Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Tor: The Onion Router Project

November 1, 2012

Disclaimer: huge swaths of this talk are lovingly ripped off of Roger Dingledine's 2005 What The Hack presentation and his follow-on talks at 24C3, 25C3, and 28C3, as well as Nick Matthewson's LEET'11 talk.

https://www.torproject.org/docs/documentation

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Outline

Introduction

Older Mechanisms for Anonymity

Onion Routing

Advanced Features of Tor

Open Problems, Tradeoffs, and Gotchyas

Network Statistics

Links To More

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Introduction

What is Tor? Uses For Anonymity Anonymity Against Who and What? Adversary Threat Model

Intro	Past	Tor	Advanced	Problems	Stats	Get
• 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Introduction What is Tor?

- Jargon: Tor is a "second generation" onion router.
 - To be explained later.
- Slightly less jargon: Tor aims to protect users against *traffic analysis*.
- Tor is a mechanism for building "anonymous" connections to services on the Internet.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 •0000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Introduction Uses For Anonymity: Censorship Resistance

- Want to dodge attempted censorship.
 - The Great Firewall
 - "Arab Spring" examples
- So we want to be able to hide who we are from
 - Local adversaries
 - Want a truly general purpose link
 - The remote service itself!
 - We're "just some guy"

Intro	Past	Tor	Advanced	Problems	Stats	Get
○ ○●○○○○○○○ ○○○○	000 00000	000 0000000 00 0 0	000000 000	00000		

Introduction

Uses For Anonymity: More Censorship Resistance

- The dual problem: *we* have information that we want to *publish* which
 - is culturally taboo
 - would get us in trouble with the authorities
- Here, we want to publish exactly controlled information
 - · Before, we were consuming information anonymously.
 - We want only a handle, or a pseudonym, or a strong cryptographic identity, but *not* our real identity, associated with the publication.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Introduction Uses For Anonymity: More Censorship Resistance

- This is not just theoretic.
- Notable examples include political blogging.
 - Yahoo has cooperated with Chinese authorities!
- Whistleblowers likely want to be anonymous.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000		000000 000	00000		

Introduction Uses For Anonymity: (Semi)private Information

- Selective disclosure of information.
- Roger's old examples:
 - Forums / chat rooms for abuse survivors
 - Look up information about disease without revealing who's asking.
- Roger's new example (DEF CON 2007):
 - Big, Burly Biker secretly has love of looking at pictures of cute kittens on the Internet.
 - Doesn't want his Biker Buddies to find out.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 00	000000 000	00000		

Introduction Uses For Anonymity: (Semi)private Information

A few kinds of services we want to guard against (Mathewson, LEET'11):

- "Indifferent" services ("Not *my* problem").
- "Incompetent" services who might lose the logs (see: AOL).

• "Hostile" services who might sell logs (see: everybody). Of course, services might also be *coerced* into revealing their logs or contents.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 000000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Introduction Uses For Anonymity: The man

- Wait, *The man* wants anonymity?
- It's very handy to adopt new identities!
 - Have to shed the old one first.
- Corporations
 - Hide supplier/client relationships or patterns.
 - Google and Bing are interested in poking at each other without revealing who they are.
 - Check resume sites to see if employees are unhappy?
- Law Enforcement
 - Covert surveillance & honeypot operations.
 - Wants you to have it too: anonymous tips!

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 0000000●0 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Introduction Uses For Anonymity: The Man

- Wait, The Man (note cap M) wants anonymity too?
- Intelligence gathering without revealing identity
 - "The DoD wants to know..."
- International relations
 - Hide extent of communication between parties.
- Elections & voting!
 - These only work if The Man *grants* some weak form of authenticated anonymity.
 - Even Congresscritters want to vote anonymously.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Introduction Uses For Anonymity: Criminals

- Yep, them too, for obvious reasons.
- But they already had it.
 - More resources available for it.
 - More willingness to learn tools to get it.
 - Can instead just outright steal credentials, phones, computers (or network links), ...

