
Rigid Tree Automata With Isolation

Nathaniel Wesley Filardo and Jason Eisner

Johns Hopkins University

Abstract. Rigid Tree Automata (RTAs) are a strict super-class of Reg-
ular Tree Automata (TAs), additionally capable of recognizing certain
nonlinear patterns such as {f⟨x,x⟩ ∣ x ∈X}. RTAs were developed for use
in tree-automata-based model checking; we hope to use them as part of
a static analysis system for a logic programming language. In developing
that system, we noted that RTAs are not closed under Kleene-star or pre-
concatenation with a regular language. We now introduce a strict super-
class of RTA, called Isolating Rigid Tree Automata, which can accept
rigid structures with arbitrarily many isolated rigid substructures, such as
“lists of equal pairs,” by allowing rigidity to be confined within subtrees.
This class is Kleene-star and concatenation closed and retains many fea-
tures of RTAs, including linear-time emptiness testing and NP-complete
membership testing. However, it gives up closure under intersection.

1 Rigid Tree Automata

Rigid Tree Automata (RTAs) [2] extend regular bottom-up nondeterministic
Tree Automata by imposing global constraints on accepting runs. They are
well-suited to describe regular structures containing finitely many typed vari-
ables, such as {f⟨g⟨x⟩,h⟨x, y⟩⟩ ∣ x ∈ L, y ∈ L′} where L,L′ are regular tree lan-
guages representing types. They can also describe families of “all-equal lists”
{[], [x], [x,x], [x,x, x], . . . ∣ x ∈ L}.1 As these examples show, variables may
be reused, each occurrence co-varying with the others. RTAs may also express
unions of such nonlinear structures, including infinite unions via recursion, as in
the case of all-equal lists.

An RTA is very much like a TA. Each has an underlying language signature
F ; a set of states Q; a set of accepting states QF ⊆ Q; and a transition map ∆,
which is a set of rules of the form f⟨q1, . . . , qn⟩→ q0 where ∀iqi ∈ Q and f/n ∈ F .
A run of an RTA A on a tree t is exactly like that of a TA: a map that annotates
each node ν of t with a state from Q in a way that respects ∆. That is, if node
ν has label g/m ∈ F and its m children are annotated with q1, . . . , qm ∈ Q, then
ν may be annotated with q0 if (g⟨q1, . . . , qm⟩→ q0) ∈∆.

The novelty of the RTA class is that an RTA designates a set of rigid states,
QR ⊆ Q, and runs are accepted more selectively. A tree is accepted by the
RTA A = ⟨F ,Q,QF ,QR,∆⟩ iff there exists a run in which the root position is
annotated by q ∈ QF (this is the TA acceptance criterion) and, for each q ∈ QR, all

1 We adopt some standard shorthand: [] = nil⟨⟩ and [a, b, . . .] = cons⟨a,cons⟨b, . . .⟩⟩.



2

subtrees whose roots are annotated by q are equal.2 For example, {h⟨x,x⟩ ∣ x ∈ L}
is recognized by an RTA ⟨F ∪ {h/2},Q ∪ {q∗},{q∗},{qF },∆ ∪ {h⟨qF , qF ⟩ → q∗}⟩
if q∗ /∈ Q and L is recognized by a regular TA A = ⟨F ,Q,{qF },∆⟩ whose sole
accepting state qF is non-reentrant (i.e., only occurs on the right of rules
in ∆).3 The set of languages described by RTAs are a strict superset of those
described by regular TAs [2, Theorem 5]: the RTA language above is not regular,
but any regular TA is an RTA with QR = ∅.

2 Kleene Non-Closure of Rigid Tree Automata

RTA cannot, however, describe (finite) structures with arbitrary numbers of
variables, as each variable corresponds to a state in QR. Let us look at two
examples. We use the notations ⋅◻, L∗,◻, and Ln,◻ as defined in [1, §2.2.1].

