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Abstract. We present our work towards a formalism useful for static
analysis of pure Prolog programs. Semantically, such programs reason
about trees, but the solvers actually manipulate sets of trees. Thus, at
compile time we wish to circumscribe the set of possibilities—which trees
may arise semantically (“type analysis”), but also which tree sets may
arise procedurally (“mode analysis”). Our proposed solution is a class of
automata in which each accepting path represents a set of trees. We dis-
cuss the automaton operations that arise during static analysis. We build
atop rigid tree automata, which we regard as adequate for a simple Prolog
type system: they permit disjunction and recursion (for algebraic data
types on trees) as well as limited forms of equality constraints (enforced
by repeated variables in Prolog). We then “lift” this formalism to handle
tree sets. Disjunction and recursion can now capture uncertainty about
the tree set, and equality encodes which Prolog variables are identical.

1 Prolog

A Prolog program—like a tree automaton—is a description of a set of trees,
called the provable terms. (We will use “tree” and “term” interchangeably.)
Each line of the program is a proof rule that justifies the acceptance of one tree
(the head) if a finite set of other trees (the body) are all accepted.1 A proof
rule may apply in infinitely many settings if it contains variables, denoted by
capitalized identifiers, which are universally quantified over all possible terms.

The set of “possible terms” T F is called the Herbrand universe (or term
algebra), and is built up from a signature, F , of symbols-with-arity.2 E.g., ,
if F = {nil/0, cons/2, length/2, . . .}, then cons(nil,length(nil,nil)) is a
possible term. That said, a program that treats cons as a list constructor should
never construct this term—something that we would wish to verify statically.

Each proof rule in a Prolog program is a Horn clause (with variables)
of the form Head :- Subgoals or simply Head. The :- symbol is read “if.”
For example, one may define a length〈X, Y〉 relation between “cons” lists and
natural numbers by two rules:3 length([],0) and length(L,N) :- L = [H|T],

length(T,M), N is M+1. The first simply relates the empty list and the number
0, while the other can be read inductively: the list L has length N if L begins

1 In this paper we focus on “pure” Prolog. Our static analysis techniques would also
apply to full Prolog, or to our own pure logic language Dyna [3].

2 Often, F is defined to have primitive constants, e.g., numbers, as symbols of arity 0.
3 A cons list is a term built up from the symbols nil/0 and cons/2; the first child of

a cons is the first element of the list and the other is the rest of the list. For brevity,

[]
def
= nil/0, [h|t] def

= cons〈h, t〉, [a, b|t] def
= cons〈a, cons〈b, t〉〉, etc.
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with H and has tail T, and N is one more than the length M of T. The two rules
above define the set of provable terms to include

S = {length〈[], 0〉, length〈[h|t], n+ 1〉 | h ∈ T F , length〈t, n〉 ∈ S}
= {length〈[], 0〉, length〈[x1], 1〉, length〈[x1, x2], 2〉, . . . | xi ∈ T F}.

Each term t ∈ S can be justified by instantiating variables in one of the two
rules to obtain t or t :- t1, t2, . . . where t1, t2, . . . are themselves provable.4

Let us take a moment to introduce notation. We write t⇃2.3 (for example) to
denote t’s second child’s third child; the subscript 2.3 is called an address and
in general is a finite sequence π of counting numbers. We lift this projection

operator to sets of trees: τ⇃π
def
= {t⇃π | t ∈ τ}. One may specialize a set of trees τ

to a subset satisfying a particular projection: τ [σ/π]
def
= {t ∈ τ | t⇃π ∈ σ}. A rule

R can itself be represented as a set of trees; for example, our recursive length rule
is {rule〈length〈l, n〉, subgoals〈=〈l, cons〈h, t〉〉, length〈t,m〉, is〈n, +〈m, 1〉〉〉〉 |
h, l,m, n, t ∈ T F}. We can now formally state that a Prolog program P accepts a
term t via a rule R with k subgoals, encoded as above, iff there exists r ∈ R[{t}/1]
such that r⇃2,i is also accepted by P for each i ∈ {1, . . . , k}.

