Dyna 2: Towards a General Weighted Logic Language

Nathaniel Wesley Filardo

October 12, 2017

Outline

Arithmetic Circuits

The Dyna Project
Solving Circuits

Circuits From Dyna

Arithmetic Circuits

What?

Arithmetic circuits are abstract data types generalizing key-value stores.

- K-V interface:
- store, update, and retrieve items (pair of key and value).
- Circuit interface:
- store, update, and retrieve input items.
- query derived items' values (computed from input).

Arithmetic Circuits

Why care about circuits?

Pervasive! Can describe:

- data structures' interfaces
- database interface
- database internal data structures
- Statistical AI systems interfaces

Powerful abstraction:

- Kowalski's observation: "Algorithm = Logic + Control"
- Circuit describes logic; a solver implements control.

Arithmetic Circuits

Why care about circuits?
Describe a priority queue as a circuit?

- Input: dynamic collection of keys with associated priorities
- Derived output: maximum of priorities

Arithmetic Circuits

Why care about circuits?
Describe a priority queue as a circuit?

- Input: dynamic collection of keys with associated priorities
- Derived output: maximum of priorities
- Further output: identify item with maximum priority

Arithmetic Circuits

Why care about circuits?
Describe a priority queue as a circuit?

- Input: dynamic collection of keys with associated priorities
- Derived output: maximum of priorities
- Further output: identify item with maximum priority

In Dyna:
1 maxval max= thing(X).
2 maxt ?= X for maxval $==$ thing (X).

Arithmetic Circuits

Why care about circuits?

More interesting example: (CNF) parser!

- Input: sentence (words)
- Input: grammar (binary rewrites, unary pos preterminal rules)
- Output: parse(s) (or statistics) for each span.

Arithmetic Circuits

Why care about circuits?
More interesting example: (CNF) parser!

- Input: sentence (words)
- Input: grammar (binary rewrites, unary pos preterminal rules)
- Output: parse(s) (or statistics) for each span.

- Words and unary rules combine

Arithmetic Circuits

Why care about circuits?
More interesting example: (CNF) parser!

- Input: sentence (words)
- Input: grammar (binary rewrites, unary pos preterminal rules)
- Output: parse(s) (or statistics) for each span.

- Words and unary rules combine
- Adjacent spans combine

Arithmetic Circuits

Why care about circuits?
More interesting example: (CNF) parser!

- Input: sentence (words)
- Input: grammar (binary rewrites, unary pos preterminal rules)
- Output: parse(s) (or statistics) for each span.

- Words and unary rules combine
- Adjacent spans combine
- And so on

Arithmetic Circuits

Why care about circuits?
More interesting example: (CNF) parser!

- Input: sentence (words)
- Input: grammar (binary rewrites, unary pos preterminal rules)
- Output: parse(s) (or statistics) for each span.

- Words and unary rules combine
- Adjacent spans combine
- And so on
- Circuit structure is data-dependent:
- Longer sentence.
- Regularity of sketch is misleading.

Arithmetic Circuits

Why care about circuits?
More interesting example: (CNF) parser!

- Input: sentence (words)
- Input: grammar (binary rewrites, unary pos preterminal rules)
- Output: parse(s) (or statistics) for each span.

- Words and unary rules combine
- Adjacent spans combine
- And so on
- Circuit structure is data-dependent:
- Longer sentence.
- Regularity of sketch is misleading.

```
1 constit(X,I,J) += word(W,I,J) * pos(W,X).
```

2 constit(X,I,K) += constit(Y,I,J) * constit(Z, J,K) * rewrite(X,Y,Z).

The Dyna Project

Motivation

CLSP does lots of diverse research in AI. Repeated pain points:

- Systems are large! (Take "a while" to construct or modify.)

The Dyna Project

Motivation

As of 2011, some examples for scale:

Package	Files	SLOC	Language	Application area
SRILM	285	48967	C ++	Language modeling
Charniak parser	266	42464	C ++	Parsing
Stanford parser	417	134824	Java	Parsing
cdec	178	21265	C ++	Machine translation
Joshua	486	68160	Java	Machine translation
MOSES	351	37703	C ++	Machine translation
GIZA ++	122	15958	C ++	Bilingual alignment
OpenFST	157	20135	C++	Weighted FSAs \& FSTs
NLTK	200	46256	Python	NLP education
HTK	111	81596	C	Speech recognition
MALLET	620	77155	Java	Conditional Random Fields
GRMM	90	12926	Java	Graphical model add-on
Factorie	164	12139	Scala	Graphical models

The Dyna Project

Motivation

CLSP does lots of diverse research in AI. Repeated pain points:

- Systems are large! (Take "a while" to construct or modify.)
- Systems are fast from specialized hand-tuning.
- Extensions break assumptions made in hand-tuning.
- Even toolkits can be hard to take in new directions.

The Dyna Project

Motivation

CLSP does lots of diverse research in AI. Repeated pain points:

- Systems are large! (Take "a while" to construct or modify.)
- Systems are fast from specialized hand-tuning.
- Extensions break assumptions made in hand-tuning.
- Even toolkits can be hard to take in new directions.
- Lots of code and data out there!
- Systems are hard to integrate.
- Lots of data formats (and quadratically many Perl scripts).

The Dyna Project

Motivation

Especially frustrating, because

- Al systems' cores are circuits!
- Behavior specified by a handful of equations.
- Given a series of facts (input data).
- Queried on results of applying equations.

