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Arithmetic Circuits
What?

Arithmetic circuits are abstract data types generalizing key-value stores.
▸ K-V interface:

▸ store, update, and retrieve items (pair of key and value).
▸ Circuit interface:

▸ store, update, and retrieve input items.
▸ query derived items’ values (computed from input).
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Arithmetic Circuits
Why care about circuits?

Pervasive! Can describe:
▸ data structures’ interfaces
▸ database interface
▸ database internal data structures
▸ Statistical AI systems interfaces

Powerful abstraction:
▸ Kowalski’s observation: “Algorithm = Logic + Control”
▸ Circuit describes logic; a solver implements control.
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Arithmetic Circuits
Why care about circuits?

Describe a priority queue as a circuit?
▸ Input: dynamic collection of keys with associated priorities
▸ Derived output: maximum of priorities

▸ Further output: identify item with maximum priority

2thing(1): ● 1thing(2): ●

23.5thing(red): ● 42thing(blue): ●
input (●)

42maxval: maxderived

5 / 38



Arithmetic Circuits
Why care about circuits?

Describe a priority queue as a circuit?
▸ Input: dynamic collection of keys with associated priorities
▸ Derived output: maximum of priorities
▸ Further output: identify item with maximum priority

2thing(1): ● 1thing(2): ●

23.5thing(red): ● 42thing(blue): ●
input (●)

42maxval: max

bluemaxt: select
derived

5 / 38



Arithmetic Circuits
Why care about circuits?

Describe a priority queue as a circuit?
▸ Input: dynamic collection of keys with associated priorities
▸ Derived output: maximum of priorities
▸ Further output: identify item with maximum priority

2thing(1): ● 1thing(2): ●

23.5thing(red): ● 42thing(blue): ●
input (●)

42maxval: max

bluemaxt: select
derived

In Dyna:
1 maxval max= thing(X).
2 maxt ?= X for maxval == thing(X).
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Arithmetic Circuits
Why care about circuits?
More interesting example: (CNF) parser!
▸ Input: sentence (words)
▸ Input: grammar (binary rewrites, unary pos preterminal rules)
▸ Output: parse(s) (or statistics) for each span.

re
wr

it
e

pos

word

▸ Words and unary rules
combine

▸ Adjacent spans combine
▸ And so on
▸ Circuit structure is

data-dependent:
▸ Longer sentence.
▸ Regularity of sketch is

misleading.

1 constit(X,I,J) += word(W,I,J) * pos(W,X).
2 constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) * rewrite(X,Y,Z).
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The Dyna Project
Motivation

CLSP does lots of diverse research in AI. Repeated pain points:
▸ Systems are large! (Take “a while” to construct or modify.)

▸ Systems are fast from specialized hand-tuning.
▸ Extensions break assumptions made in hand-tuning.
▸ Even toolkits can be hard to take in new directions.

▸ Lots of code and data out there!
▸ Systems are hard to integrate.
▸ Lots of data formats (and quadratically many Perl scripts).
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The Dyna Project
Motivation

As of 2011, some examples for scale:

Package Files SLOC Language Application area
SRILM 285 48967 C++ Language modeling
Charniak parser 266 42464 C++ Parsing
Stanford parser 417 134824 Java Parsing
cdec 178 21265 C++ Machine translation
Joshua 486 68160 Java Machine translation
MOSES 351 37703 C++ Machine translation
GIZA++ 122 15958 C++ Bilingual alignment
OpenFST 157 20135 C++ Weighted FSAs & FSTs
NLTK 200 46256 Python NLP education
HTK 111 81596 C Speech recognition
MALLET 620 77155 Java Conditional Random Fields
GRMM 90 12926 Java Graphical model add-on
Factorie 164 12139 Scala Graphical models
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The Dyna Project
Motivation

Especially frustrating, because
▸ AI systems’ cores are circuits!

▸ Behavior specified by a handful of equations.
▸ Given a series of facts (input data).
▸ Queried on results of applying equations.

▸ it is as if we are building
▸ databases before DBMS and SQL.
▸ file processing before regexps / parser generators.
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The Dyna Project
Motivation

For scale, some example Dyna 2 program sizes:

Lines Program
2-3 Dijkstra’s shortest-path algorithm
4 Feed-forward neural network
11 Bigram language model with Good-Turing backoff smoothing
6 Arc-consistency constraint propagation

+6 With backtracking search
+6 With branch-and-bound

6 Loopy belief propagation
3 Probabilistic context-free parsing

+3 Earley’s algorithm
+7 Conditional log-linear model of grammar weights (toy example)
+10 Coarse-to-fine A∗ parsing

4 Value computation in a Markov Decision Process
5 Weighted edit distance
3 Markov chain Monte Carlo (toy example)

(See our 2011 position paper for most of these programs.)
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The Dyna Project
Motivation

Additional historical precedent: Logic-based AI efforts give rise to Prolog in 1970-72.