An Prolog solver attempts to determine which provable terms match a given
query, specified by a set E. Semantically, it finds the solution Ψ(E) =

⋃
R∈P ΨR(E),

where each ΨR(E) ⊆ E gives all terms in E that can be justified by rule R. The
solver finds ΨR(E) by successive specializations of rule R, which involve recur-
sive queries of R’s subgoals. It begins by unifying the rule head with the query,
obtaining the specialized rule R′0 = R[E/1]. It then uses the first subgoal R′0⇃2.1
as a query to obtain the solution α1 = ΨR′0⇃2.1 , with which it further refines the
rule to obtain R′1 = R′0[α1/2.1]; this process continues with the second subgoal,
obtaining α2 = ΨR′1⇃2.2 , and on, until it has solved all k subgoals and has com-
puted R′k = R[E/1][α1/2.1] · · · [αk/2.k]. With all subgoals specialized to their
provable subsets, R′k⇃1 is exactly the set of trees justified by R, ΨR(E).

The solver strategy described above presupposes that a query E returns a
single object. For computational reasons, a traditional Prolog solver actually
returns the set Ψ(E) as a stream S(E) of packets—sets whose union is Ψ(E) ⊆
E. Traditionally, each packet A is a non-ground term, a simple and constrained
way to express a set of trees. Non-ground terms are not closed under finite or
infinite union, so a stream of packets is more expressive than a single packet. To
be precise, the standard backtracking search solver returns the stream

SE =
⊕
R

SR(E) =
⊕
R

⊕
α1∈SR′0⇃2.1

R′1=R
′
0[α1/2.1]

· · ·
⊕

αn∈SR′
n−1

⇃2.n

R′n=R
′
n−1[αn/2.n]

R′n⇃1 (1)

where
⊕

denotes stream concatenation and SR(E) covers ΨR(E). A rule with k
subgoals thus creates k nested loops to answer ΨR(E).

4 This definition of length/2 is straightforward but limited relative to Prolog standard
libraries’ length/2. Prolog always solves subgoals left to right, so while the query
length([8,9],N) will succed and bind N to 2, the query length(L,2) will recurse to
length(X,Y) and will not terminate, rather than producing {length〈[a, b], 2〉 | a, b}.
One of the motivations of static analysis of Prolog is automated subgoal reordering
to derive different procedures for differently instantiated queries; see [7].
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Some built-in queries—for example, queries about arithmetic facts—are
handled specially by the solver. The solver in this case returns a stream of
results computed by some library procedure rather than by the program rules.

A Prolog solver may refuse to answer certain built-in or user-defined queries,
typically because the answer streams would be infinitely long and would cause
the solver to not terminate. Consider executing the subgoal sequence B=2, C=1,

A is B+C: by the time the solver invokes the is/2 subgoal query, that query
has been specialized to A is 2+1, which easily returns α3 = {3 is 2+1}. If,
however, the subgoal sequence had been reversed, the unspecialized is/2 query
would have been obligated to produce an infinite answer summarizing all addi-
tion facts. Encoding that answer into finitely many packets (so that the solver
terminates) would require a highly expressive representation for packets (an
approach adopted in constraint logic programming [2]). Most Prolog implemen-
tations simply generate an instantiation fault (a runtime exception) if this
kind of problematic query arises at runtime. It would be desirable to statically
exclude the possibility of instantiation faults.

2 A Simple Static Analysis of Prolog Programs

To statically analyse a program is to construct or check upper bounds on its run-
time behavior. Prolog static analysis has a rich history stretching back decades:
[1] (1993) claims that “modes” as we know them are due to [6] (1981). Our
effort follows most closely that of the Mercury project [7] (2003) and can be
thought of largely as an automata-theoretic re-development of that work, using
tree automata to track variables’ types (not supported in Mercury) and handling
repeated variables via equality checks in the tree automaton.