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

- What does it mean to be anonymous?
- It means we want to make it computationally infeasable to identify us, even partially.
- Who might identify us?
 - The people we're talking to.
 - People watching the network between us.
- Anonymity means you know nothing about me, except what I choose to give you
 - When web browsing, a service learns that *somebody* requested a URL.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0 00 00	000 00000	000 0000000 00 00 00	000000 000	00000		

- Jargon: Authenticated anonymity makes sense.
- If I can make anonymous connections, I can authenticate myself to a service using a pseudonym.
- As long as *all* my connections to the service are anonymous, the service has no idea who I "really" am.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 00 00	000000 000	00000		

- You can't be anonymous by yourself!
 - (But you can be *private* by yourself.)
- If JHU ran a proxy for JHU students,
 - Servers don't know who connected
 - But they know that it was a student at JHU.
- To be anonymous, you have to carry traffic for others.
 - The others have to believe that you aren't out to get them.
- To be secure, the network needs to be diverse.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

- Tor is mostly interested in the *connection*'s anonymity, not with the data that goes over it.
 - There are protocols for anonymous messaging
 - Now if only I could send you a message.
 - Contrawise, clients can be dumb and send clear text.
 - If you want *private* bits, don't be dumb.
- We'll talk about *data anonymity* later.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 ●0	000 00000	000 0000000 00 00 00	000000 000	00000		

Introduction Adversary Threat Model

- Technical jargon:
 - Probabilistic Polynomial Time (PPT)
 - Either logarithmic or polynomial space
 - Bounded ability to compromise nodes
- Realistically:
 - Can only watch a subset of the network traffic.
 - $P \neq NP$: can't invert RSA, DHKEX, RC5, etc.
 - Can't screw "too much" with the network
 - e.g. can't DoS the whole thing at once.
 - can't have owned the entire thing.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 0●	000 00000	000 0000000 00 0 00	000000 000	00000		

Introduction Adversary Threat Model

- Important to note that adversary is attacking the *connection*'s anonymity.
 - The data that goes over the link is assumed to be sufficiently clean or encrypted etc.
 - This is actually a real problem in the Tor world, but we'll talk about it later.
- Several choices of threat model (big space).
 - Is it realistic to assume that the adversary can observe 1 node? 1000 nodes? The entire network?
 - How willing is the adversary to attack nodes?
 - Just *how much* computing power does the adversary have up her sleeve?

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 000	000 0000000 00 0 00	000000 000	00000		

Older Mechanisms for Anonymity Anonymizing Proxy: Server

- One server (to rule them all)
 - Accepts connections from clients.
 - Makes connections to services on behalf of the clients.
 - In real time (i.e. without delay)
- Good:
 - Hides client location from servers.
 - Works even for interactive connections
 - Very easy to set up.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	00000	000 0000000 00 0 00	000000 000	00000		

Older Mechanisms for Anonymity Anonymizing Proxy: Server

- Bad:
 - Hard to find out about proxies!
 - "Hey buddy, wanna buy a proxy? I know a good one..."
 - High load on proxy (can't be alone).
 - Single point of failure
 - Single point of compromise for a large # of clients.
 - Threat model: adversary unable or unwilling to compromise proxy.
 - Assume the proxy is trustworthy!

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Older Mechanisms for Anonymity Anonymizing Proxy: Chains

- Clients can route through multiple proxies.
- May help eliminate the single point of failure
 - For example, rotate proxies over time.
- Single point of identity compromise, still:
 - First proxy in any particular connection
 - But it's only 1/n.
- Deciedly less easy to set up, but workable.
 - Even harder to find out about N proxies.
- But: remember this idea!

