Dyna 2: Towards a General Weighted Logic Language

Nathaniel Wesley Filardo

October 12, 2017

Outline

Arithmetic Circuits

The Dyna Project

Solving Circuits

Circuits From Dyna

Arithmetic circuits are abstract data types generalizing key-value stores.

- K-V interface:
 - store, update, and retrieve items (pair of key and value).
- Circuit interface:
 - store, update, and retrieve *input* items.
 - query derived items' values (computed from input).

Why care about circuits?

Pervasive! Can describe:

- data structures' interfaces
- database interface
- database internal data structures
- Statistical AI systems interfaces

Powerful abstraction:

- Kowalski's observation: "Algorithm = Logic + Control"
- Circuit describes *logic*; a solver implements control.

Why care about circuits?

Describe a priority queue as a circuit?

- Input: dynamic collection of keys with associated priorities
- Derived output: maximum of priorities

Why care about circuits?

Describe a priority queue as a circuit?

- Input: dynamic collection of keys with associated priorities
- Derived output: maximum of priorities
- Further output: identify item with maximum priority

Why care about circuits?

Describe a priority queue as a circuit?

- Input: dynamic collection of keys with associated priorities
- Derived output: maximum of priorities
- Further output: identify item with maximum priority

Why care about circuits? More interesting example: (CNF) parser!

- Input: sentence (words)
- Input: grammar (binary rewrites, unary pos preterminal rules)
- Output: parse(s) (or statistics) for each span.

rewrite

rewrite

Why care about circuits? More interesting example: (CNF) parser!

- Input: sentence (words)
- Input: grammar (binary rewrites, unary pos preterminal rules)
- Output: parse(s) (or statistics) for each span.

 Words and unary rules combine

- Input: sentence (words)
- Input: grammar (binary rewrites, unary pos preterminal rules)
- Output: parse(s) (or statistics) for each span.

- Words and unary rules combine
- Adjacent spans combine

- Input: sentence (words)
- Input: grammar (binary rewrites, unary pos preterminal rules)
- Output: parse(s) (or statistics) for each span.

- Words and unary rules combine
- Adjacent spans combine
- And so on

- Input: sentence (words)
- Input: grammar (binary rewrites, unary pos preterminal rules)
- Output: parse(s) (or statistics) for each span.

- Words and unary rules combine
- Adjacent spans combine
- And so on
- Circuit structure is data-dependent:
 - Longer sentence.
 - Regularity of sketch is misleading.

- Input: sentence (words)
- Input: grammar (binary rewrites, unary pos preterminal rules)
- Output: parse(s) (or statistics) for each span.

- Words and unary rules combine
- Adjacent spans combine
- And so on
- Circuit structure is data-dependent:
 - Longer sentence.
 - Regularity of sketch is misleading.

```
1 constit(X,I,J) += word(W,I,J) * pos(W,X).
2 constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) * rewrite(X,Y,Z).
```

CLSP does lots of diverse research in AI. Repeated pain points:

Systems are large! (Take "a while" to construct or modify.)

Motivation

As of 2011, some examples for scale:

Package	Files	SLOC	Language	Application area
SRILM	285	48967	C++	Language modeling
Charniak parser	266	42464	C++	Parsing
Stanford parser	417	134824	Java	Parsing
cdec	178	21265	C++	Machine translation
Joshua	486	68160	Java	Machine translation
MOSES	351	37703	C++	Machine translation
GIZA++	122	15958	C++	Bilingual alignment
OpenFST	157	20135	C++	Weighted FSAs & FSTs
NLTK	200	46256	Python	NLP education
HTK	111	81596	С	Speech recognition
MALLET	620	77155	Java	Conditional Random Fields
GRMM	90	12926	Java	Graphical model add-on
Factorie	164	12139	Scala	Graphical models

CLSP does lots of diverse research in AI. Repeated pain points:

- Systems are large! (Take "a while" to construct or modify.)
- Systems are fast from specialized hand-tuning.
 - Extensions break assumptions made in hand-tuning.
 - Even toolkits can be hard to take in new directions.

CLSP does lots of diverse research in AI. Repeated pain points:

- Systems are large! (Take "a while" to construct or modify.)
- Systems are fast from specialized hand-tuning.
 - Extensions break assumptions made in hand-tuning.
 - Even toolkits can be hard to take in new directions.
- Lots of code and data out there!
 - Systems are hard to integrate.
 - Lots of data formats (and quadratically many Perl scripts).