The Dyna Project

Motivation

Especially frustrating, because

- Al systems' cores are circuits!
- Behavior specified by a handful of equations.
- Given a series of facts (input data).
- Queried on results of applying equations.
- it is as if we are building
- databases before DBMS and SQL.
- file processing before regexps / parser generators.

The Dyna Project

Motivation

For scale, some example Dyna 2 program sizes:

Lines	Program
$2-3$	Dijkstra's shortest-path algorithm
4	Feed-forward neural network
11	Bigram language model with Good-Turing backoff smoothing
6	Arc-consistency constraint propagation
+6	With backtracking search
$\quad+6$	\quad With branch-and-bound
6	Loopy belief propagation
3	Probabilistic context-free parsing
+3	Earley's algorithm
+7	Conditional log-linear model of grammar weights (toy example)
+10	Coarse-to-fine A parsing
4	Value computation in a Markov Decision Process
5	Weighted edit distance
3	Markov chain Monte Carlo (toy example)
our 2011	

The Dyna Project

Motivation
Additional historical precedent: Logic-based AI efforts give rise to Prolog in 1970-72.

- A logic programming language.
- Simplifies specification of logic-based AI.
- Factors much of control aspect into language and runtime.

The Dyna Project

Motivation

Additional historical precedent: Logic-based AI efforts give rise to Prolog in 1970-72.

- A logic programming language.
- Simplifies specification of logic-based AI.
- Factors much of control aspect into language and runtime.

1976: Fred Jelinek at IBM introduces information theory for speech recognition.

- Birth of statistical AI approach, now the dominant paradigm.

No single Prolog-like substrate has emerged for this new era.

- Prolog, even with answer subsumption, only handles a subset of needs.
- PRISM, Dyna 1: restricted expressiveness
- Problog: enforces particular probabilistic semantics
- TensorFlow: static circuit (but fast!), no updates
- (py)Torch, Dynet: procedural description of circuits, no updates

The Dyna Project

The Language

Dyna program

- Dyna is narrowly scoped to describe data interdependence.
- It is a domain-specific language for circuit specification.
- No user control of I/O.
- No (explicit) reference cells, no threads, ...
- Goal: let the compiler figure out how to make things fly.
- Generated circuit does not stand alone: requires a "driver program"
- Driver intermediates all exchanges with the real world

The Dyna Project

The Language

Basic units of Dyna: items and rules.

- Rule a $=\operatorname{sqrt}(\mathrm{b} * \mathrm{c})$ relates several items.
- a is the head, sqrt (b * c) the body.
- Not an assignment, but a live relationship.
- Feed-forward: specifies how to compute a from band c.
- No backward constraint: b defined elsewhere, used here.

The Dyna Project

The Language
Items have structured names:

- Like arrays, $\mathrm{f}(3)=$ "hello"
- Or maps, edge("bal", "was") = 35
- Deep structure, too: color(edge("bal", "was")) = red

The Dyna Project

The Language
Items have structured names:

- Like arrays, $f(3)=$ "hello"
- Or maps, edge("bal","was") = 35
- Deep structure, too: color(edge("bal", "was")) = red

Used for arithmetic, too! $\mathrm{a}=\operatorname{sqrt}(\mathrm{b} * \mathrm{c})$

The Dyna Project

The Language
Aggregation combines contributions from several rules:

- Two rules with same head: $\mathrm{x}+=\mathrm{y}$ and $\mathrm{x}+=\mathrm{z}(x=y+z)$

The Dyna Project

The Language
Aggregation combines contributions from several rules:

- Two rules with same head: $\mathrm{x}+=\mathrm{y}$ and $\mathrm{x}+=\mathrm{z}(x=y+z)$

- A single rule with variable(s) in body: $\mathrm{x}+=\mathrm{f}(\mathrm{I})\left(x=\sum_{i} f_{i}\right)$ ("Fan-in" to \bar{x}.)

The Dyna Project

The Language
Aggregation combines contributions from several rules:

- Two rules with same head: $\mathrm{x}+=\mathrm{y}$ and $\mathrm{x}+=\mathrm{z}(x=y+z)$

- A single rule with variable(s) in body: $\mathrm{x}+=\mathrm{f}(\mathrm{I})\left(x=\sum_{i} f_{i}\right)$ ("Fan-in" to \bar{x}.)

- Given all three rules, $x=y+z+\sum_{i} f_{i}$.

The Dyna Project

The Language
Rules are schemata for data relationships:

- Defaults (fan-out): $\mathrm{g}(\mathrm{X})+=\mathrm{a}$.

The Dyna Project

The Language
Rules are schemata for data relationships:

- Defaults (fan-out): $\mathrm{g}(\mathrm{X})+=\mathrm{a}$.
- Pointwise products: $\mathrm{f}(\mathrm{I})=\mathrm{g}(\mathrm{I}) * \mathrm{~h}(\mathrm{I})\left(f_{i}=g_{i} * h_{i}\right)$.

The Dyna Project

The Language
Rules are schemata for data relationships:

- Defaults (fan-out): $\mathrm{g}(\mathrm{X})+=\mathrm{a}$.
- Pointwise products: $\mathrm{f}(\mathrm{I})=\mathrm{g}(\mathrm{I}) * \mathrm{~h}(\mathrm{I})\left(f_{i}=g_{i} * h_{i}\right)$.
- Matrix-vector products: $\mathrm{p}(\mathrm{I})+=\mathrm{m}(\mathrm{I}, \mathrm{J}) * \mathrm{v}(\mathrm{J})\left(p_{i}=\sum_{j} m_{i j} * v_{j}\right)$.