The input to our static analysis is a Prolog program P augmented with
declarations that describe the queries and packets that may arise at runtime:
E is a set of supported queries, and A is a set of possible packets that might
answer them. These declarations claim that for each E ∈ E , the runtime engine
will produce an answer stream S(E) consisting of packets A ∈ A (where eachA ⊆
E). Note that E and A are both (possibly infinite) sets of (possibly infinite) sets
of trees. They represent uncertainty about which tree sets—that is, which queries
or packets—will arise at runtime.5 We will represent them by tree set automata.

With that information at hand, we seek to certify (P, E ,A) as well-moded.
That is, for any query E ∈ E and any rule R ∈ P, the stream SR(E) should
consist entirely of packets in A. To prove this, we assume inductively that it is
true for the subgoal queries that are used to generate this stream.

In practice, P may be augmented at runtime with additional facts that form
the input to the program. A fact (or axiom) is a rule with an empty body (k = 0
subgoals). For example, an input graph may be specified at runtime by a set of

5 Thus, they resemble the instantiation states (insts) of Mercury [7] (although
Mercury in effect specifies a separate pair of insts (Ei,Ai) for each operational pro-
cedure in the compiled program). By contrast, a stream is a set of sets of trees that
all arose at runtime. Static analysis of determinism would attempt to determine the
possible cardinalities of a stream at compile time.
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edge〈x, y〉 facts. A fact H is only legal as input if it satisfies (∀E ∈ E)E∩H ∈ A,
ensuring that the augmented program remains well-moded.

We lift our tree-set operators to insts: T1[T2�π]
def
= {τ1[τ2/π] | τ1 ∈ T1, τ2 ∈

T2} represents at compile-time the possible results of a runtime specialization

of a rule, and T ⇃π
def
= {τ⇃π | τ ∈ T} projects through both set levels. Those

two operations, and singleton formation and a few decision procedures, form the
tooling needed for our analysis. Concretely, for each rule R ∈ P with k subgoals,

– Check that (∀i ∈ [1, k]){R}[E�1][A�2.1] · · · [A�2.(i− 1)]⇃2.i ⊆ E . That is,
check that the ith subgoal query will always be a legal query.

– Finally, check that {R}[E�1][A�2.1] · · · [A�2.k]⇃1 ⊆ A. That is, check that
the packet obtained as the head of the fully specialized rule will always be a
legal packet.

We now turn our attention to the implementation of these operations and tests.
We remark that it would be possible to apply similar techniques to more so-
phisticated solvers, which might dynamically reorder or restructure subgoals or
might go beyond backtracking search to (also) use forward chaining.

3 Tree Set Automata

Regular Tree Set Automata We begin with a notion of Regular Tree Set Au-
tomata, built using two disjoint sets of states, tree states Q and set states Q̂,
where Q̂F ⊆ Q̂ are the final states. A tree state accepts trees, while a set state
accepts sets of trees (queries or packets, which in traditional Prolog take the
form of non-ground terms; our formalism is more expressive). Transition rules
in a TSA come in 6 forms (where q, qi ∈ Q and q̂, q̂i ∈ Q̂):

– f 〈q1, . . . , qn〉 → q0 is an ordinary TA rule, which asserts that L(q0) ⊇
{f〈t1, . . . , tn〉 | ti ∈ L(qi)}, a set of trees.

– free q → q̂ asserts that L(q̂) ⊇ {L(q)}, a set of tree sets. Thus, q̂ accepts
the “free variable” of type q (a query or packet representing all of L(q)).
We will require that q̂ and rules (transitively) contributing to its definition
describe a top-down deterministic automaton.

– ground q → q̂ asserts that L(q̂) ⊇ {{t} | t ∈ L(q)}. Thus, q̂ accepts any
ground term of type q (a query or packet representing a specific tree in
L(q), although which term will not be known until runtime). We need no
restriction on the shape of the automaton description of q.

– subtype q → q̂ asserts that L(q̂) ⊇ ℘(L(q)). Thus, q̂ accepts any special-
ization of the free variable of type q (which must also, as with free, be
top-down deterministic). It may occasionally be necessary to include such
sets in A, when the program P is not well-moded under any tighter decla-
ration that is expressible in our formalism.