▸ A logic programming language.
▸ Simplifies specification of logic-based AI.

▸ Factors much of control aspect into language and runtime.

1976: Fred Jelinek at IBM introduces information theory for speech recognition.
▸ Birth of statistical AI approach, now the dominant paradigm.

No single Prolog-like substrate has emerged for this new era.
▸ Prolog, even with answer subsumption, only handles a subset of needs.
▸ PRISM, Dyna 1: restricted expressiveness
▸ Problog: enforces particular probabilistic semantics
▸ TensorFlow: static circuit (but fast!), no updates
▸ (py)Torch, Dynet: procedural description of circuits, no updates
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The Dyna Project
The Language

re
wr

it
e

pos

word

constit(_,0,1) constit(_,1,2) constit(_,2,3) constit(_,3,4) constit(_,4,5) constit(_,5,6) constit(_,6,7)

constit(_,0,2) constit(_,1,3) constit(_,2,4) constit(_,3,5) constit(_,4,6) constit(_,5,7)

constit(_,0,3) constit(_,1,4) constit(_,2,5) constit(_,3,6) constit(_,4,7)

constit(_,0,4) constit(_,1,5) constit(_,2,6) constit(_,3,7)

constit(_,0,5) constit(_,1,6) constit(_,2,7)

constit(_,0,6) constit(_,1,7)

constit(_,0,7)

Circuit

1 constit(X,I,J) += word(W,I,J) * pos(W,X).
2 constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) * rewrite(X,Y,Z).

Dyna program

Compile

word("Papa",0,1)
↦ 1.0

Update

constit(s,0,7) ?
Query

constit(s,0,7)
↦ 0.1234Answer

▸ Dyna is narrowly scoped to describe data interdependence.
▸ It is a domain-specific language for circuit specification.
▸ No user control of I/O.
▸ No (explicit) reference cells, no threads, . . .
▸ Goal: let the compiler figure out how to make things fly.

▸ Generated circuit does not stand alone: requires a “driver program”
▸ Driver intermediates all exchanges with the real world

13 / 38



The Dyna Project
The Language

Basic units of Dyna: items and rules.
▸ Rule a = sqrt(b * c) relates several items.
▸ a is the head, sqrt(b * c) the body.
▸ Not an assignment, but a live relationship.
▸ Feed-forward: specifies how to compute a from b and c.

▸ No backward constraint: b defined elsewhere, used here.

2b: ● 3c: ●

62 * 3: ●
√

6sqrt(6): ●

√
6a: =
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The Dyna Project
The Language

Items have structured names:
▸ Like arrays, f(3) = "hello"
▸ Or maps, edge("bal","was") = 35
▸ Deep structure, too: color(edge("bal","was")) = red
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The Dyna Project
The Language

Aggregation combines contributions from several rules:
▸ Two rules with same head: x += y and x += z (x = y + z)

yy: ● zz: ●

y + zx: +=

▸ A single rule with variable(s) in body: x += f(I) (x = ∑i fi)
(“Fan-in” to x.)

f−1f(-1): ● f0f(0): ● f1f(1): ●

∑i fix: +=

⋯ ⋯

⋯ ⋯

▸ Given all three rules, x = y + z +∑i fi .
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The Dyna Project
The Language

Rules are schemata for data relationships:
▸ Defaults (fan-out): g(X) += a.

ax: ●

g−1g(-1): += g0g(0): += g1g(1): +=⋯ ⋯

⋯ ⋯

▸ Pointwise products: f(I) = g(I) * h(I) (fi = gi ∗ hi).
▸ Matrix-vector products: p(I) += m(I,J) * v(J) (pi = ∑j mij ∗ vj).
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The Dyna Project
The Challenge

Several challenges for bringing vision to reality:
▸ Need a good solver for Dyna programs (§2).
▸ Solver should handle as many programs as possible (§3, §4).
▸ Static analysis for checking programs to be well-defined & feasible (§5).

▸ Also useful for optimization!
▸ Features for “programming in the large” (module system §6.2).
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Entr’acte 1

Before we continue, questions so far?

19 / 38



Solving Circuits

▸ Circuits just describe relation among values.
▸ No hint of execution.