Motivation

Especially frustrating, because

- Al systems' cores are circuits!
 - Behavior specified by a handful of equations.
 - Given a series of facts (input data).
 - Queried on results of applying equations.

Motivation

Especially frustrating, because

- Al systems' cores are circuits!
 - Behavior specified by a handful of equations.
 - Given a series of facts (input data).
 - Queried on results of applying equations.
- it is as if we are building
 - databases before DBMS and SQL.
 - file processing before regexps / parser generators.

Motivation

For scale, some example Dyna 2 program sizes:

Lines	Program		
2-3	Dijkstra's shortest-path algorithm		
4	Feed-forward neural network		
11	Bigram language model with Good-Turing backoff smoothing		
6	Arc-consistency constraint propagation		
+6	With backtracking search		
+6	With branch-and-bound		
6	Loopy belief propagation		
3	Probabilistic context-free parsing		
+3	Earley's algorithm		
+7	Conditional log-linear model of grammar weights (toy example)		
+10	Coarse-to-fine A* parsing		
4	Value computation in a Markov Decision Process		
5	Weighted edit distance		
3	Markov chain Monte Carlo (toy example)		

(See our 2011 position paper for most of these programs.)

Motivation

Additional historical precedent: Logic-based AI efforts give rise to Prolog in 1970-72.

- A logic programming language.
- Simplifies specification of logic-based AI.
 - Factors much of *control* aspect into language and runtime.

Motivation

Additional historical precedent: Logic-based Al efforts give rise to Prolog in 1970-72.

- A logic programming language.
- Simplifies specification of logic-based AI.
 - Factors much of *control* aspect into language and runtime.

1976: Fred Jelinek at IBM introduces information theory for speech recognition.

Birth of *statistical AI* approach, now the dominant paradigm.

No single Prolog-like substrate has emerged for this new era.

- Prolog, even with answer subsumption, only handles a subset of needs.
- PRISM, Dyna 1: restricted expressiveness
- Problog: enforces particular probabilistic semantics
- TensorFlow: static circuit (but fast!), no updates
- (py)Torch, Dynet: procedural description of circuits, no updates

- > Dyna is narrowly scoped to describe data interdependence.
 - It is a domain-specific language for circuit specification.
 - No user control of I/O.
 - No (explicit) reference cells, no threads, ...
 - · Goal: let the *compiler* figure out how to make things fly.
- Generated circuit does not stand alone: requires a "driver program"
 - Driver intermediates all exchanges with the real world

The Language

Basic units of Dyna: *items* and *rules*.

- Rule a = sqrt(b * c) relates several items.
- a is the head, sqrt(b * c) the body.
- Not an assignment, but a live relationship.
- Feed-forward: specifies how to compute a from b and c.
 - No backward constraint: b defined elsewhere, used here.

The Language

Items have structured names:

- Like arrays, f(3) = "hello"
- > Or maps, edge("bal", "was") = 35
- Deep structure, too: color(edge("bal","was")) = red

The Language

Items have structured names:

- Like arrays, f(3) = "hello"
- or maps, edge("bal", "was") = 35
- Deep structure, too: color(edge("bal","was")) = red

Used for arithmetic, too! a = sqrt(b * c)

The Language

Aggregation combines contributions from several rules:

• Two rules with same head: x += y and x += z (x = y + z)

The Language

Aggregation combines contributions from several rules:

• Two rules with same head: x += y and x += z (x = y + z)

A single rule with variable(s) in body: $x += f(I) (x = \sum_i f_i)$ ("Fan-in" to x.)

The Language

Aggregation combines contributions from several rules:

• Two rules with same head: x += y and x += z (x = y + z)

A single rule with variable(s) in body: $x += f(I) (x = \sum_i f_i)$ ("Fan-in" to x.)

• Given all three rules, $x = y + z + \sum_{i} f_{i}$.

The Language

Rules are *schemata* for data relationships:

Defaults (fan-out): g(X) += a.

The Language

Rules are *schemata* for data relationships:

- Defaults (fan-out): g(X) += a.
- Pointwise products: $f(I) = g(I) * h(I) (f_i = g_i * h_i)$.

The Language

Rules are schemata for data relationships:

- Defaults (fan-out): g(X) += a.
- Pointwise products: $f(I) = g(I) * h(I) (f_i = g_i * h_i)$.
- Matrix-vector products: $p(I) += m(I,J) * v(J) (p_i = \sum_j m_{ij} * v_j)$.