– bound f 〈q̂1, . . . , q̂n〉 → q̂0 asserts that L(q̂0) ⊇ {{f〈t1, . . . , tn〉 | ti ∈ τi} |
τi ∈ L(q̂i)}. The name “bound” comes from [7] and signifies an instantiation
state between free and ground: the runtime packet may represent one term or
many, subject to q̂1, . . . , q̂n, but all terms in the packet have root symbol f.

– bound⊂ f 〈q̂1, . . . , q̂n〉 → q̂0 is necessary for specialization closure; it asserts
that L(q̂0) ⊇ {α′ | α ∈ {{f〈t1, . . . , tn〉 | ti ∈ τi} | τi ∈ L(q̂i)}, ∅ ⊊ α′ ⊆ α}.
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Primitive types can be handled via “built-in” tree states, e.g., define L(qint) = Z.
Recognizable tree sets then include {{f 〈n〉 : n ∈ Z}, {g 〈n〉 : n ∈ Z}} (allowing
two possible packets, via two bound transitions to a final state); {{f 〈n〉 : n ∈
Z} ∪ {g 〈n〉 : n ∈ Z}} (allowing only one possible packet—which includes both f

and g terms—via one free transition); and {{f 〈n〉} : n ∈ Z}∪{{g 〈n〉} : n ∈ Z}
(allowing infinitely many possible packets, via one or two ground transitions).

Inner-Rigid Tree Set Automata We now extend Regular Tree Set Automata to
handle global equality constraints, borrowing from Rigid Tree Automata [5]. A
particular tree t in a set τ accepted by a TSA can be given a run labeling: every
position is associated with at most one Q and at most one Q̂; only the nodes
at transitions (e.g., free) will have both. We extend the above definition with
inner-rigid states, both tree, QR ⊆ Q, and set, Q̂R ⊆ Q̂, to obtain Inner-Rigid
Tree Set Automata (IRTSA). The sets accepted by an IRTA are of trees whose
runs obey the rigidity requirement: for each q ∈ QR ∪ Q̂R, all nodes in a run
labeled with q are the roots of equal subtrees. These rigid states allow us to
encode the reuse of variables within a Prolog rule.

3.1 Operations on (IR)TSAs

Outer-Union and Outer-Intersection Given a (IR)TSA A, we seek to form two
(R)TAs (resp.) that describe the union and intersection of the sets accepted by
A, denoted

⋃
A and

⋂
A. Union is straightforward as the resulting automata has

the same shape as the input (IR)TSA. Intersection is a little more complicated,
but tractable because set states cyclic through bound have empty intersection.

Emptiness Testing (IR)TSA inherit emptiness testing from (R)TAs: a depth-
first traversal state-marking algorithm suffices to label each state (be it either
tree or set) as (non-)empty. The only tweak is that free q always accepts a set,
regardless of q’s emptiness, and ground q accepts a set iff q does.

Acceptence of the Empty Set (IR)TSA may use a very similar algorithm to that
of emptiness testing to determine the acceptance of the empty set: free q 3 ∅
iff q is empty, and bound f 〈q1, . . .〉 3 ∅ iff any of its qi does.

Projection Projection is straightforward: having removed bound rules which
accept no sets, start from the root states of a TSA, and walk the projection
path to find the new root states of the projected automaton.

Unification In order to implement A1[A2�π], it suffices to implement unifica-

tion, L(A1 ∩× A2)
def
= {τ1∩τ2 | τi ∈ L(Ai)}. See § A for a sketch of the algorithm.

Subset Testing Testing whether L(A) ⊆ L(A′) for two regular TSAs can proceed
by a straightforward recursive algorithm, relying on the subset tests from regular
TAs. For IRTSAs, however, no decidable strategy exists as RTAs do not have
decidable subset tests. We hope to develop a sufficiently powerful 3-way test
which, if it reports yes or no, is correct, but may declare defeat.