The Dyna Project

The Challenge

Several challenges for bringing vision to reality:

- Need a good solver for Dyna programs (§2).
- Solver should handle as many programs as possible (§3, §4).
- Static analysis for checking programs to be well-defined \& feasible (§5).
- Also useful for optimization!
- Features for "programming in the large" (module system §6.2).

Entr'acte 1

Before we continue, questions so far?

Solving Circuits

- Circuits just describe relation among values.
- No hint of execution.
- Multiple options for how to execute!
- Different space/time trade-offs.
- Different performance under different workloads.
- Want to support as many as possible!
- (And let an optimizer select!)

Solving Circuits

Backward Chaining

"Laziest" extreme: store values of input items, do nothing else until queried.

- Introduce "non-value" unk for unknown values.
- Upon query, if item is UNK, must compute from parents.

Solving Circuits

Backward Chaining

"Laziest" extreme: store values of input items, do nothing else until queried.

- Introduce "non-value" unk for unknown values.
- Upon query, if item is UNK, must compute from parents.
- Driver queries for value of maxt.

Solving Circuits

Backward Chaining

"Laziest" extreme: store values of input items, do nothing else until queried.

- Introduce "non-value" unk for unknown values.
- Upon query, if item is UNK, must compute from parents.
- Driver queries for value of maxt.
- Internal query for value of maxval from maxt.

Solving Circuits

Backward Chaining

"Laziest" extreme: store values of input items, do nothing else until queried.

- Introduce "non-value" UNK for unknown values.
- Upon query, if item is UNK, must compute from parents.
- Driver queries for value of maxt.
- Internal query for value of maxval from maxt.
- Internal query all values of thing(X) from maxval.

Solving Circuits

Backward Chaining

"Laziest" extreme: store values of input items, do nothing else until queried.

- Introduce "non-value" UNK for unknown values.
- Upon query, if item is UNK, must compute from parents.
- Driver queries for value of maxt.
- Internal query for value of maxval from maxt.
- Internal query all values of thing(X) from maxval.
- Internal query for thing (X) with value 42 from maxt.

Solving Circuits

Backward Chaining

"Laziest" extreme: store values of input items, do nothing else until queried.

- Introduce "non-value" unk for unknown values.
- Upon query, if item is UNK, must compute from parents.
- Driver queries for value of maxt.
- Internal query for value of maxval from maxt.
- Internal query all values of thing (X) from maxval.
- Internal query for thing(X) with value 42 from maxt.
- Finish; return answer blue.

Solving Circuits

Forward Chaining

"Most eager" extreme:

- Define null for the aggregation of \varnothing (roughly, "item not present")

Solving Circuits

Forward Chaining

"Most eager" extreme:

- Define null for the aggregation of \varnothing (roughly, "item not present")
- Upon update, must revise descendants:

Solving Circuits

Forward Chaining

"Most eager" extreme:

- Define null for the aggregation of \varnothing (roughly, "item not present")
- Upon update, must revise descendants:
- apply update to item, and prepare to notify children.

Solving Circuits

Forward Chaining

"Most eager" extreme:

- Define null for the aggregation of \varnothing (roughly, "item not present")
- Upon update, must revise descendants:
- apply update to item, and prepare to notify children.
- propagate notification to update children

Solving Circuits

Forward Chaining

"Most eager" extreme:

- Define null for the aggregation of \varnothing (roughly, "item not present")
- Upon update, must revise descendants:
- apply update to item, and prepare to notify children.
- propagate notification to update children
- repeat until no work left

Solving Circuits

Forward Chaining

"Most eager" extreme:

- Define null for the aggregation of \varnothing (roughly, "item not present")
- Upon update, must revise descendants:
- apply update to item, and prepare to notify children.
- propagate notification to update children
- repeat until no work left

Solving Circuits

Forward Chaining

"Most eager" extreme:

- Define null for the aggregation of \varnothing (roughly, "item not present")
- Upon update, must revise descendants:
- apply update to item, and prepare to notify children.
- propagate notification to update children
- repeat until no work left
- ready to be queried (or updated again)

Solving Circuits

Hybridized Chaining

- Forward and backward chaining typically viewed as alternatives.
- Have complementary jobs:
- Backward chaining computes values for items missing memos.
- Forward chaining refreshes (potentially) stale memos.
- Extremes of a spectrum:
- Pure BC never creates memos: no refresh ever necessary.
- Pure FC always memoizes: no recursive computation necessary.

Solving Circuits

Hybridized Chaining
§2.2 contains a hybridized algorithm for solving finite, acyclic circuits.

- finiteness: steps involving "all children" OK.
- acyclicity: backward-chaining never loops.
- many subtleties when forward-chaining through un-memoized items!

Several extensions considered:

- Increased efficiency via "obligation" (§2.2.4.3, §2.3.5)
- Parallel processing, viewing items as actors (§2.3)
- Large taxonomy of update and notification messages (§2.4)
- Cyclicity: on-demand conversion of backward to forward reasoning (§2.5)

Entr'acte 2

Circuitous questions before more programmatic concerns?

Circuits From Dyna

§3 to §5 address the challenge of deriving a circuit from a Dyna program.