The Challenge

Several challenges for bringing vision to reality:

- Need a good solver for Dyna programs (§2).
- Solver should handle as many programs as possible (§3, §4).
- Static analysis for checking programs to be well-defined & feasible (§5).
 - Also useful for optimization!
- Features for "programming in the large" (module system §6.2).

Entr'acte 1

Before we continue, questions so far?

Solving Circuits

- Circuits just describe relation among values.
 - No hint of execution.
- Multiple options for how to execute!
 - Different space/time trade-offs.
 - Different performance under different workloads.
 - Want to support as many as possible!
 - (And let an optimizer select!)

Solving Circuits

Backward Chaining

"Laziest" extreme: store values of input items, do nothing else until queried.

- Introduce "non-value" UNK for unknown values.
- Upon query, if item is UNK, must compute from parents.

Backward Chaining

- Introduce "non-value" UNK for unknown values.
- Upon query, if item is UNK, must compute from parents.
 - Driver queries for value of maxt.

Backward Chaining

- Introduce "non-value" UNK for unknown values.
- Upon query, if item is UNK, must compute from parents.
 - Driver queries for value of maxt.
 - Internal query for value of maxval from maxt.

Backward Chaining

- Introduce "non-value" UNK for unknown values.
- Upon query, if item is UNK, must compute from parents.
 - Driver queries for value of maxt.
 - Internal query for value of maxval from maxt.
 - Internal query all values of thing(X) from maxval.

Backward Chaining

- Introduce "non-value" UNK for unknown values.
- Upon query, if item is UNK, must compute from parents.
 - Driver queries for value of maxt.
 - Internal query for value of maxval from maxt.
 - Internal query all values of thing(X) from maxval.
 - > Internal query for thing(X) with value 42 from maxt.

Backward Chaining

- Introduce "non-value" UNK for unknown values.
- Upon query, if item is UNK, must compute from parents.
 - Driver queries for value of maxt.
 - Internal query for value of maxval from maxt.
 - Internal query all values of thing(X) from maxval.
 - > Internal query for thing(X) with value 42 from maxt.
 - Finish; return answer blue.

Forward Chaining

"Most eager" extreme:

• Define NULL for the aggregation of \emptyset (roughly, "item not present")

Forward Chaining

- Define NULL for the aggregation of \emptyset (roughly, "item not present")
- Upon *update*, must revise *descendants*:

Forward Chaining

- Define NULL for the aggregation of \emptyset (roughly, "item not present")
- Upon *update*, must revise *descendants*:
 - apply update to item, and prepare to *notify* children.

Forward Chaining

- Define NULL for the aggregation of \emptyset (roughly, "item not present")
- Upon update, must revise descendants:
 - apply update to item, and prepare to *notify* children.
 - propagate notification to update children

Forward Chaining

- Define NULL for the aggregation of \emptyset (roughly, "item not present")
- Upon update, must revise descendants:
 - apply update to item, and prepare to *notify* children.
 - propagate notification to update children
 - repeat until no work left

Forward Chaining

- Define NULL for the aggregation of \emptyset (roughly, "item not present")
- Upon update, must revise descendants:
 - apply update to item, and prepare to *notify* children.
 - propagate notification to update children
 - repeat until no work left

Forward Chaining

- Define NULL for the aggregation of \emptyset (roughly, "item not present")
- Upon update, must revise descendants:
 - apply update to item, and prepare to *notify* children.
 - propagate notification to update children
 - repeat until no work left
 - ready to be queried (or updated again)

Solving Circuits Hybridized Chaining

- · Forward and backward chaining typically viewed as alternatives.
- Have complementary jobs:
 - Backward chaining computes values for items missing memos.
 - Forward chaining refreshes (potentially) stale memos.
- Extremes of a spectrum:
 - ▶ Pure BC never creates memos: no refresh ever necessary.
 - Pure FC always memoizes: no recursive computation necessary.

Solving Circuits Hybridized Chaining

§2.2 contains a hybridized algorithm for solving finite, acyclic circuits.

- finiteness: steps involving "all children" OK.
- acyclicity: backward-chaining never loops.
- many subtleties when forward-chaining through un-memoized items!

Several extensions considered:

- Increased efficiency via "obligation" (§2.2.4.3, §2.3.5)
- Parallel processing, viewing items as actors (§2.3)
- Large taxonomy of update and notification messages (§2.4)
- · Cyclicity: on-demand conversion of backward to forward reasoning (§2.5)

Entr'acte 2

Circuitous questions before more programmatic concerns?

§3 to §5 address the challenge of deriving a circuit from a Dyna program.