4 Extensions and Future Work

Generalized Free Variable Types Relaxing the top-down determinism require-
ment on free variables, and/or generalizing beyond RTA types, requires restruc-
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turing of the TSA. If, for example, we wished to have types from (a subclass
of) TAs with local equality constraints (TAEC), we would need to equip bound

with local equality constraints along the same lines. As Rigid Tree Automata
are not a perfect fit for our needs (they are, e.g., not Kleene closed and do not
have decidable subset testing), we are actively casting around for other classes.

Aggregation The authors are working on a logic programming language, Dyna,
with semantics more general than (pure) Prolog’s [3]. One of the core aspects of
this language is that programs describe a map from terms (keys) to terms (val-
ues), rather than a set of provable terms. The values are derived from associative-
commutative aggregation across Horn expressions which give an aggregand for
each provable specialization of the rule. This need to aggregate values implies a
need to reshape packets; the passive flow of results to answers, as in Equation 1,
no longer holds. Modeling this behavior will require new operations of our TSAs.

5 Related Work

Mercury Our go-to guide for all things pertaining to expressive mode analysis
of Prolog, Mercury, specifically [7], is slightly less expressive in what insts its
machinery can describe, but it tracks additional data about the computation.
Its insts vocabulary seems to be borne of two key restrictions: the use of top-
down-deterministic inner-rigid tree set automata—though it does not discuss
its formalism in terms of automata—and the requirement that all free vari-
ables accept T F—leaving type analysis to another component of the system. It
does not have our notion of subtype because the underlying Mercury runtime
uses non-ground terms at runtime. On the other hand, its analysis tracks de-
terminism of queries—capturing bounds on the size of the SE streams—as well
as uniqueness of variables—enabling elision of data copies in favor of efficient
destructive mutation, at runtime. We hope to be able to lift these features into
further refined automata classes.

TATA Tree Set Automata The canonical text on Tree Automata [4, ch. 5] in-
troduces a concept termed a “generalized tree set automaton”. These automata
recognize “E-valued F-generalized tree sets”, i.e., maps g : H → E. The set E
generalizes the use of 2, which would make the function g an indicator func-
tion of a set of F-trees. These automata are not suitable for our use case as
they cannot recognize, for example, singleton sets of recursive structure, e.g.,
what we would denote as ground ql with {nil 〈〉 → ql, cons 〈q, ql〉 → ql} and
|L(q)| > 1. They can, however, recognize free and subtype constructions, as
well as proper-subsets.

6 Conclusion

We have presented the beginnings of an automata-theoretic formalism for anal-
ysis of Prolog-like logic programs. While many details and extensions remain to
be worked out, we hope to interest the tree automata community and welcome
any feedback.
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A Unification Cases

An algorithm for unification can largely be deduced from its set-theoretic defi-
nition on possible cases:
– (T ∪ T ′) ∩× S = (T ∩× S) ∪ (T ′ ∩× S); this forms the basis of handing of

multiple rules targeting the same states within TSAs being unified.
– free q ∩× free q′ = free (q ∩ q′) appeals to intersection of the underlying

TA family (e.g., RTA), as do free ∩× subtype and subtype ∩× subtype.
– bound f 〈q̂1, . . .〉 ∩× bound f 〈hq′1, . . .〉 = bound f 〈q̂1 ∩× q̂′1, . . .〉; for mis-

matched symbols or arities, the answer is free ∅.
– ground q ∩× q is ground of an automaton recognizing L(q) ∩

⋃
L(q) with

the addition of ∅ being accepted if L(q) 6⊆
⋃
L(q).6

The last two cases, of unifying free q (resp. subtype q) with bound f 〈T1, . . .〉,
relies on q being top-down determinisitc: there is at most one rule targeting q
that applies to trees whose roots are labeled with f/k; selecting f 〈q1, . . . , qk〉 as
its LHS, the answer becomes bound f 〈free q1 ∩× T1, . . .〉 (resp. bound⊂ f 〈· · ·〉).
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