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	● ● ○ ○ ○	000 0000000 00 00	000000 000	00000		

Older Mechanisms for Anonymity Basic Chaum-type Mix Network: Servers

- Network of N servers, called "mixes". Each server ...
 - ... publishes a public key, PK_s .
 - ... permutes messages randomly before sending.
 - (That is, it holds on to messages for an arbitrary amount of time)
- Threat model: panopticon mostly-passive PPT adversary
 - can and will record all traffic on the entire network
 - can't DoS the entire network
 - can't invert public key cryptography

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 00 00	000000 000	00000		

Older Mechanisms for Anonymity Basic Chaum-type Mix Network: Clients

- Alice wants to send Bob M:
 - (Simplification: assume that Alice and Bob know each other and they found their addresses out of band.)
 - Select $n \approx 3$ servers from the network, s_i .
 - Compute a multiply encrypted message:

$$M' = E_{PK_{s_0}}\left[s_1, E_{PK_{s_1}}\left[s_2, \cdots \left[\mathsf{Bob}, E_{PK_{\mathsf{Bob}}}\left[M\right]
ight]
ight]
ight]$$

• Send this message to s₀.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000	000 0000000 00 0 00	000000 000	00000		

Older Mechanisms for Anonymity Basic Chaum-type Mix Network: Message Passing

- Now what?
- s_0 decrypts M' and gets

$$\left[s_1, E_{PK_{s_1}}\left[s_2, \cdots \left[s_n, E_{PK_{s_n}}\left[\mathsf{Bob}, M\right]\right]\right]\right]$$

- So it (eventually) sends this message to s_1 .
- So long as *one* of s_i are behaving, the mix works fine.
- Because the mixes shuffle messages, it's impossible to know which of its outputs corresponds to which input.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000	000 0000000 00 0 00	000000 000	00000		

Older Mechanisms for Anonymity Basic Chaum-type Mix Network: Uniformity

- What about metadata attacks?
 - Suppose there's only one message of 124 bytes in the entire mix?
 - What if there's no traffic on the net for longer than the mixes are willing to delay messages?
- Remember! You can't be anonymous by yourself!
 - Constant message sizes for the entire network!
 - (Fixed-rate) cover traffic between servers (ick!) or tolerate potentially infinite delays (also ick!).

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 0000	000 0000000 00 0 00	000000 000	00000		

Older Mechanisms for Anonymity Basic Chaum-type Mix Network: Problems

- Doesn't work for realtime operations
 - Definitionally, mixes delay messages.
 - All that public key cryptography is really slow.
- What happens if a server fails?
- Need for uniformity of servers and messages.
- Server discovery is "unspecified"
 - Same basic problem as the proxy and proxy chains.
 - (In fairness, most implementations specify a way)

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 0	000000 000	00000		

Onion Routing

The Tor Network Circuit Building Basics Directory Authorities Exit Nodes And Middlemen Guard Nodes

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	•00 0000000 00 00 00	000000 000	00000		

Onion Routing The Tor Network: Servers

- A combination of approaches we've seen before:
 - Mix-net like: N servers, each with published public key.
 - Proxy-like: Servers make real-time connections for clients.
 - Chain-like: Servers contact other servers as clients.
- With some new stuff tossed in
 - Use symmetric cryptography when possible (fast!)
 - Specify the One True Way to find the network.
 - Corollary: fine tuning of server properties.
- Tor aims to be a *real-time* anonymizing system
 - Nodes are more just-forward than store-and-forward.
 - This makes it useful for both bulk transfer and web browsing.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	0000000 00 00 00	000000 000	00000		

Onion Routing The Tor Network: Basics

- Vocabulary:
 - A "onion router connection" ("orconn") is a connection to a Tor server.
 - A "circuit" is a chain of Tor servers, each connected to the next.
 - A "stream" is a flow of data over a circuit.
- Tor circuits use fixed-length cells, making traffic analysis a little harder.
 - How much harder is an open research question.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000		000000 000	00000		

Onion Routing The Tor Network: Onion Proxies

- The tor software can be run in a number of configurations.
- The basic no-nothing mode is as a SOCKS proxy.
 - So any SOCKS aware application can take advantage of Tor.
- The Onion Proxies manage the client's anonymity.
 - Runs on the client machine (or within the client's network).
 - It's paranoid, just like you want it to be.
 - It's growing more paranoid as the network develops.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	•••••• ••••••• • • •	000000 000	00000		