- Dyna programs typically specify *infinite* circuits!
- Some programs must be rejected: might take infinite time to solve (§5.3)
- Can handle piecewise-constant infinite circuits (§3)
 - Given a runtime vocabulary for item sets (§4)

Rule Planning

CNF parser binary rule defines infinitely many edges in an infinite circuit. constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) * rewrite(X,Y,Z).

• Literal implementation of algorithm from §2 will run forever.

Rule Planning

CNF parser binary rule defines infinitely many edges in an infinite circuit. constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) * rewrite(X,Y,Z).

 $\operatorname{Constit}(X, I, K) \stackrel{\text{\tiny Constit}(I, I, J) = \operatorname{Constit}(Z, J, K) = \operatorname{Tewrite}(X, I)$

- Literal implementation of algorithm from §2 will run forever.
- Instead: find subset of "active" edges.
 - Merge *finite descriptions* of values for parent item sets.
 - Here: all constit(_,_,_), rewrite(_,_,_), and _ * _ items.
 - > If only finitely many such items with values, this would be especially easy.

Rule Planning

CNF parser binary rule defines infinitely many edges in an infinite circuit.

- Literal implementation of algorithm from §2 will run forever.
- Instead: find subset of "active" edges.
 - Merge *finite descriptions* of values for parent item sets.
 - Here: all constit(_,_,), rewrite(_,_,), and _ * _ items.
 - > If only finitely many such items with values, this would be especially easy.
 - But: Infinitely many _ * _ items with values. Yet: still OK?

Rule Planning

CNF parser binary rule defines infinitely many edges in an infinite circuit.

constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) * rewrite(X,Y,Z).

- Literal implementation of algorithm from §2 will run forever.
- Instead: find subset of "active" edges.
 - Merge *finite descriptions* of values for parent item sets.
 - Here: all constit(_,_,), rewrite(_,_,), and _ * _ items.
 - > If only finitely many such items with values, this would be especially easy.
 - But: Infinitely many _ * _ items with values. Yet: still OK?

Informally, still expect finite set of edges because:

- Given constit(_,_,) and rewrite(_,_,) items,
- only need particular _ * _ items (e.g. 2 * 3)

Rule Planning

Parser binary rule defines infinitely many edges in an infinite circuit.

constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) * rewrite(X,Y,Z).

Can think of this rule as having a factor graph:

This is *not* an arithmetic circuit. It is a useful formalism for considering how to find the *active subset* of edges created by this rule.

Rule Planning

Looking for active subset of edges:

- those for which all parents are non-NULL.
- want a *finite description* of these (infinitely many) edges.

Assume procedures that enumerate finite descriptions of subgoals' answers.

- Assume finitely many words, so finitely enumerable.
- Multiplication only can when two of the three components are known.
 - $\{x \mid 2 * 3 = x\}$ or $\{x \mid x * 7 = 42\}$, but not $\{\langle x, y \rangle \mid x * y = 23.5\}$.
- rewrite might be of either flavor (input or derived).
- constit inductively finite.

Need to track *instantiation state*:

- "At runtime, this variable is still unknown."
- "At runtime, we will know the value of this variable."

Rule Planning

Example: Looking for active subset of edges

Given known head, e.g. constit("s",0,7).

constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) * rewrite(X,Y,Z).

Backward chain w/ head known

Rule Planning

Example: Looking for active subset of edges

Given known head, e.g. constit("s",0,7).

- Backward chain w/ head known
- Unpack head; X, I, K known

Rule Planning

Example: Looking for active subset of edges

Given known head, e.g. constit("s",0,7).

- Backward chain w/ head known
- Unpack head; X, I, K known
- Iterate Y, J from constit(Y,I,J)

Rule Planning

Example: Looking for active subset of edges

Given known head, e.g. constit("s",0,7).

- Backward chain w/ head known
- Unpack head; X, I, K known
- Iterate Y, J from constit(Y,I,J)
- Iterate Z from constit(Z,J,K)

Rule Planning

Example: Looking for active subset of edges

Given known head, e.g. constit("s",0,7).

- Backward chain w/ head known
- Unpack head; X, I, K known
- Iterate Y, J from constit(Y,I,J)
- Iterate Z from constit(Z,J,K)
- Multiply

Rule Planning

Example: Looking for active subset of edges

Given known head, e.g. constit("s",0,7).