- Dyna programs typically specify infinite circuits!
- Some programs must be rejected: might take infinite time to solve (§5.3)
- Can handle piecewise-constant infinite circuits (§3)
- Given a runtime vocabulary for item sets (§4)

Circuits From Dyna

Rule Planning
CNF parser binary rule defines infinitely many edges in an infinite circuit.

$$
\text { constit }(\mathrm{X}, \mathrm{I}, \mathrm{~K})+=\operatorname{constit}(\mathrm{Y}, \mathrm{I}, \mathrm{~J}) * \operatorname{constit}(\mathrm{Z}, \mathrm{~J}, \mathrm{~K}) * \operatorname{rewrite}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) .
$$

- Literal implementation of algorithm from $\S 2$ will run forever.

Circuits From Dyna

Rule Planning
CNF parser binary rule defines infinitely many edges in an infinite circuit.

$$
\text { constit(X,I,K) += constit(Y, } \mathrm{I}, \mathrm{~J}) * \operatorname{constit}(\mathrm{Z}, \mathrm{~J}, \mathrm{~K}) * \operatorname{rewrite}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) .
$$

- Literal implementation of algorithm from $\S 2$ will run forever.
- Instead: find subset of "active" edges.
- Merge finite descriptions of values for parent item sets.
- Here: all constit(_,_,), rewrite(_,_,_), and _ * _ items.
- If only finitely many such items with values, this would be especially easy.

Circuits From Dyna

Rule Planning
CNF parser binary rule defines infinitely many edges in an infinite circuit.

```
constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) * rewrite(X,Y,Z).
```

- Literal implementation of algorithm from $\S 2$ will run forever.
- Instead: find subset of "active" edges.
- Merge finite descriptions of values for parent item sets.
- Here: all constit(_,_,), rewrite(_,_,_), and _ * _ items.
- If only finitely many such items with values, this would be especially easy.
- But: Infinitely many _ * _ items with values. Yet: still OK?

Circuits From Dyna

Rule Planning
CNF parser binary rule defines infinitely many edges in an infinite circuit.

$$
\text { constit(X, I, K) += constit(Y, } \mathrm{I}, \mathrm{~J}) * \operatorname{constit}(\mathrm{Z}, \mathrm{~J}, \mathrm{~K}) * \operatorname{rewrite}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) .
$$

- Literal implementation of algorithm from $\S 2$ will run forever.
- Instead: find subset of "active" edges.
- Merge finite descriptions of values for parent item sets.
- Here: all constit(_,_,_), rewrite(_,_,_), and _ * _ items.
- If only finitely many such items with values, this would be especially easy.
- But: Infinitely many _ * _ items with values. Yet: still OK?

Informally, still expect finite set of edges because:

- Given constit(_,_,_) and rewrite(_,_,_) items,
- only need particular _ * _ items (e.g. 2 * 3)

Circuits From Dyna

Rule Planning

Parser binary rule defines infinitely many edges in an infinite circuit.

```
constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) * rewrite(X,Y,Z).
```

Can think of this rule as having a factor graph:

This is not an arithmetic circuit. It is a useful formalism for considering how to find the active subset of edges created by this rule.

Circuits From Dyna

Rule Planning

Looking for active subset of edges:

- those for which all parents are non-NULL.
- want a finite description of these (infinitely many) edges.

Assume procedures that enumerate finite descriptions of subgoals' answers.

- Assume finitely many words, so finitely enumerable.
- Multiplication only can when two of the three components are known.
- $\{x \mid 2 * 3=x\}$ or $\{x \mid x * 7=42\}$, but not $\{\langle x, y\rangle \mid x * y=23.5\}$.
- rewrite might be of either flavor (input or derived).
- constit inductively finite.

Need to track instantiation state:

- "At runtime, this variable is still unknown."
" "At runtime, we will know the value of this variable."

Circuits From Dyna

Rule Planning

Example: Looking for active subset of edges

- Given known head, e.g. constit("s",0,7).

```
constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) * rewrite(X,Y,Z).
```

- Backward chain w/ head known

Circuits From Dyna

Rule Planning

Example: Looking for active subset of edges

- Given known head, e.g. constit("s",0,7).

```
constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) * rewrite(X,Y,Z).
```


- Backward chain w/ head known
- Unpack head; X, I, K known

Circuits From Dyna

Rule Planning

Example: Looking for active subset of edges

- Given known head, e.g. constit("s",0,7).

```
constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) * rewrite(X,Y,Z).
```


- Backward chain w/ head known
- Unpack head; X, I, K known
- Iterate Y, J from constit(Y,I, J)

Circuits From Dyna

Rule Planning

Example: Looking for active subset of edges

- Given known head, e.g. constit("s",0,7).

```
constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) * rewrite(X,Y,Z).
```

- Backward chain w/ head known
- Unpack head; X, I, K known
- Iterate Y, J from constit(Y,I, J)
- Iterate Z from constit(Z, J, K)

Circuits From Dyna

Rule Planning

Example: Looking for active subset of edges

- Given known head, e.g. constit("s",0,7).

```
constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) * rewrite(X,Y,Z).
```

- Backward chain w/ head known
- Unpack head; X, I, K known
- Iterate Y, J from constit(Y,I, J)
- Iterate Z from constit(Z, J, K)
- Multiply

Circuits From Dyna

Rule Planning

Example: Looking for active subset of edges

- Given known head, e.g. constit("s",0,7).

```
constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) * rewrite(X,Y,Z).
```

- Backward chain w/ head known
- Unpack head; X, I, K known
- Iterate Y, J from constit(Y,I, J)
- Iterate Z from constit(Z, J, K)
- Multiply
- Probe grammar at rewrite(X,Y,Z)

Circuits From Dyna

Rule Planning

Example: Looking for active subset of edges

- Given known head, e.g. constit("s",0,7).

```
constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) * rewrite(X,Y,Z).
```

- Backward chain w/ head known
- Unpack head; X, I, K known
- Iterate Y, J from constit(Y,I, J)
- Iterate Z from constit(Z, J, K)
- Multiply
- Probe grammar at rewrite(X,Y,Z)
- Multiply

Circuits From Dyna

Rule Planning

This simple example well within reach of existing systems.
Thesis (§5.3) adds:

- Ability to track "partially known" structure.
- Also within reach of existing systems
- Type-aware planning: variables' ranges are explicitly tracked.
- More versatile procedure selection (e.g., upcasts, case analysis)
- Result-dependent forks in plans.