First, consider P = {[], [p⟨x1, x1⟩], [p⟨x1, x1⟩,p⟨x2, x2⟩],⋯ ∣ xi ∈ Lx}, with Lx

regular and ∣Lx∣ = ∞.4 The RTA pumping lemma [2, Lemma 1] says that no
RTA can recognize P . (The essential obstacle is that P needs to enforce sep-
arate equalities on unboundedly many pairs, which cannot be done with only
finitely many rigid states.) This implies that the RTA family is not closed un-
der pre-concatenation with a regular language, since P = L ⋅◻ M where L =
{nil⟨⟩,cons⟨◻, l⟩ ∣ l ∈ L} is regular (note the recursive definition, allowing trees
with arbitrarily many ◻ leaves) and M = {p⟨x,x⟩ ∣ x ∈ Lx} is rigid. RTAs are
trivially closed under post-concatenation with a regular language: L ⋅◻M is an
RTA language over F if L is rigid over F ∪ {◻} and M is regular over F , as the
rigidity in L will not be able to test the structure induced by concatenation with
M , making concatenation behave locally as if L were regular.5

Second, consider the set of lists D = {[], [x1, x1], [x1, x1, x2, x2],⋯ ∣ xi ∈
Lx} for some regular Lx with ∣Lx∣ = ∞. Again, the RTA pumping lemma im-
plies that D cannot be recognized by an RTA. This shows that RTAs are not
closed under Kleene-star, since D = E∗,◻ for the RTA language E = {nil} ∪
{cons⟨x,cons⟨x,◻⟩⟩ ∶ x ∈ Lx}, Note that Ek,◻ is an RTA language for any finite
k and any regular (or even rigid) language Lx.

3 Isolation

We augment RTA transition rules with the ability to discard rigidity constraints
across subtrees, introducing Isolating Rigid Tree Automata (IRTA), a proper

2 The states QR are thus “rigid” as each expands in one way throughout the tree.
3 These requirements on accepting states of A are needed for our RTA construction,

in which qF becomes a rigid state. However, they involve no loss of generality, since
if L is recognized by any regular TA A′

= ⟨F ,Q,QF ,∆⟩, it is also recognized by
an equivalent one that uses a single, non-reentrant accepting state, as required:
A = ⟨F ,Q ∪ {qF },{qF },∆ ∪ {f⟨q1, . . . , qk⟩→ qF ∣ (f⟨q1, . . . , qk⟩→ q) ∈∆,q ∈ QF }⟩.

4 For concreteness and to avoid any ability of the lemma to find pumping opportunities
in Lx, restrict to runs over “short” trees from Lx for this and the next example.

5 One could define a notion of concatenation that was more specialized to RTAs, where
◻ itself was interpreted rigidly. On this definition, RTAs would be closed under both
pre- and post-concatenation with regular languages.



3

super-class of RTA.6 Each transition rule is decorated with a set of rigid states

to isolate, making it of the form f⟨q1, . . . , qn⟩
!IÐ→ q0 with f/n ∈ F , ∀i.qi ∈ Q,

and I ⊆ QR.7 Intuitively, when such a rule is used in a run to reach a node
ν, the equality constraint for a rigid state q ∈ I is no longer enforced between
q-annotated nodes strictly dominated by ν and q-annotated nodes elsewhere.
Every RTA is an IRTA with I = ∅ everywhere.

The non-RTA examples from before are easily captured (see Figure 1 in
the appendix for illustrations). As before, suppose that Lx is recognized by the
TA A = ⟨F ,Q,{qF },∆⟩ with non-reentrant accepting state qF . Then taking
F ′ = F ∪ {p/2,cons/2,nil/0},

– The language P is recognized by the IRTA ⟨F ′,Q∪{q∗},{q∗},{qF },∆′⟩ with

∆′ =∆ ∪ {p⟨qF , qF ⟩ !{qF }ÐÐÐ→ qp,cons⟨qp, q∗⟩→ q∗,nil⟨⟩→ q∗}.
– The language D is recognized by the IRTA ⟨F ′,Q ∪ {q∗1 , q∗2},{q∗1},{qF },∆′⟩

with ∆′ =∆ ∪ {cons⟨qF , q∗1 ⟩→ q∗2 ,cons⟨qF , q∗2 ⟩
!{qF }ÐÐÐ→ q∗1 ,nil⟨⟩→ q∗1}.

The use of ∅ ⊊ I ⊊ QR allows for hybrid structures with both global and local
equalities, such as D′ = {[], [x0, x1, x1], [x0, x1, x1, x0, x2, x2],⋯ ∣ xi ∈ Lx}. Here
the equality of every third entry (x0) would be enforced throughout the entire list
using a rigid state that is not isolated (à la RTA), while the other entries are only
equal in adjacent pairs, using a rigid state that is periodically isolated as in D.