- Backward chain w/ head known
- Unpack head; X, I, K known
- Iterate Y, J from constit(Y,I,J)
- Iterate Z from constit(Z,J,K)
- Multiply
- Probe grammar at rewrite(X,Y,Z)

Rule Planning

Example: Looking for active subset of edges

Given known head, e.g. constit("s",0,7).

- Backward chain w/ head known
- Unpack head; X, I, K known
- Iterate Y, J from constit(Y,I,J)
- Iterate Z from constit(Z,J,K)
- Multiply
- Probe grammar at rewrite(X,Y,Z)
- Multiply

Rule Planning

This simple example well within reach of existing systems.

Thesis (§5.3) adds:

- Ability to track "partially known" structure.
 - Also within reach of existing systems
- *Type-aware* planning: variables' ranges are explicitly tracked.
- More versatile procedure selection (e.g., upcasts, case analysis)
- Result-dependent forks in plans.

Default Reasoning

Often, want to say "unless otherwise specified."

Sparse arithmetic objects ("elements are zero, unless...")

f(X,Y) += 0. % all cells f(2,X) += 2. % a column $f(X,X) \neq 1$. % the diagonal $f(2,2) \neq 4$. % a particular cell

Default arcs in finite state machines:

trans(state(4),) := state(6). % every input but 'a' trans(state(4), 'a') := state(5).

Ontologies

fly(X : bird) := true . % absent other data... fly(X : penguin) := false. % but not these birds fly(bigbird) := false. % nor that one in particular

- Lifted inference in MLN
 - Identify all nodes in a graph until reason to split

All of these have one very important thing in common:

- Finitely many rules with constant values.
- A *pointwise-constant* function of (in)finitely many things.

Conjoining Defaults

Define two sparse vectors (=> means "most-specific wins"):

	•	`				•					
1 r(X : in	t)	=>	1.		1 S (X :	int)			=>	1.
2 r(X : no	nneg int)	=>	2.		2 s (X :	nonp	os	int)	=>	4.
3 r(-1)		=>	3.		3 S (1)				=>	5.
	X		-3	-2	-1	0	1	2	3	•••	
	r(X) ·	••	1	1	3	2	2	2	2		
	r(X) s(X)	••	4	4	4	4	5	1	1	•••	

Conjoining Defaults

Define two sparse vectors (=> means "most-specific wins"):

Conjoining Defaults

Define two sparse vectors (=> means "most-specific wins"):

•		· ·				•					
1 r(X : int))	=>	1.		1 S ((X :	int)			=>	1.
2 r(X : non	neg int)	=>	2.		2 s((X :	nonp	os	int)	=>	4.
₃ r(-1)	Ū	=>	3.		3 s((1)	-			=>	5.
	X	••	-3	-2	-1	0	1	2	3.		
-	r(X)	••	1	1	3	2	2	2	2 .	•••	
	s(X) ·	••	4	4	4	4	5	1	1 .	•••	

Conjoining Defaults

- Define two sparse vectors (=> means "most-specific wins"): $_1 r(X : int)$ => 1. 1 s(X : int)=> 1. $_2$ s(X : nonpos int) => 4. $_2$ r(X : nonneg int) => 2. 3 r(−1) => 3. 3 s(1) => 5. -3 -2 Х ... -1 0 1 2 3 ... r(X)1 1 3 2 2 2 2 s(X)4 4 5 1 4 4 1 12 8 10 2 2 p(X) 4 4
- Define their pointwise product: p(X) = r(X) * s(X). Compute by cross-product of defaults.

Conjoining Defaults

- Define their pointwise product: p(X) = r(X) * s(X). Compute by cross-product of defaults.
 - p(-1) and p(1) come from the most-specific entries.

- Define two sparse vectors (=> means "most-specific wins"): $_1 r(X : int)$ => 1. 1 s(X : int)=> 1. $_2$ s(X : nonpos int) => 4. $_2$ r(X : nonneg int) => 2. => 3. => 5. $_{3} r(-1)$ 3 s(1) -3 -2 -1 0 1 Х ... 2 3 ... r(X)1 1 3 $\overline{2}$ 2 2 2 s(X)4 5 1 4 4 4 1 8 10 2 2 p(X) 4 4 12
- Define their pointwise product: p(X) = r(X) * s(X). Compute by cross-product of defaults.
 - p(-1) and p(1) come from the most-specific entries.