Onion Routing Circuit Building Basics: Basic idea

- Suppose the clients know a large directory of servers.
- For Alice to talk to Bob,
 - 1. Alice finds a server willing to talk to Bob, s^* .
 - This is called the "exit node"
 - 2. Alice selects some random nodes: s_i .
 - 3. Alice connects to one of these nodes, s_0 , directly.
 - This is called the "entry node"
 - 4. Alice tells s_0 to connect to s_1 .
 - 5. ...
 - 6. Alice tells s_{n-1} to connect to s^* .
 - 7. Alice tells s^* to connect to Bob.
- Let's look at this in more detail.
- We'll talk about that directory of servers later.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 000000 0 0 0	000000 000	00000		

Onion Routing Circuit Building Basics: Contacting the entry

- Because Alice has a server directory,
 - She knows the address and public key of each
- So Alice connects to the entry node
 - Using the address from the directory.
- Upon connecting, Alice demands that the node prove its identity.
 - Alice does not prove her identity.
 - This is a one-sided authenticated key exchange.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000		000000 000	00000		

Onion Routing Circuit Building Basics: Contacting the entry

- As a side effect of identity verification, Alice and the entry node derive a shared session secret.
 - Jargon: Tor uses TLS (SSL); the usual key exchange and shared secret derivation protocol is "authenticated Diffie-Hellman."
- Now Alice and the entry node communicate using a fast symmetric cypher for as long as they're connected.
 - This is just like https.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000		000000 000	00000		

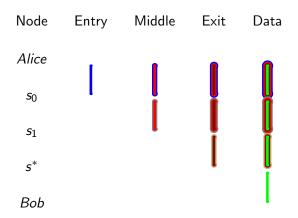
Onion Routing Circuit Building Basics: Extending the Circuit

- For each intermediate hop that Alice selected,
 - Alice tells the current end of the circuit to make a connection to the next hop.
 - This repeats until the circuit reaches the exit or fails.
- These connection requests include *both* the address and the public key of the next hop.
 - This handles servers and clients having slightly different views of the network.
- Upon failure, Alice starts all over
 - Trying to build from the last node that didn't fail would allow an adversary to game where Alice's connections could go!

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 00	000000 000	00000		

Onion Routing Circuit Building Basics: Extending the Circuit

- Alice demands the next hop prove its identity over the circuit so far (and derives a session key).
- The previous hop and next hop strongly authenticate each other and may use this connection to carry other circuits if they believe the results.
- Jargon: Router-router connections are also encrypted with symmetric cyphers to avoid acting like decryption oracles.


Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 00000●0 00 00	000000 000	00000		

Onion Routing Circuit Building Basics: The End Is Here

- Once Alice's circuit has reached the exit,
 - Alice asks the exit to connect to Bob.
- Alice may put any number of streams on each circuit, and may leave idle circuits around.
 - Building circuits is expensive.
 - Dramatically speeds up things like web browsing.
 - Usually use one circuit per remote (Bob) address.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 00	000000 000	00000		

Onion Routing Circuit Building Basics: Pretty Pictures

Onion Routing Directory Authorities

- How do clients get the directories of servers?
- Simple: from directory servers.
 - Run by the project and volunteers.
 - Public keys come with the Tor source.
- Servers register themselves with all the directories
 - (they know about)
- Directories periodically get together and derive a consensus.
- Each authority signs the consensus.
- Consensuses are dated and have staged expiration.
- (Far too complex for this talk)

Onion Routing Directory Authorities: Notes

- Publications are signed, so have routers mirror them!
- Can pretty easily find a cheating authority in this scheme.
 - Untested, though, as it hasn't been seen.
- Tor clients do not need to contact the directories directly.
 - After bootstrapping
 - Can ask around for caches
 - Only have to go to the directory if we've been gone so long that *none* of the routers we knew about respond.