▸ Multiple options for how to execute!
▸ Different space/time trade-offs.
▸ Different performance under different workloads.
▸ Want to support as many as possible!

▸ (And let an optimizer select!)
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Solving Circuits
Backward Chaining

2thing(1): ● 1thing(2): ●

23.5thing(red): ● 42thing(blue): ●

unkmaxval: max

unkmaxt: select

“Laziest” extreme: store values of input items, do nothing else until queried.
▸ Introduce “non-value” unk for unknown values.
▸ Upon query, if item is unk, must compute from parents.

▸ Driver queries for value of maxt.
▸ Internal query for value of maxval from maxt.
▸ Internal query all values of thing(X) from maxval.
▸ Internal query for thing(X) with value 42 from maxt.
▸ Finish; return answer blue.
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Solving Circuits
Forward Chaining

2thing(1): ● 1thing(2): ●

23.5thing(red): ● nullthing(blue): ●

23.5maxval: max

redmaxt: select

“Most eager” extreme:
▸ Define null for the aggregation of ∅ (roughly, “item not present”)

▸ Upon update, must revise descendants:

▸ apply update to item, and prepare to notify children.
▸ propagate notification to update children
▸ repeat until no work left
▸ ready to be queried (or updated again)
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Solving Circuits
Hybridized Chaining

▸ Forward and backward chaining typically viewed as alternatives.
▸ Have complementary jobs:

▸ Backward chaining computes values for items missing memos.
▸ Forward chaining refreshes (potentially) stale memos.

▸ Extremes of a spectrum:
▸ Pure BC never creates memos: no refresh ever necessary.
▸ Pure FC always memoizes: no recursive computation necessary.
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Solving Circuits
Hybridized Chaining

§2.2 contains a hybridized algorithm for solving finite, acyclic circuits.
▸ finiteness: steps involving “all children” OK.
▸ acyclicity: backward-chaining never loops.
▸ many subtleties when forward-chaining through un-memoized items!

Several extensions considered:
▸ Increased efficiency via “obligation” (§2.2.4.3, §2.3.5)
▸ Parallel processing, viewing items as actors (§2.3)
▸ Large taxonomy of update and notification messages (§2.4)
▸ Cyclicity: on-demand conversion of backward to forward reasoning (§2.5)
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Entr’acte 2

Circuitous questions before more programmatic concerns?
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Circuits From Dyna

§3 to §5 address the challenge of deriving a circuit from a Dyna program.
▸ Dyna programs typically specify infinite circuits!
▸ Some programs must be rejected: might take infinite time to solve (§5.3)
▸ Can handle piecewise-constant infinite circuits (§3)

▸ Given a runtime vocabulary for item sets (§4)
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Circuits From Dyna
Rule Planning

CNF parser binary rule defines infinitely many edges in an infinite circuit.
constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) * rewrite(X,Y,Z).

▸ Literal implementation of algorithm from §2 will run forever.

▸ Instead: find subset of “active” edges.
▸ Merge finite descriptions of values for parent item sets.
▸ Here: all constit(_,_,_), rewrite(_,_,_), and _ * _ items.
▸ If only finitely many such items with values, this would be especially easy.
▸ But: Infinitely many _ * _ items with values. Yet: still OK?

Informally, still expect finite set of edges because:
▸ Given constit(_,_,_) and rewrite(_,_,_) items,
▸ only need particular _ * _ items (e.g. 2 * 3)
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Circuits From Dyna
Rule Planning
Parser binary rule defines infinitely many edges in an infinite circuit.

constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) * rewrite(X,Y,Z).

Can think of this rule as having a factor graph:

A3

*@2

constit@0Y

rewrite@3

I

& constit

J

constit@1 A4

Z

K

A1

*@4

A2

X

_value

_head

This is not an arithmetic circuit. It is a useful formalism for considering how to find
the active subset of edges created by this rule.
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Circuits From Dyna
Rule Planning

Looking for active subset of edges:
▸ those for which all parents are non-null.
▸ want a finite description of these (infinitely many) edges.

Assume procedures that enumerate finite descriptions of subgoals’ answers.
▸ Assume finitely many words, so finitely enumerable.
▸ Multiplication only can when two of the three components are known.

▸ {x ∣ 2 ∗ 3 = x} or {x ∣ x ∗ 7 = 42}, but not {⟨x , y⟩ ∣ x ∗ y = 23.5}.
▸ rewrite might be of either flavor (input or derived).
▸ constit inductively finite.