To describe the semantics of IRTA rules more formally, we first restate the
acceptance condition for TAs and RTAs as a bottom-up algorithm for generating
accepting runs, if any, on an input tree. A simple change then will suffice to make
this algorithm construct IRTA runs.

Membership testing for a deterministic TA can be accomplished by bottom-
up annotation of the given tree t. A step of this algorithm visits any unannotated
node of t whose children have already been annotated, and annotates it with the
only state that respects ∆ (given the child annotations), or rejects t if there
is no such state. t is accepted if the root is annotated by a final state. In the
nondeterministic case, each node of t is simultaneously annotated with all states
that can respect ∆ (given some choice of the child annotations), and t is accepted
if its root node is annotated with at least one final state.

We can extend this approach to RTAs by augmenting the annotations. Let
tν denote the subtree of t rooted at node ν. Each annotation of ν, rather than
being a state in Q, is now a pair (q, r) ∈ Q × ℘(QR × T (F)). Intuitively, this
pair records the existence of some run on tν that annotates ν with q, where
r ∶ QR ⇀ {subtrees of tν} is a partial function (represented as a set of ordered

6 In this work, we consider the family of nondeterministic (I)RTAs. Of course there is
also a class of deterministic IRTAs that generalize deterministic RTAs.

7 We choose the isolating set I as part of the transition rule. In the case of deterministic
IRTAs, however, it might increase power to change the form of the rules to defer the
choice of I until the next rule is selected. The next rule would then have the form
g⟨. . . , q0!I, . . .⟩→ q−1, allowing the choice of I at the q0-annotated node ν depend on
the annotations at ν’s siblings, and on the functor g and annotation q−1 at ν’s parent.



4

pairs) that maps each rigid state q′ used in the run to the tree t′ such that q′ was
used in the run only to annotate the roots of copies of t′. When visiting a node ν
with label g/m, if (g⟨q1, . . . , qm⟩→ q) ∈∆ and the m children are annotated with
(q1, r1), . . . , (qm, rm), the algorithm annotates this node with (q, r), provided
that r = ⋃mi=0 ri is a partial function, where r0 = {(q, tν)} if q ∈ QR and otherwise
r0 = ∅. The full tree t is accepted if its root has a label (q, r) for some q ∈ QF .

The generalization to IRTAs is now straightforward: the algorithm simply
“forgets” subtrees when directed to do so by the transition rules. When visiting

a node ν with label g/m, if (g⟨q1, . . . , qm⟩ !IÐ→ q) ∈ ∆ and the m children are
annotated with (q1, r1), . . . , (qm, rm), the algorithm computes r′ = r0 ∪ {(q′, t′) ∈
r ∣ q′ ∉ I}, where r = ⋃mi=1 ri and r0 is as before, and annotates this node with
(q, r′), provided that r′ is a partial function.

4 Pumping Lemma

The pumping lemma construction for RTAs given in [2, §2.4] relies heavily on
the fact that any path from a the root of an accepted run to a leaf thereof will
contain each rigid state at most once. Thus if there is an accepting run with
a path of length ∣QR∣(1 + ∣Q∣), there must exist a nontrivial sub-path with all
nodes there-on labeled with states from Q∖QR (i.e., not rigidly) and with both
endpoints equally labeled. This is no longer true in IRTA: a root-leaf path in an
accepted run can contain a rigid state at most once between isolations of that
state, but isolations may occur arbitrarily often.

Nevertheless, a pumping-style construction is still possible (see Figure 2 for
an illustration). Given an accepted tree t of height ∣Q∣ ⋅ 2∣QR∣ + 1, a root-leaf
path of that length is guaranteed to have two distinct nodes analyzed with the
same (possibly rigid) state and with the same set of rigid states having not
been isolated. Let two such colliding nodes be δ and α, respectively labeled as
(q, r) and (r, r′) with r and r′ having equal domains. We can then partition
the tree into three regions by writing it as B[D[A]], where B (“before”) and
D (“during”) are 1-contexts, with D rooted at δ, and A = tα (“after”) is a tree
rooted at α. We can construct a new 1-context D′ from D by “rewriting”: use
the values from r′, rather than r, to satisfy rigid states in D, traversing bottom
up and manipulating r′ as directed by the automaton’s rules. The result will be a
revised label of (q, r′′) for the root of D′; use the same rewrite procedure to turn
B, which used rigid trees from r′, into B′ using r′′. Now B′[D′[D[A]]] is another
accepted tree satisfying the pumping preconditions. One could, alternatively,
rewrite B to B′′ using r to obtain B′′[A], another accepted tree.