- Define two sparse vectors (=> means "most-specific wins"): $_1 r(X : int)$ => 1. s(X : int)=> 1. $_2$ r(X : nonneg int) => 2. 2 s(X : nonpos int) => 4. => 3. $_{3} r(-1)$ $_{3}$ s(1) => 5. -3 -2 Х ... 0 1 2 3 ... r(X)1 1 3 2 2 2 2 s(X)4 5 1 4 4 4 1 12 8 10 2 p(X) 4 4 2
- Define their pointwise product: p(X) = r(X) * s(X). Compute by cross-product of defaults.
 - p(-1) and p(1) come from the most-specific entries.
 - Mixing *defaults* gives rise to p(0).

- Define two sparse vectors (=> means "most-specific wins"): $_1 r(X : int)$ 1 s(X : int)=> 1. => 1. $_2$ r(X : nonneg int) => 2. 2 s(X : nonpos int) => 4. $_{3} r(-1)$ => 3. 3 s(1) => 5. -3 Х ... -1 0 1 2 3 ... r(X)1 1 3 2 2 2 2 s(X)4 4 5 1 4 1 12 8 2 p(X)4 4 10 2
- Define their pointwise product: p(X) = r(X) * s(X). Compute by cross-product of defaults.
 - p(-1) and p(1) come from the most-specific entries.
 - Mixing *defaults* gives rise to p(0).
 - > p(X : nonneg int) and p(X : nonpos int) arise from other defaults.
 - Do not contribute to p(-1), p(0), p(1); contributions masked.

- Define their pointwise product: p(X) = r(X) * s(X). Compute by cross-product of defaults.
 - ▶ p(-1) and p(1) come from the most-specific entries.
 - Mixing *defaults* gives rise to p(0).
 - p(X : nonneg int) and p(X : nonpos int) arise from other defaults.
 - Do not contribute to p(-1), p(0), p(1); contributions masked.

Conjoining Defaults

Define two sparse vectors (=> means "most-specific wins"):

1 r(X : int)	=>	1.		1 s(X :	int)	,	=>	1.
2 r(X : non										;) =>	
3 r(-1)			• 3.		3 s (r		=>	
	X		-3	-2	-1	0	1	2	3		
	r(X)		1	1	3	2	2	2	2		
	s(X)		4	4	4	4	5	1	1		
	p(X)	•••	4	4	12	8	10	2	2		

- Define their pointwise product: p(X) = r(X) * s(X). Compute by cross-product of defaults.
 - p(-1) and p(1) come from the most-specific entries.
 - Mixing *defaults* gives rise to p(0).
 - \blacktriangleright p(X : nonneg int) and p(X : nonpos int) arise from other defaults.
 - Do not contribute to p(-1), p(0), p(1); contributions masked.
 - > p(X : int) arises as well, but entirely masked.

Conjoining Defaults

Define two sparse vectors (=> means "most-specific wins"):

1 r(X : int)	=>	1.		1 s(X :	int)	,	=>	1.
2 r(X : non										;) =>	
3 r(-1)			• 3.		3 s (r		=>	
	X		-3	-2	-1	0	1	2	3		
	r(X)		1	1	3	2	2	2	2		
	s(X)		4	4	4	4	5	1	1		
	p(X)	•••	4	4	12	8	10	2	2		

- Define their pointwise product: p(X) = r(X) * s(X). Compute by cross-product of defaults.
 - p(-1) and p(1) come from the most-specific entries.
 - Mixing *defaults* gives rise to p(0).
 - \blacktriangleright p(X : nonneg int) and p(X : nonpos int) arise from other defaults.
 - ▶ Do not contribute to p(-1), p(0), p(1); contributions masked.
 - > p(X : int) arises as well, but entirely masked.
 - > So p min= p(X) gives p => 2, not p => 1 (No p(X) with value 1!)

Conjoining Defaults

Define two sparse vectors (=> means "most-specific wins"):

<pre>1 r(X : int</pre>)	=>	• 1.		1 S ((X :	int)		=>	1.
2 r(X : non	neg int	;) =>	· 2.		2 s ((X :	non	pos	int	;) =>	4.
3 r(-1)		=>	• 3.		3 S ((1)				=>	5.
	X		-3	-2	-1	0	1	2	3		
	r(X)		1	1	3	2	2	2	2		
	s(X)		4	4	4	4	5	1	1		
	p(X)		4	4	12	8	10	2	2		

- Define their pointwise product: p(X) = r(X) * s(X). Compute by ► cross-product of defaults.
 - p(-1) and p(1) come from the most-specific entries.
 - Mixing defaults gives rise to p(0).
 - > p(X : nonneg int) and p(X : nonpos int) arise from other defaults.
 - Do not contribute to p(-1), p(0), p(1); contributions masked.
 - p(X : int) arises as well, but entirely masked.
 - So p min= p(X) gives p => 2, not p => 1 (No p(X) with value 1!)
 - See thesis for more complex examples.