Onion Routing Exit Nodes And Middlemen

- A simple extension to the directory allows servers to publish arbitrary key/value pairs.
- One such knob is used for servers to specify their "exit policy"
 - A list of IP addresses \otimes TCP ports that this node is willing to route outwards.
 - Useful to keep abuse down.
- Nodes that are unwilling to exit traffic are called "middlemen"
 - Generally quite hard to abuse middlemen.
 - From time to time, I have run one and had no complaints.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 00	000000 000	00000		

Onion Routing Guard Nodes

- Here's a cute attack.
- Eve wants to try to see what Alice is doing over Tor.
- Eve runs (at least) two Tor routers.
- Eve waits until Alice picks her two nodes as entry and exit nodes.
- Statistical timing correlation can pretty well identify which packets flowing through both nodes are Alice's.

Onion Routing Guard Nodes

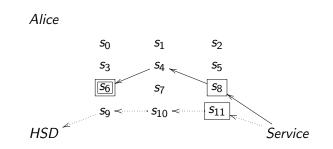
- Tor clients solve this problem by having only a slowly rotating set of "entry guards" that it uses for all circuits.
- If Eve is in Alice's entry guard set, Alice is owned.
- BUT! If Eve isn't in Alice's entry guard set, she'll be waiting a very long time.
- Therefore, this simple countermeasure increases the resource requirements for Eve's attacks.
- Presumably beyond practicality
 - No follow-on paper saying that entry guards don't work.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Advanced Features of Tor Hidden Services: Anonymity for Servers, Too!

- Suppose we're not interested in using other services, but want to *host* services without people knowing where the servers are.
- We'll need:
 - Some kind of collision-avoiding, random naming scheme.
 - Another kind of directory server.
- Tor uses public key fingerprints as the name of hidden services, e.g. http://eqt5g4fuenphqinx.onion/.
- There are a few "hidden service directory servers" on the Tor net.

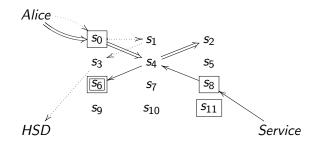
Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000		00000	00000		


Advanced Features of Tor

Hidden Services: Anonymity for Servers, Too! : Mechanism

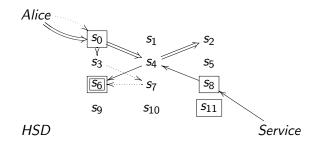
- A server
 - will pick "a few" nodes in the net as "introduction point" and build circuits to them.
 - also builds a circuit to the hidden service directories and registers itself and its introduction circuits there.
 - And waits...
- A client
 - Asks the hidden service directories (over Tor) for the introduction points.
 - picks a "rendezvous point" and builds a circuit there.
 - builds a circuit to an intro point and tells the server that it would like a connection at the rendezvous point.
 - Waits for the server to connect to it at the rendezvous

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000	00000		


Advanced Features of Tor Hidden Services: Anonymity for Servers, Too! : Pictures

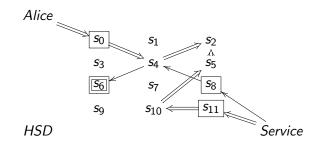
- Server picks entry guards (single box) and introduction point (double box).
- Server builds circuit to intro. point and registers.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		


Advanced Features of Tor Hidden Services: Anonymity for Servers, Too!: Pictures

- Alice asks for service's introduction point.
- Alice also builds a rendezvous circuit and gives the end some unique token X.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	0000 0 0 000	00000		


Advanced Features of Tor Hidden Services: Anonymity for Servers, Too!: Pictures

 Alice connects to the introduction point and says to the service "Tell Service (by public key) (s₂, X)"

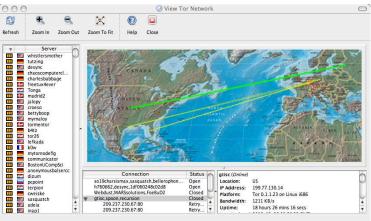
Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	00000 000	00000		

Advanced Features of Tor Hidden Services: Anonymity for Servers, Too!: Pictures

• The service builds a circuit to s₂ as requested and uses X to connect the two circuits.

