivity, 11
domain, 9
driver program, 3
driving, 112
dynabase, 170

encloser, 96
error latch-up, 169
error values, 167
expression forest, 21
expression tree, 20
extensional, 22

fail, 118
floating point, 18
forward-chaining, 27
fully-simplified, 181
function symbols, 13
functor, 13

goal, 15
greatest lower bound, 11
group, 11

handle, 170
head, 4, 71
Herbrand universe, 13
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Horn clause, 15
hypergraph, 24
hypermultigraph, 24
hyperquiver, 24

idempotent, 11, 12
identity element, 10
iff, 9
immediate subterms, 13
immediately-available, 150
incomplete definitions, 139
induced non-ground heads, 101
inexact values, 18

inference rule, 159
initial state, 121
initialization strategy

conservative, 30
null, 30
unk, 38

inner-rigid states, 136
input, 22, 73
inst, 154
instantiation error, 153
instantiation state, 154
intensional, 22
interpretation function, 20
intersection-closed, 96
inverse, 11
inverse query modes, 84
items, 21

join, 11
⊕-join, 95
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kv-pairs, 71

L-replacements, 100
language, 121
lattice, 11
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linear order, 11

map, 9
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memoize, 26
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monotone, 12
monotonic, 5
most general unifier, 118
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non-ground K-sufficient range restriction,
89

non-ground rule answer, 88
non-ground rule query, 87
non-ground term, 13
non-monotonic, 5
nondeterministic, 122
notification, 31

obligation, 41
obligation release, 51
occurs check, 118
optimistic types, 142
outermost functor, 13
over, 10
owner, 170

packets, 88
pair, 7
parent, 77
parents, 22
partial order, 11
partially propagated notification, 56
passenger, 112
path, 8
peek, 33
piecewise-constant backed-off function, 96
plate notation, 74
pop, 28
pop-time, 31
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post-composition, 10
pre-answers, 73
pre-composition, 10
primitive, 130
procedure table, 155
procedures, 154
progenitor, 170
projection, 8
propagation, 31
push-time, 31
pushing, 29

queries, 1
query, 79

query modes, 152
query set, 81

range restriction, 80
reactive program, 2
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refresh update, 29
regular, 122
regular tree automata, 123
replacement updates, 29
replacements, 100
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result, 71
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ring, 11
root functor, 13
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rule, 23
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rule query, 73
run, 122
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semiring, 10
set states, 132
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solution, 22, 78
solver, 1
source, 22
specialization, 135
specificity, 100
stability, 33, 67
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states, 121
step, 61
step-wise finite, 81
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strings, 121
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substitution, 118
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TA, 120
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top-down, 124
topological sort, 21
total, 9
total order, 11
trail, 120
tree automata, 120
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trees, 13
trivial, 73
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type, 13

uncurried, 10
underlying set, 7
upcast, 10
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visited set, 56

watched-variable trick, 51
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∣σ∣, 7
j. . .o, 8

ℸ, 170
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ℷ, 170
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H′, 73
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nr, 72
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σ⇃π, 8
S⇃π, 134
t⇃π, 8

σ[τ/π], 8
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Ξ, 71
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