Circuits From Dyna

Default Reasoning

Often, want to say "unless otherwise specified."

- Sparse arithmetic objects ("elements are zero, unless...")

```
f(X,Y) += 0. % all cells
f(X,X) += 1. % the diagonal
f(2,X) += 2. % a column
f(2,2) += 4. % a particular cell
```

- Default arcs in finite state machines:

```
trans(state(4), _ ) := state(6). % every input but 'a'
trans(state(4), 'a') := state(5).
```

- Ontologies

fly (X : bird)	$:=$ true . \% absent other data...
fly (X : penguin)	$:=$ false. \% but not these birds
fly (bigbird)	$:=$ false. \% nor that one in particular

- Lifted inference in MLN
- Identify all nodes in a graph until reason to split

All of these have one very important thing in common:

- Finitely many rules with constant values.
- A pointwise-constant function of (in)finitely many things.

Circuits From Dyna

Conjoining Defaults

- Define two sparse vectors ($\Rightarrow>$ means "most-specific wins"):

$1 r(X:$ int $)$	$\Rightarrow 1$.	$1 s(X:$ int $)$	$\Rightarrow 1$.
$2 r(X:$ nonneg int $)$	$\Rightarrow 2$.	$2 s(X:$ nonpos int $)$	$\Rightarrow 4$.
$3 r(-1)$	$\Rightarrow 3$.	$3 s(1)$	$\Rightarrow 5$.

X	\cdots	-3	-2	-1	0	1	2	3	\cdots
$r(X)$	\cdots	1	1	3	2	2	2	2	\cdots
$s(X)$	\cdots	4	4	4	4	5	1	1	\cdots

Circuits From Dyna

Conjoining Defaults

- Define two sparse vectors ($=>$ means "most-specific wins"):

$1 r(X:$ int $)$	$\Rightarrow 1$.	$1 s(X:$ int $)$	$\Rightarrow 1$.
$2 r(X:$ nonneg int $)$	$\Rightarrow 2$.	$2 s(X:$ nonpos int $)$	$\Rightarrow 4$.
$3 r(-1)$	$\Rightarrow 3$.	$3 s(1)$	$\Rightarrow 5$.

X	\cdots	-3	-2	-1	0	1	2	3	\cdots
$r(X)$	\cdots	1	1	3	2	2	2	2	\cdots
$s(X)$	\cdots	4	4	4	4	5	1	1	\cdots

Circuits From Dyna

Conjoining Defaults

- Define two sparse vectors ($=>$ means "most-specific wins"):

$1 r(X:$ int $)$	$\Rightarrow 1$.	$1 s(X:$ int $)$	$\Rightarrow 1$.
$2 r(X:$ nonneg int $)$	$\Rightarrow 2$.	$2 s(X:$ nonpos int $)$	$\Rightarrow 4$.
$3 r(-1)$	$\Rightarrow 3$.	$3 s(1)$	$\Rightarrow 5$.

X	\cdots	-3	-2	-1	0	1	2	3	\cdots
$r(X)$	\cdots	1	1	3	2	2	2	2	\cdots
$s(X)$	\cdots	4	4	4	4	5	1	1	\cdots

Circuits From Dyna

Conjoining Defaults

- Define two sparse vectors ($=>$ means "most-specific wins"):

$1 r(X:$ int $)$	$\Rightarrow 1$.	$1 s(X:$ int $)$	$\Rightarrow 1$.
$2 r(X:$ nonneg int $)$	$\Rightarrow 2$.	$2 s(X:$ nonpos int $)$	$\Rightarrow 4$.
$3 r(-1)$	$\Rightarrow 3$.	$3 s(1)$	$\Rightarrow 5$.

X	\cdots	-3	-2	-1	0	1	2	3	\cdots
$\mathrm{r}(\mathrm{X})$	\cdots	1	1	3	2	2	2	2	\cdots
$\mathrm{~s}(\mathrm{X})$	\cdots	4	4	4	4	5	1	1	\cdots
$\mathrm{p}(\mathrm{X})$	\cdots	4	4	12	8	10	2	2	\cdots

- Define their pointwise product: $\mathrm{p}(\mathrm{X})=\mathrm{r}(\mathrm{X}) * \mathrm{~s}(\mathrm{X})$. Compute by cross-product of defaults.

Circuits From Dyna

Conjoining Defaults

- Define two sparse vectors ($=>$ means "most-specific wins"):

- Define their pointwise product: $\mathrm{p}(\mathrm{X})=\mathrm{r}(\mathrm{X}) * \mathrm{~s}(\mathrm{X})$. Compute by cross-product of defaults.
- $\mathrm{p}(-1)$ and $\mathrm{p}(1)$ come from the most-specific entries.

