
Temporal Safety and Capability Revocation

“Temporal safety” is a broad term. Two major facets:

I “use after free”: continued loads and stores to region of
memory declared dead.

I “use after reallocation”: reference to former object at
some location used to access a different object at the
same place.

Of the two, “after reallocation” substantially worse.
(Anyone want to claim to have never written either of these?)

Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the author(s)/presenter(s) and
should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

1 / 6



Temporal Safety and Capability Revocation

Use after reallocation avoidable if allocator. . .

I waits for references to go away
I Memory in quarantine.
I Like garbage collector.
I Possibly large space overheads while waiting

I revokes references
I Indirection? Lookasides?

2 / 6



Temporal Safety and Capability Revocation

Thinking about CHERI, we. . .

I can find all our capabilities by their tags.
I code can’t play tricks on us
I base of capability always within initial object allocation

I do not have indirecting capabilities.

So, could build a less conservative GC atop CHERI:

I Precisely identify referenced objects

I Still conservatively assume that all references might be
used

3 / 6



Temporal Safety and Capability Revocation

Thinking about CHERI, we. . .

I can find all our capabilities by their tags.
I code can’t play tricks on us
I base of capability always within initial object allocation

I do not have indirecting capabilities.

So, could build a less conservative GC atop CHERI:

I Precisely identify referenced objects

I Still conservatively assume that all references might be
used

3 / 6



Temporal Safety and Capability Revocation

I But we are impatient and don’t want to wait unboundedly
long for some stale reference to go away.

I Because we can find pointers, we can also clear them!
“Sweeping revocation” (contrast “indirecting”)

I Need a privileged bit of software. . .
. . . can see all memory and registers.
For us, that means the (CheriBSD) kernel.

4 / 6



Temporal Safety and Capability Revocation

I But we are impatient and don’t want to wait unboundedly
long for some stale reference to go away.

I Because we can find pointers, we can also clear them!
“Sweeping revocation” (contrast “indirecting”)

I Need a privileged bit of software. . .
. . . can see all memory and registers.
For us, that means the (CheriBSD) kernel.

4 / 6



Temporal Safety and Capability Revocation

I mmap “returns two things”:
I Capability to the pages you asked for
I A mutable bitmask for expressing revocation requests.

1 bit = 16 bytes of memory in returned pages

I Before reusing memory
I Set bits corresponding to object
I Call kernel to do sweep
I Clear bits corresponding to object
I (Clear the object itself, too?)

5 / 6



Temporal Safety and Capability Revocation

I All of memory every reuse???
I No! Batch requests!
I Bitmap allows for arbitrarily many revocations in one go.

I All of memory???
I Well, just the capability-bearing bits of it.
I Page table dirty bits can guide us.
I Added instruction for reading tags without reading data.
I A very predictable stride, too.

I Simulation: 5% runtime overhead if heap 25% bigger.

I Pause times?
I Revoke concurrently with application!
I Take guidance from concurrent garbage collectors.

(Card marking, trap-and-mark)

6 / 6



Temporal Safety and Capability Revocation

I All of memory every reuse???
I No! Batch requests!
I Bitmap allows for arbitrarily many revocations in one go.

I All of memory???
I Well, just the capability-bearing bits of it.
I Page table dirty bits can guide us.
I Added instruction for reading tags without reading data.
I A very predictable stride, too.

I Simulation: 5% runtime overhead if heap 25% bigger.

I Pause times?
I Revoke concurrently with application!
I Take guidance from concurrent garbage collectors.

(Card marking, trap-and-mark)

6 / 6



Temporal Safety and Capability Revocation

I All of memory every reuse???
I No! Batch requests!
I Bitmap allows for arbitrarily many revocations in one go.

I All of memory???
I Well, just the capability-bearing bits of it.
I Page table dirty bits can guide us.
I Added instruction for reading tags without reading data.
I A very predictable stride, too.

I Simulation: 5% runtime overhead if heap 25% bigger.

I Pause times?
I Revoke concurrently with application!
I Take guidance from concurrent garbage collectors.

(Card marking, trap-and-mark)

6 / 6



Temporal Safety and Capability Revocation

I All of memory every reuse???
I No! Batch requests!
I Bitmap allows for arbitrarily many revocations in one go.

I All of memory???
I Well, just the capability-bearing bits of it.
I Page table dirty bits can guide us.
I Added instruction for reading tags without reading data.
I A very predictable stride, too.

I Simulation: 5% runtime overhead if heap 25% bigger.

I Pause times?
I Revoke concurrently with application!
I Take guidance from concurrent garbage collectors.

(Card marking, trap-and-mark)

6 / 6


	Temporal Safety and Capability Revocation