This pumping construction merely builds other trees; it does not repeat parts
of the tree structure exactly. Still, it shows that if an IRTA accepts a sufficiently
tall tree, it accepts infinitely many trees. It also shows an argument (different
from that of § 5.1 below) that emptiness of an IRTA’s language is decidable: one
could exhaustively enumerate and test trees of height up to ∣Q∣ ⋅2∣QR∣ only, since
the shortest accepted tree cannot be taller than that—any such tree could be
pumped down using the B′′[A] construction.



5

5 Decision Problems
5.1 Emptiness

RTAs may be tested for non-emptiness using a state-marking algorithm [2, §6.1].
The RTA algorithm constructs acyclic runs, demonstrating occupancy of the
RTA’s states by visiting them in a “depth-first” order. If a state is non-empty,
then this algorithm will construct a witness tree for it of height at most n, where
n is the number of states in the RTA. The RTA is non-empty iff at least one of
its final states is non-empty.

To find a witness of an IRTA’s non-emptiness, it suffices to find a witness for
the corresponding RTA (which drops the !I decoration, and thus enforces even
more equality than the IRTA requires). This works because if the IRTA has any
witness t, then it has a witness t′ that would be accepted by the RTA, which
can be found by rewriting subtrees to be equal much as in section 4.

5.2 Membership Testing

As with RTAs [2, §6.2], membership testing of a tree t (with n nodes) against
an IRTA ⟨F ,Q,QF ,QR,∆⟩ is NP-complete. The proof for RTA reduces 3-SAT
to membership testing. We need only show that an annotation of t’s nodes can
be checked in polynomial time to determine whether it constitutes a valid run
(section 3). This involves checking each node of t separately to ensure that its
annotation (q, r) can be derived from the annotations of its children by one of the
rules in ∆. Given such a rule, checking the r annotation (which dominates the
runtime) involves comparing at most a∣QR∣ pairs of subtrees of t, each having at
most n nodes, where a is an upper bound on the number of children (the largest
arity of any symbol in F). Thus, the total runtime is O(an2∣QR∣∣∆∣).8

5.3 Universality

As all RTAs are IRTAs, tests for universality (L(A) = T F?), equality (L(A) =
L(A′)?), and inclusion (L(A) ⊆ L(A′)?) all remain non-computable for our new
class: the proof from [2, §6.4] continues to hold. For practical purposes, we envi-
sion the possibility of a 3-way inclusion test that spends limited computational
power to prove or disprove inclusion, but sometimes fails to do either.

6 Closure Properties
Pre-concatenation with a Regular Language IRTAs are, by design, trivially closed
under this operation. When constructing an IRTA for L ⋅◻M from an IRTA for
M , where L is regular over F∪{◻}, isolate all rigid states in M on any transition
to the sole L state that labels ◻.

Kleene Closure Similarly, when constructing an IRTA for L∗,◻ from an IRTA
for L over F ∪ {◻}, isolate all rigid states of L on transitions to the ◻ state.

Projection Closure If Lx is an IRTA language, then the set of trees that appear
at a given address α (e.g., 1st child of 2nd child of root) within trees of Lx

is also an IRTA language. After eliminating unreachable rules (rules that con-
tain empty IRTA states as determined by § 5.1) to obtain a “trimmed” IRTA

8 Hash consing can eliminate a factor of n by allowing O(1)-time subtree comparison.



6

⟨F ,Q,QF ,QR,∆⟩, a simple recursive algorithm can nondeterministically follow
transitions of ∆ backwards from QF to find the collection Qq of states that can
appear at address α. The desired IRTA is then ⟨F ,Q,⋃q∈QF

Qq,QR,∆⟩.
Complementation Non-closure We conjecture that IRTAs are, like RTAs, not
closed under complementation. The existing demonstration from [2, Example 7
and §4.2] is, however, no longer sufficient: the set B of balanced binary trees
over F = {a/0,f/2} is an IRTA language. Let Q = {q0, q1}; then B is recognized

by ⟨F ,Q,Q,Q,{a⟨⟩ → q0,f⟨q0, q0⟩
!{q0}ÐÐÐ→ q1,f⟨q1, q1⟩

!{q1}ÐÐÐ→ q0}⟩. Unfortunately,
finding a replacement has proven tricky!