Circuits From Dyna

Conjoining Defaults

- Define two sparse vectors ($=>$ means "most-specific wins"):

$1 r(X:$ int $)$	$\Rightarrow 1$.	$1 s(X:$ int $)$	$\Rightarrow 1$.
$2 r(X:$ nonneg int $)$	$\Rightarrow 2$.	$2 s(X:$ nonpos int $)$	$\Rightarrow 4$.
$3 r(-1)$	$\Rightarrow 3$.	$3 s(1)$	$\Rightarrow 5$.

X	\cdots	-3	-2	-1	0	1	2	3	\cdots
$r(X)$	\cdots	1	1	3	2	2	2	2	\cdots
$\mathrm{~s}(\mathrm{X})$	\cdots	4	4	4	4	5	1	1	\cdots
$\mathrm{p}(\mathrm{X})$	\cdots	4	4	12	8	10	2	2	\cdots

- Define their pointwise product: $\mathrm{p}(\mathrm{X})=\mathrm{r}(\mathrm{X}) * \mathrm{~s}(\mathrm{X})$. Compute by cross-product of defaults.
- $\mathrm{p}(-1)$ and $\mathrm{p}(1)$ come from the most-specific entries.

Circuits From Dyna

Conjoining Defaults

- Define two sparse vectors ($=>$ means "most-specific wins"):

- Define their pointwise product: $\mathrm{p}(\mathrm{X})=\mathrm{r}(\mathrm{X}) * \mathrm{~s}(\mathrm{X})$. Compute by cross-product of defaults.
- $\mathrm{p}(-1)$ and $\mathrm{p}(1)$ come from the most-specific entries.
- Mixing defaults gives rise to $\mathrm{p}(0)$.

Circuits From Dyna

Conjoining Defaults

- Define two sparse vectors ($\Rightarrow>$ means "most-specific wins"):

- Define their pointwise product: $\mathrm{p}(\mathrm{X})=r(\mathrm{X}) * \mathrm{~s}(\mathrm{X})$. Compute by cross-product of defaults.
- $\mathrm{p}(-1)$ and $\mathrm{p}(1)$ come from the most-specific entries.
- Mixing defaults gives rise to $\mathrm{p}(0)$.
- p (X : nonneg int) and p (X : nonpos int) arise from other defaults.
- Do not contribute to $\mathrm{p}(-1), \mathrm{p}(0), \mathrm{p}(1)$; contributions masked.

Circuits From Dyna

Conjoining Defaults

- Define two sparse vectors ($=>$ means "most-specific wins"):

- Define their pointwise product: $\mathrm{p}(\mathrm{X})=r(\mathrm{X}) * \mathrm{~s}(\mathrm{X})$. Compute by cross-product of defaults.
- $\mathrm{p}(-1)$ and $\mathrm{p}(1)$ come from the most-specific entries.
- Mixing defaults gives rise to $\mathrm{p}(0)$.
- p (X : nonneg int) and p (X : nonpos int) arise from other defaults.
- Do not contribute to $\mathrm{p}(-1), \mathrm{p}(0), \mathrm{p}(1)$; contributions masked.

Circuits From Dyna

Conjoining Defaults

- Define two sparse vectors ($=>$ means "most-specific wins"):

$1 r(X:$ int $)$	$\Rightarrow 1$.	$1 s(X:$ int $)$	$\Rightarrow 1$.
$2 r(X:$ nonneg int $)$	$\Rightarrow 2$.	$2 s(X:$ nonpos int $)$	$\Rightarrow 4$.
$3 r(-1)$	$\Rightarrow 3$.	$3 s(1)$	$\Rightarrow 5$.

X	\cdots	-3	-2	-1	0	1	2	3	\cdots
$r(X)$	\cdots	1	1	3	2	2	2	2	\cdots
$\mathrm{~s}(\mathrm{X})$	\cdots	4	4	4	4	5	1	1	\cdots
$\mathrm{p}(\mathrm{X})$	\cdots	4	4	12	8	10	2	2	\cdots

- Define their pointwise product: $\mathrm{p}(\mathrm{X})=r(\mathrm{X}) * \mathrm{~s}(\mathrm{X})$. Compute by cross-product of defaults.
- $\mathrm{p}(-1)$ and $\mathrm{p}(1)$ come from the most-specific entries.
- Mixing defaults gives rise to $\mathrm{p}(0)$.
- p (X : nonneg int) and $\mathrm{p}(\mathrm{X}$: nonpos int) arise from other defaults.
- Do not contribute to $\mathrm{p}(-1), \mathrm{p}(0), \mathrm{p}(1)$; contributions masked.
- p (X : int) arises as well, but entirely masked.

Circuits From Dyna

Conjoining Defaults

- Define two sparse vectors ($=>$ means "most-specific wins"):

$1 r(X:$ int $)$	$\Rightarrow 1$.	$15(X:$ int $)$	$\Rightarrow 1$.
$2 r(X:$ nonneg int $)$	$\Rightarrow 2$.	$2 s(X:$ nonpos int $)$	$\Rightarrow 4$.
$3 r(-1)$	$\Rightarrow 3$.	$3 S(1)$	$\Rightarrow 5$.