Aggregating Defaults

- Intra-rule aggregation is complicated!
 - Relies on set representation for computing *cardinality of set subtraction*.
- Cross-rule aggregation of defaults is relatively straightforward:
 - Rather like the simple *conjunction* on previous slide.
 - A cross-product construction, with set intersections at each.
- Too hard & not sufficiently interesting for talk; see thesis for details.

Interaction of Defaults with Planning

Defaults make planning more challenging:

- May only partially specify variables in rules.
 - May want *different loop orders* for defaults vs. overrides.
- Combination of defaults may result in sets of aggregands.
 - Despite having visited each subgoal.
 - Must ensure that we can manipulate the result (e.g., count it).

Piecewise constancy is, indeed, a constraint on the system:

- We will reject f(X) += X for default reasoning.
 - (But is OK for individual queries, like f(3).)
- ▶ Is a sweet spot between expressiveness of program and complexity of solver.
- Generalizes existing system: all items' values NULL, unless otherwise specified.

What next?

This thesis: foundational work for Dyna 2.

- §2 Flexible solver designs enable as many runtime strategies as possible.
- §3 Default-based reasoning enlarges the space of acceptable programs.
- §4 Discussion of representations of sets within solver.
- §5 Static analysis of Dyna programs
 - Finds space of strategies for solver.
- §6 Extensions, including declarative module system.
 - (Much of the work is not *specific* to Dyna; applicable to other systems.)

Proof of concept work along the way:

- > 2013 implementation of a solver for finite programs (no default reasoning).
- Used at Linguistic Institute summer program at University of Michigan.

Enough foundational theory done, serious building underway.

- Tim Vieira: Exploring machine learning for solver policies.
- Matthew Francis-Landau: aggressively-optimizing, JIT Dyna on Java.
- Dr. Vivek Sarkar and Farzad Khorasani: *parallel* and *GPU* runtime.

What next?

Thank you. Questions?

- Computations often amount to search for justification.
 - Reachability in a graph: edges forming a path.
 - Parsing a sentence: grammatical expansions.
 - (co-)NP complexity classes: witness.
 - Post Correspondence: sequence of tiles.
- These justifications can be recast as proofs in a logic.
 - Enter logic programming.
- More generally, we might want quantifier alternation: $\forall_a \exists_b \forall_c \cdots$

What's in a proof, anyway?

• Inference rules: "R proves a given proofs of b and c," written

$$\frac{b}{a}$$
 C R

- Axioms: inference rules without conditions: \overline{f} .
- Proof combines rules into a tree:
 - Given the rules

$$\frac{1}{\mathsf{bal} \to \mathsf{was}} \quad \frac{\mathsf{phl} \to \mathsf{bal}}{\mathsf{phl} \to \mathsf{bal}} \quad \frac{\mathsf{nyc} \to \mathsf{phl}}{\mathsf{nyc} \to \mathsf{phl}} \quad \frac{\mathsf{s} \to t \quad t \to u}{\mathsf{s} \to u} \quad \text{STEP}$$

• A proof of nyc \rightarrow^* was is

$$\frac{\hline \frac{bal \rightarrow was}{msc \rightarrow r} \frac{bal \rightarrow was}{bal \rightarrow r} \frac{bal \rightarrow was}{s}}{msc \rightarrow r} \frac{END}{STEP}}{\frac{bal \rightarrow r}{s} STEP}$$

Grammaticality of a sentence can be expressed as inference rules, too:

Core rules:

$$\frac{X \to w \quad _{i}w_{j}}{_{i}X_{j}} \qquad \frac{_{i}Y_{j} \quad _{j}Z_{k} \quad X \to Y \quad Z}{_{i}X_{k}}$$

- $_i w_j$: word w from position i to j.
- $_iX_k$: nonterminal X from position i to k.
- ▶ $X \rightarrow w$: word w has PoS (preterminal) X (e.g. Noun \rightarrow time).
- $X \rightarrow YZ$: combine Y and Z to make X (e.g. $\overrightarrow{PP \rightarrow P NP}$).
- Goal: ${}_{0}S_{k}$ (for sentence of length k).