Intro	Past
0 00000000 0000 00	000 00000

Advanced 000000 000 Problems 00000 Stats


Gei

Advanced Features of Tor Tor Controllers

- If you want to experiment, having to get your hands dirty in Tor's sensitive code is probably not your idea of fun.
- Tor defines a simple, text protocol which allows other programs to see what it's doing and have some say in how it behaves.
- Controllers can range from mere observers to completely replacing the circuit selection algorithms.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 0	000000	00000		

Advanced Features of Tor Tor Controllers: Vidalia

(Image credit: Softpedia)

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	00000 000	00000		

Advanced Features of Tor Tor Controllers: Vidalia

- Arm: Command-line UI.
- Torflow controller: Python tools for measuring Tor.
 - Includes Snakes On A Tor project for testing exits for fiddling with SSL.
- TorCtl: Python library for controllers.
- Tor::Controller: ruby module for controllers.
- jtorctl{,2}: Java

You get the idea.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Open Problems, Tradeoffs, and Gotchyas DNS Attacks

- We wanted to hide to where we're connecting.
- But some applications are dumb:
 - gethostbyname() then connect()
 - Even when running with a SOCKS proxy
- Whoops, our DNS caches know where we're asking about.
 - So does anybody watching us (*that* was easy!)
- Tor will do DNS resolution for you using some exit.
- Tor warns when it's given an IP address
 - Check the controller or log messages
- Please use SOCKS4A (the "A" is for "Address") or SOCKS5.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Open Problems, Tradeoffs, and Gotchyas TCPv4 Only

- Tor can only handle TCPv4 connections, at the moment.
 - TCPv6 is being investigated
- In fact, it uses TCP connections between routers.
- This raises a few problems:
 - Not all applications use TCP.
 - Circuits may fail with some of your data on them (cue Major Tom).
- There is thought and the beginnnings of a "modular transport" layer for Tor.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Open Problems, Tradeoffs, and Gotchyas Need for Protocol Scrubbing Proxies

- Everybody's favorite protocol, HTTP, leaks information to the server like crazy.
 - Headers: Cookies, Referer, User-Agent, X-Proxied-For, Languages, ...
 - Java, (in)ActiveX, Javascript, Flash, ...
 - iframes can try to see "around" Tor if your setup is buggy
- So if you're going to browse the web, you need a good HTTP "sanitizer"
 - Fortunately, privoxy (nee "Internet Junk-Buster") exists.
 - Also polipo, for the more adventerous.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Open Problems, Tradeoffs, and Gotchyas

- It's worse: need such a santizer for *every application protocol* that runs over Tor.
 - SMTP HELO/EHLO include your host name.
 - FTP PORT/EPRT commands (anybody remember these?) include your IP.
 - BitTorrent (etc.) can tell the tracker your IP.
 - IRC DCCP messages can include IP addresses.

• ...

• HTTPS/SSL/TLS/... prevents sanitizing proxies from running client-side!

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Open Problems, Tradeoffs, and Gotchyas Exit Nodes Are Watching You Masturbate

- If your bits aren't private (and http isn't), the exit nodes can watch your traffic.
 - So don't read private LJ entries over Tor.
 - More impressively, don't emulate the Sweedish embassy and send passwords in the clear.
- More dramatic: they can *modify* your traffic in flight.
 - Replace all images with hello.jpg?
- If your bits *are trying to be* private, exit nodes are men in the middle and are free to attack your key exchange.
 - Check those SSL certs *carefully*!
- There is some effort to spot-check exits in Tor.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Open Problems, Tradeoffs, and Gotchyas Abuse

- (John Gabriel's Greater Internet Fuckwad Theory).
- There are people using Tor to abuse sites.
 - So most exit nodes get IP-banned quickly.
 - (It's a dumb solution, but)
- Germany for a while seemed not to understand the idea of "I let other people use my connection"
 - Apparently checking public lists of exit nodes is too hard for some people.
- May be easier, ironically, for a large institution to run an exit node.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Open Problems, Tradeoffs, and Gotchyas Blocking Tor But Doing It Right

- Freenode, for example, may block exit nodes, but runs two Tor hidden services:
 - A truly anonymous one which goes up and down with abuse.
 - An authenticated (by password and GPG email) one which stays up all the time.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	0000		

Open Problems, Tradeoffs, and Gotchyas What if It's Illegal To Use Tor?