X	\cdots	-3	-2	-1	0	1	2	3	\cdots
$\mathrm{r}(\mathrm{X})$	\cdots	1	1	3	2	2	2	2	\cdots
$\mathrm{~s}(\mathrm{X})$	\cdots	4	4	4	4	5	1	1	\cdots
$\mathrm{p}(\mathrm{X})$	\cdots	4	4	12	8	10	2	2	\cdots

- Define their pointwise product: $\mathrm{p}(\mathrm{X})=r(\mathrm{X}) * \mathrm{~s}(\mathrm{X})$. Compute by cross-product of defaults.
- $\mathrm{p}(-1)$ and $\mathrm{p}(1)$ come from the most-specific entries.
- Mixing defaults gives rise to $\mathrm{p}(0)$.
- p (X : nonneg int) and p (X : nonpos int) arise from other defaults.
- Do not contribute to $\mathrm{p}(-1), \mathrm{p}(0), \mathrm{p}(1)$; contributions masked.
- p (X : int) arises as well, but entirely masked.
- So p min $=p(X)$ gives $p \Rightarrow 2$, not $p \Rightarrow 1$ (No $p(X)$ with value 1 !)

Circuits From Dyna

Conjoining Defaults

- Define two sparse vectors (=> means "most-specific wins"):

$1 r(X:$ int $)$	$\Rightarrow 1$.	$1 s(X:$ int $)$	$\Rightarrow 1$.
$2 r(X:$ nonneg int $)$	$\Rightarrow 2$.	$2 s(X:$ nonpos int $)$	$\Rightarrow 4$.
$3 r(-1)$	$\Rightarrow 3$.	$3 S(1)$	$\Rightarrow 5$.

X	\cdots	-3	-2	-1	0	1	2	3	\cdots
$\mathrm{r}(\mathrm{X})$	\cdots	1	1	3	2	2	2	2	\cdots
$\mathrm{~s}(\mathrm{X})$	\cdots	4	4	4	4	5	1	1	\cdots
$\mathrm{p}(\mathrm{X})$	\cdots	4	4	12	8	10	2	2	\cdots

- Define their pointwise product: $\mathrm{p}(\mathrm{X})=\mathrm{r}(\mathrm{X}) * \mathrm{~s}(\mathrm{X})$. Compute by cross-product of defaults.
- $\mathrm{p}(-1)$ and $\mathrm{p}(1)$ come from the most-specific entries.
- Mixing defaults gives rise to $\mathrm{p}(0)$.
- p (X : nonneg int) and $\mathrm{p}(\mathrm{X}$: nonpos int) arise from other defaults.
- Do not contribute to $\mathrm{p}(-1), \mathrm{p}(0), \mathrm{p}(1)$; contributions masked.
- p (X : int) arises as well, but entirely masked.
- So p min $=p(X)$ gives $p \Rightarrow 2$, not $p \Rightarrow 1$ (No $p(X)$ with value $1!$)
- See thesis for more complex examples.

Circuits From Dyna

Aggregating Defaults

- Intra-rule aggregation is complicated!
- Relies on set representation for computing cardinality of set subtraction.
- Cross-rule aggregation of defaults is relatively straightforward:
- Rather like the simple conjunction on previous slide.
- A cross-product construction, with set intersections at each.
- Too hard \& not sufficiently interesting for talk; see thesis for details.

Circuits From Dyna

Interaction of Defaults with Planning

Defaults make planning more challenging:

- May only partially specify variables in rules.
- May want different loop orders for defaults vs. overrides.
- Combination of defaults may result in sets of aggregands.
- Despite having visited each subgoal.
- Must ensure that we can manipulate the result (e.g., count it).

Piecewise constancy is, indeed, a constraint on the system:

- We will reject $f(X)+=X$ for default reasoning.
- (But is OK for individual queries, like $f(3)$.)
- Is a sweet spot between expressiveness of program and complexity of solver.
- Generalizes existing system: all items' values null, unless otherwise specified.

What next?

This thesis: foundational work for Dyna 2.
§2 Flexible solver designs enable as many runtime strategies as possible.
§3 Default-based reasoning enlarges the space of acceptable programs.
§4 Discussion of representations of sets within solver.
§5 Static analysis of Dyna programs

- Finds space of strategies for solver.
§6 Extensions, including declarative module system.
- (Much of the work is not specific to Dyna; applicable to other systems.)

Proof of concept work along the way:

- 2013 implementation of a solver for finite programs (no default reasoning).
- Used at Linguistic Institute summer program at University of Michigan.

What next?

Enough foundational theory done, serious building underway.

- Tim Vieira: Exploring machine learning for solver policies.
- Matthew Francis-Landau: aggressively-optimizing, JIT Dyna on Java.
- Dr. Vivek Sarkar and Farzad Khorasani: parallel and GPU runtime.

What next?

Thank you. Questions?

Proof Search

- Computations often amount to search for justification.
- Reachability in a graph: edges forming a path.
- Parsing a sentence: grammatical expansions.
- (co-)NP complexity classes: witness.
- Post Correspondence: sequence of tiles.
- These justifications can be recast as proofs in a logic.
- Enter logic programming.
- More generally, we might want quantifier alternation: $\forall_{a} \exists_{b} \forall_{c} \ldots$

Proof Search

What's in a proof, anyway?