Need to track instantiation state:
▸ “At runtime, this variable is still unknown.”
▸ “At runtime, we will know the value of this variable.”
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Circuits From Dyna
Rule Planning

Example: Looking for active subset of edges
▸ Given known head, e.g. constit("s",0,7).

constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) * rewrite(X,Y,Z).

A3

*@2

constit@0Y

rewrite@3

I

& constit

J

constit@1 A4

Z

K

A1

*@4

A2

X

_value

_head

▸ Backward chain w/ head known

▸ Unpack head; X, I, K known
▸ Iterate Y, J from constit(Y,I,J)
▸ Iterate Z from constit(Z,J,K)
▸ Multiply
▸ Probe grammar at rewrite(X,Y,Z)
▸ Multiply
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Circuits From Dyna
Rule Planning

This simple example well within reach of existing systems.

Thesis (§5.3) adds:
▸ Ability to track “partially known” structure.

▸ Also within reach of existing systems
▸ Type-aware planning: variables’ ranges are explicitly tracked.
▸ More versatile procedure selection (e.g., upcasts, case analysis)
▸ Result-dependent forks in plans.

31 / 38



Circuits From Dyna
Default Reasoning

Often, want to say “unless otherwise specified.”
▸ Sparse arithmetic objects (“elements are zero, unless…”)

f(X,Y) += 0. % all cells
f(X,X) += 1. % the diagonal

f(2,X) += 2. % a column
f(2,2) += 4. % a particular cell

▸ Default arcs in finite state machines:
trans(state(4), _ ) := state(6). % every input but ’a’
trans(state(4), 'a') := state(5).

▸ Ontologies
fly(X : bird) := true . % absent other data...
fly(X : penguin) := false. % but not these birds
fly(bigbird) := false. % nor that one in particular

▸ Lifted inference in MLN
▸ Identify all nodes in a graph until reason to split

All of these have one very important thing in common:
▸ Finitely many rules with constant values.
▸ A pointwise-constant function of (in)finitely many things.
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Circuits From Dyna
Conjoining Defaults

▸ Define two sparse vectors (=> means “most-specific wins”):
1 r(X : int) => 1.
2 r(X : nonneg int) => 2.
3 r(-1) => 3.

1 s(X : int) => 1.
2 s(X : nonpos int) => 4.
3 s(1) => 5.

X ⋯ -3 -2 -1 0 1 2 3 ⋯

r(X) ⋯ 1 1 3 2 2 2 2 ⋯

s(X) ⋯ 4 4 4 4 5 1 1 ⋯

p(X) ⋯ 4 4 12 8 10 2 2 ⋯

▸ Define their pointwise product: p(X) = r(X) * s(X). Compute by
cross-product of defaults.

▸ p(-1) and p(1) come from the most-specific entries.
▸ Mixing defaults gives rise to p(0).
▸ p(X : nonneg int) and p(X : nonpos int) arise from other defaults.

▸ Do not contribute to p(-1), p(0), p(1); contributions masked.
▸ p(X : int) arises as well, but entirely masked.

▸ So p min= p(X) gives p => 2, not p => 1 (No p(X) with value 1!)

▸ See thesis for more complex examples.
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▸ Do not contribute to p(-1), p(0), p(1); contributions masked.
▸ p(X : int) arises as well, but entirely masked.

▸ So p min= p(X) gives p => 2, not p => 1 (No p(X) with value 1!)
▸ See thesis for more complex examples.
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Circuits From Dyna
Aggregating Defaults

▸ Intra-rule aggregation is complicated!
▸ Relies on set representation for computing cardinality of set subtraction.

▸ Cross-rule aggregation of defaults is relatively straightforward:
▸ Rather like the simple conjunction on previous slide.
▸ A cross-product construction, with set intersections at each.

▸ Too hard & not sufficiently interesting for talk; see thesis for details.

34 / 38



Circuits From Dyna
Interaction of Defaults with Planning

Defaults make planning more challenging:
▸ May only partially specify variables in rules.

▸ May want different loop orders for defaults vs. overrides.
▸ Combination of defaults may result in sets of aggregands.

▸ Despite having visited each subgoal.
▸ Must ensure that we can manipulate the result (e.g., count it).

Piecewise constancy is, indeed, a constraint on the system:
▸ We will reject f(X) += X for default reasoning.

▸ (But is OK for individual queries, like f(3).)
▸ Is a sweet spot between expressiveness of program and complexity of solver.
▸ Generalizes existing system: all items’ values null, unless otherwise specified.
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What next?