Intersection Non-closure It is possible to construct a series of IRTA machines
whose intersection would give the language of accepting runs of a two-counter
machine, as in [1, Thm. 4.4.7]. Therefore, as IRTA has a decidable emptiness
test, it must not be intersection-closed. Despite that, we conjecture that some
special cases of intersection may still be possible; in particular, we speculate
that intersecting an IRTA language with either a regular language or an RTA
language will tractably yield an IRTA language.

Union Closure IRTAs are trivially closed under union, by nondeterminism.

7 Comparison to TAC+ / TA=
The IRTA class is neither more general nor more specific than tree automata
with local equality constraints (TAC+ or TA=, [3]). The non-inclusion of IRTA
in TAC+ follows from the non-inclusion of RTA. RTA’s ability to enforce con-
straints globally rather than solely at fixed relative positions allow it to rec-
ognize, e.g., the class of trees t in which every two subterms g⟨t1⟩ and g⟨t2⟩
satisfy t1 = t2, even if they are arbitrarily far apart in the tree [2, Example 3]. To
show conversely that TAC+ is not included in IRTA, consider the language L =
{[0], [1,0], . . . , [n,n − 1, . . . ,1,0], . . .} (with integers represented as their Peano
encodings). L is recognized by the TAC+ ⟨{z/0,s/1,nil/0,cons/2},{qz, qs, qn, qc},
{qc},∆⟩, where∆ = {cons⟨qs, qc⟩

11=21ÐÐÐ→ qc,z⟨⟩→ qz,s⟨qz⟩→ qs,s⟨qs⟩→ qs,nil⟨⟩→
qn,cons⟨qz, qn⟩ → ql}. The first rule in ∆ is the centerpiece. L is not an IRTA
language: suppose that L is recognized by an IRTA A with k states, and consider
an accepting run of A on t = [k, . . . ,1,0]. Let ν be a minimum-height Peano node
of t such that its state annotation qν is reused for some ν′ in t with tν ≠ tν′ . ν
exists by pigeonhole. By minimality, each proper descendant of ν uses a state
that annotates equal trees throughout the run on t. Substituting tν in for all qν-
annotated nodes yields another accepting run on a new tree t′. However, t′ /∈ L:
either t′ is not a list, or t′ has the same length as t but different elements.

8 Conclusion

We have introduced a new class of automata, Isolating Rigid Tree Automata,
which are a Kleene-closed super-class of Rigid Tree Automata. We hope, despite
the loss of intersection closure, that IRTA will be useful for modeling inductive
(i.e., recursive) data types for programming languages where a data constructor
may make non-linear use of its (finitely many) arguments (e.g., Prolog).



7

References

1. Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemard, Denis Lugiez,
Christof Loding, Sophie Tison, and Marc Tommasi. Tree Automata Techniques and
Applications.

2. Florent Jacquemard, Francis Klay, and Camille Vacher. Rigid tree automata and
applications. Information and Computation, 209(3):486–512.

3. Jocelyne Mongy. Transformation de noyaux reconnaissables d’arbres. Forêts
RATEG. PhD thesis, Laboratoire d’Informatique Fondamentale de Lille, 1981.

A Additional Figures

cons q∗

cons q∗

nil q∗pair qp

b qFb qF

pair qp

a qFa qF

qF

qF

(a) An example tree from P .

cons q∗1

cons q∗2

cons q∗1

cons q∗2

nil q∗1b qF

b qF

a qF

a qF

qF

qF

(b) An example tree from D.

Fig. 1: Runs of IRTAs, as given in § 3, for languages defined in § 2. Horizontal
dotted lines indicate isolation: any two nodes labeled by the same rigid state
must dominate equal trees, unless separated by a line labeled by that state.

f’ (q, r′)

B

f (q, r)
D

A

∣Q
∣⋅2
∣Q

R
∣+

1

original tree

r and r′ have
identical support

f (q, r)
B′′

rewrite r′ as r

A

copy

shorter tree

f′ (q, r′′)
B′

rewrite r′ as r′′

f′ (q, r′)
D′

rewrite r as r′

f (q, r)
D

copy

A
copy

taller tree

Fig. 2: Graphic depiction of the IRTA pumping construction of § 4, showing how
to derive both a shorter and taller tree from a tree of height ∣Q∣ ⋅ 2∣QR∣ + 1.


	Rigid Tree Automata With Isolation