- Inference rules: "R proves a given proofs of b and c," written

$$
\frac{b \quad c}{a} \mathrm{R}
$$

- Axioms: inference rules without conditions: \bar{f}.
- Proof combines rules into a tree:
- Given the rules

$$
\overline{\mathrm{bal} \rightarrow \mathrm{was}} \overline{\mathrm{phl} \rightarrow \mathrm{bal}} \overline{\mathrm{nyc} \rightarrow \mathrm{phl}} \overline{s \rightarrow^{*} s} \text { End } \frac{s \rightarrow t \rightarrow^{*} u}{s \rightarrow^{*} u} \text { Step }
$$

- A proof of nyc \rightarrow^{*} was is

Proof Search

Grammaticality of a sentence can be expressed as inference rules, too:

- Core rules:

$$
\frac{X \rightarrow w \quad i w_{j}}{i X_{j}} \quad \frac{{ }_{i} Y_{j}{ }_{j} Z_{k} X \rightarrow Y Z}{i X_{k}}
$$

- ${ }_{i} w_{j}$: word w from position i to j.
- ${ }_{i} X_{k}$: nonterminal X from position i to k.
- $X \rightarrow w$: word w has PoS (preterminal) X (e.g. Noun \rightarrow time $).$
- $X \rightarrow Y Z$: combine Y and Z to make X (e.g. $\overline{\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}) \text {. }}$
- Goal: ${ }_{0} S_{k}$ (for sentence of length k).

Proof Search

Core rules:

$$
\frac{X \rightarrow w \quad{ }_{i} w_{j}}{i X_{j}} \quad \frac{{ }_{i} Y_{j}{ }_{j} Z_{k} \quad X \rightarrow Y Z}{i X_{k}}
$$

 of combining our inference rules (core and grammar), we find several proofs of grammaticality, which correspond to readings:

Proof Search

Pure Prolog

Core rules:

$$
\frac{X \rightarrow w}{{ }_{i} X_{j}} \quad{ }_{i} w_{j}{ }_{i} \quad \frac{{ }_{i} Y_{j}{ }_{j} Z_{k} \quad X \rightarrow Y Z}{{ }_{i} X_{k}}
$$

Recast these in Prolog. Item names:

- $\operatorname{word}(\mathrm{W}, \mathrm{I}, \mathrm{J})$ for ${ }_{i} w_{j}$
- constit(X,I,K) for ${ }_{i} X_{k}$
- $\operatorname{pos}(W, X)$ for $X \rightarrow W$
- rewrite(X,Y,Z) for $X \rightarrow Y Z$

And rules:

```
1 constit(X,I,J) :- word(W,I,J), pos(W,X).
2 constit(X,I,K) :- constit(Y,I,J), constit(Z,J,K),
3
                        rewrite(X,Y,Z).
```

Equivalent formulation in more traditional logic (first rule):

$$
\forall_{i, j, x}\left(\mathrm{c}_{x, i, j} \Leftarrow \exists_{w}\left(\mathrm{w}_{w, i, j} \wedge \mathrm{p}_{w, x}\right)\right) \Leftrightarrow \underbrace{\forall_{i, j, w, x}\left(\mathrm{c}_{x, i, j} \vee \neg \mathrm{w}_{w, i, j} \vee \neg \mathrm{p}_{w, x}\right)}_{\text {Horn clause }}
$$

Proof Search

Boolean Circuits

Can think of Prolog program as specifying a hypergraph with:

- items as nodes, rules as hyperedges
- the value of a hyperedge is the AND (\wedge) of its tails
- the value of an item is the OR (V) of its incident hyperedges
(Have not discussed negation, but could add w/ more hyperedge types.)

Proof Search

Dyna 1: Semirings and Horn Equations

A little algebra. Let $B=\{\mathrm{t}, \mathrm{f}\}$.

- AND: $x \wedge y=\mathrm{t}$ iff $x=y=\mathrm{t}$
- $\mathrm{t} \wedge x=x$
- OR: $x \vee y=\mathrm{f}$ iff $x=y=\mathrm{f}$
- $\mathrm{f} \vee x=x$
- Distributivity: $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$.

Proof Search

Dyna 1: Semirings and Horn Equations

A little algebra. Let $B=\{\mathrm{t}, \mathrm{f}\}$.

- AND: $x \wedge y=\mathrm{t}$ iff $x=y=\mathrm{t}$
- $\mathrm{t} \wedge x=x$
- OR: $x \vee y=\mathrm{f}$ iff $x=y=\mathrm{f}$
- $\mathrm{f} \vee x=x$
- Distributivity: $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$.
$\langle B, \vee, f, \wedge, \mathrm{t}\rangle$ is a semiring (rig). This kind of structure abounds!
- Numbers with + and $*:\langle\mathbb{R},+, 0, *, 1\rangle$.
- $a *(b+c)=(a * b)+(a * c)$.
-"Tropical" semiring: $\langle\mathbb{R} \cup\{\infty\}, \min , \infty,+, 0\rangle$.
- $a+\min (b, c)=\min (a+b, a+c)$.
- Formal languages, probabilities, provenance, expectations, ...

Proof Search

Dyna 1: Semirings and Horn Equations

Consider again our Prolog parsing program:

```
constit(X,I,J) :- word(W,I,J), pos(W,X).
constit(X,I,K) :- constit(Y,I,J), constit(Z,J,K),
    rewrite(X,Y,Z).
```

Can see that it uses OR and AND operations. That's all it does!
Could use different semiring addition and semiring product operations:

```
constit(X,I,J) += word(W,I,J) * pos(W,X).
constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K)
    * rewrite(X,Y,Z).
```

(Tarjan '81, "A Unified Approach to Path Problems")

Proof Search

Dyna 2: Generalized Expressions

Dyna 2 moves us beyond semirings:

- Different aggregators for different items.
- Generalized expressions in the body:
- Mix weights and booleans: $a+=1$ for $f(X)$.
- Values can become keys: goal += constit("s",0,length) evaluates length in place.