Core rules:

$$\frac{X \to w_{i} w_{j}}{i X_{j}} \qquad \frac{i Y_{j} \quad j Z_{k} \quad X \to Y \quad Z}{i X_{k}}$$

Consider the sentence " $_{0}time_{1}$ $_{1}flies_{2}$ $_{2}like_{3}$ $_{3}an_{4}$ $_{4}arrow_{5}$." If we consider all ways of combining our inference rules (core and grammar), we find *several* proofs of grammaticality, which correspond to *readings*:

	$\overline{V \rightarrow \text{flies}} \overline{1^{\text{flies}_2}}$	$\frac{\vdots}{{}_2P_3} \ \frac{\vdots}{{}_3NP_5}$	$\overline{\text{PP} \rightarrow \text{P NP}}$			
$\overline{N \rightarrow time} \overline{0^{time_1}}$	1V2	2 ^P	°P5	$VP \rightarrow V PP$		
0 ^N 1		1	VP ₅		$S \rightarrow N VP$	Pertains to
		0 ^{S5}				passage of time
$\frac{N \rightarrow \text{time}}{0} \frac{1}{0} \frac{1}{1}$						
0 ^N 1	1 ^N 2	$NP \rightarrow N N$	2V3 3NP4			
	0 ^{NP} 2		2 V P	5	$S \rightarrow NP VP$	"Time flies,"
			0 ^{S5}			like "fruit flies."

Pure Prolog Core rules:

$$\frac{X \to w_{i} w_{j}}{_{i}X_{j}} \qquad \frac{_{i}Y_{j} \quad _{j}Z_{k} \quad X \to Y \ Z}{_{i}X_{k}}$$

Recast these in Prolog. Item names:

- word(W,I,J) for iwj
- constit(X,I,K) for $_iX_k$

▶ pos(W,X) for $X \rightarrow W$ ▶ rewrite(X,Y,Z) for $X \rightarrow Y Z$

And rules:

1 constit(X,I,J) :- word(W,I,J), pos(W,X).
2 constit(X,I,K) :- constit(Y,I,J), constit(Z,J,K),
3 rewrite(X,Y,Z).

Equivalent formulation in more traditional logic (first rule):

$$\forall_{i,j,x} (\mathsf{c}_{x,i,j} \Leftarrow \exists_{w} (\mathtt{w}_{w,i,j} \land \mathtt{p}_{w,x})) \Leftrightarrow \forall_{i,j,w,x} (\mathsf{c}_{x,i,j} \lor \neg \mathtt{w}_{w,i,j} \lor \neg \mathtt{p}_{w,x})$$

Can think of Prolog program as specifying a hypergraph with:

- items as nodes, rules as hyperedges
- the value of a hyperedge is the AND (\wedge) of its tails
- the value of an item is the OR (\vee) of its incident hyperedges

(Have not discussed negation, but could add w/ more hyperedge types.)

Dyna 1: Semirings and Horn Equations

A little algebra. Let $B = \{t, f\}$. AND: $x \land y = t$ iff x = y = tOR: $x \lor y = f$ iff x = y = fDistributivity: $a \land (b \lor c) = (a \land b) \lor (a \land c)$.

Dyna 1: Semirings and Horn Equations

A little algebra. Let $B = \{t, f\}$. • AND: $x \land y = t$ iff x = y = t• OR: $x \lor y = f$ iff x = y = f• Distributivity: $a \land (b \lor c) = (a \land b) \lor (a \land c)$. $\langle B, \lor, f, \land, t \rangle$ is a *semiring (rig)*. This kind of structure abounds!

• Numbers with + and *:
$$(\mathbb{R}, +, 0, *, 1)$$
.

• a * (b + c) = (a * b) + (a * c).

- "Tropical" semiring: $\langle \mathbb{R} \cup \{\infty\}, \min, \infty, +, 0 \rangle$.
 - $a + \min(b, c) = \min(a + b, a + c)$.
- Formal languages, probabilities, provenance, expectations, ...

Dyna 1: Semirings and Horn Equations

Consider again our Prolog parsing program:

Can see that it uses OR and AND operations. That's all it does!

Could use *different* semiring addition and semiring product operations: constit(X,I,J) += word(W,I,J) * pos(W,X). constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) rewrite(X,Y,Z).

(Tarjan '81, "A Unified Approach to Path Problems")

Dyna 2: Generalized Expressions

Dyna 2 moves us beyond semirings:

- Different aggregators for different items.
- Generalized expressions in the body:
 - Mix weights and booleans: a += 1 for f(X).
 - Values can become keys: goal += constit("s",0,length) evaluates length in place.

►