- Directories imply that you, and your worst enemy, both know the full list of Tor routers.
- Leaking through Tor's cleverness is the fact that you're using Tor!
- So the government runs a router or watches the network or ...
- And when you connect, the KGB kicks down your door.
 - Less evilly, The Man just blackholes the routers

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Open Problems, Tradeoffs, and Gotchyas What if It's Illegal To Use Tor?: Not A Hypothetical

Specific attacks on Tor:

- April 2006, Thailand: DNS filter Tor's webpage.
- 2006 Smartfilter/Websense (and Cisco): block URLs with /tor/... (broke unencrypted directory fetches; no longer a problem)
- 2007-2009, Iran: deploys Websense.
- 2009, Iran: throttles all SSL everywhere (caught Tor because TLS handshake looks like FF+Apache)
- 2009, Tunisia: Smartfilter; only 80 and maybe 443, if they like you.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	0000		

Open Problems, Tradeoffs, and Gotchyas What if It's Illegal To Use Tor?: Not A Hypothetical Specific attacks on Tor, continued (or: Enter China):

- 2009, China: Blocks public relays, enumerates 1/3rd of bridges.
- 2010, China: Whoops, make that 2/3rds of bridges.
- 2011, Iran: Blocks Tor by DPI for SSL DH parameter.
- 2011, Syria: DPI Tor SSL.
- 2011, Iran: DPI SSL certificate lifetime
- 2011, China: Actively probes SSL endpoints for Tor protocol!
 - That puts a crimp on Tor's style!
 - Still possible to connect, using obfuscation.
 - Obfuscation still "research" despite being deployed.

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Open Problems, Tradeoffs, and Gotchyas Connecting to Tor privately : Bridges

- A second tier of routers ("bridges") that *do not* publish themselves in the general directory.
 - To be used as entry, not exit, nodes.
- Instead, they (may) publish themselves in special bridge directories that do not reveal the whole list to anybody.
 - Send get bridges to bridges@bridges.torproject.org from a gmail account.
 - Visit https://bridges.torproject.org/
- This makes the adversary's life much harder (though...)
- (Still concerns about accidentally picking an adversary-controlled bridge.)

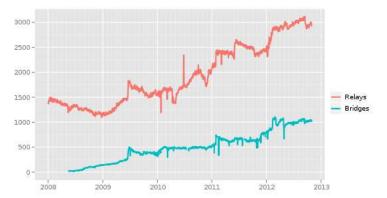
Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	0000●		

Open Problems, Tradeoffs, and Gotchyas Connecting to Tor privately : Bridges

- Bridges are "relatively" new
- There's still plenty of work to be done here...
 - More and harder-to-enumerate distribution channels.
 - Metrics for detecting when and where bridges are blocked.
- As mentioned earlier, "modular transport" and "obfuscation"

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Network Statistics


- Network running, without downtime, since October 2003.
- Across major revisions of the protocol.
- No directory servers compromised.
- Whitehats seem to be winning at the moment
 - No evidence of unmasking users except papers which resulted in bug fixes.
 - (That's just what they want you to think?)
- Up to 400K users/day these days?

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Network Statistics

- Recent years have seen more emphasis on measuring the network for performance issues (several papers, even).
- https://metrics.torproject.org/

Number of relays

Intro	Past	Tor	Advanced	Problems	Stats	Get
0 00000000 0000 00	000 00000	000 0000000 00 0 00	000000 000	00000		

Links To More https://www.torproject.org

- Tor Browser Bundle
- Source tree via git
- Anonbib, maintained by Roger Dingledine, is full of awesome:
 - http://freehaven.net/anonbib/topic.html