This thesis: foundational work for Dyna 2.
§2 Flexible solver designs enable as many runtime strategies as possible.
§3 Default-based reasoning enlarges the space of acceptable programs.
§4 Discussion of representations of sets within solver.
§5 Static analysis of Dyna programs

▸ Finds space of strategies for solver.
§6 Extensions, including declarative module system.
▸ (Much of the work is not specific to Dyna; applicable to other systems.)

Proof of concept work along the way:
▸ 2013 implementation of a solver for finite programs (no default reasoning).
▸ Used at Linguistic Institute summer program at University of Michigan.
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What next?

Enough foundational theory done, serious building underway.
▸ Tim Vieira: Exploring machine learning for solver policies.
▸ Matthew Francis-Landau: aggressively-optimizing, JIT Dyna on Java.
▸ Dr. Vivek Sarkar and Farzad Khorasani: parallel and GPU runtime.
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What next?

Thank you. Questions?
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Proof Search

▸ Computations often amount to search for justification.
▸ Reachability in a graph: edges forming a path.
▸ Parsing a sentence: grammatical expansions.
▸ (co-)NP complexity classes: witness.
▸ Post Correspondence: sequence of tiles.

▸ These justifications can be recast as proofs in a logic.
▸ Enter logic programming.

▸ More generally, we might want quantifier alternation: ∀a∃b∀c⋯
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Proof Search

What’s in a proof, anyway?
▸ Inference rules: “R proves a given proofs of b and c,” written

b c
a R

▸ Axioms: inference rules without conditions: f .
▸ Proof combines rules into a tree:

▸ Given the rules

bal→ was phl→ bal nyc→ phl s →∗ s End
s → t t →∗ u

s →∗ u Step

▸ A proof of nyc→∗ was is

nyc→ phl
phl→ bal

bal→ was was→∗ was End

bal→∗ was Step

phl→∗ was Step

nyc→∗ was Step
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Proof Search

Grammaticality of a sentence can be expressed as inference rules, too:
▸ Core rules:

X → w iwj

iXj

iYj jZk X → Y Z
iXk

▸ iwj : word w from position i to j.
▸ iXk : nonterminal X from position i to k.
▸ X → w : word w has PoS (preterminal) X (e.g. Noun→ time).
▸ X → YZ : combine Y and Z to make X (e.g. PP→ P NP).
▸ Goal: 0Sk (for sentence of length k).
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Proof Search

Core rules:

X → w iwj

iXj

iYj jZk X → Y Z
iXk

Consider the sentence “0time1 1flies2 2like3 3an4 4arrow5.” If we consider all ways
of combining our inference rules (core and grammar), we find several proofs of
grammaticality, which correspond to readings:

N→ time 0time1

0N1

V→ flies 1flies2

1V2

⋮

2P3

⋮

3NP5 PP→ P NP

2PP5 VP→ V PP

1VP5 S→ N VP

0S5
Pertains to
passage of time

N→ time 0time1

0N1

N→ flies 1flies2

1N2 NP→ N N

0NP2

⋮

2V3

⋮

3NP4 VP→ V NP

2VP5 S→ NP VP

0S5
“Time flies,”
like “fruit flies.”

42 / 38



Proof Search
Pure Prolog
Core rules:

X → w iwj

iXj

iYj jZk X → Y Z
iXk

Recast these in Prolog. Item names:
▸ word(W,I,J) for iwj

▸ constit(X,I,K) for iXk

▸ pos(W,X) for X →W
▸ rewrite(X,Y,Z) for X → Y Z

And rules:
1 constit(X,I,J) :- word(W,I,J), pos(W,X).
2 constit(X,I,K) :- constit(Y,I,J), constit(Z,J,K),
3 rewrite(X,Y,Z).

Equivalent formulation in more traditional logic (first rule):

∀i,j,x(cx,i,j ⇐ ∃w(ww,i,j ∧ pw,x))⇔ ∀i,j,w,x(cx,i,j ∨ ¬ww,i,j ∨ ¬pw,x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Horn clause
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Proof Search
Boolean Circuits

Can think of Prolog program as specifying a hypergraph with:
▸ items as nodes, rules as hyperedges
▸ the value of a hyperedge is the AND (⋀) of its tails
▸ the value of an item is the OR (⋁) of its incident hyperedges

(Have not discussed negation, but could add w/ more hyperedge types.)

44 / 38



Proof Search
Dyna 1: Semirings and Horn Equations

A little algebra. Let B = {t,f}.
▸ AND: x ∧ y = t iff x = y = t
▸ OR: x ∨ y = f iff x = y = f

▸ t ∧ x = x
▸ f ∨ x = x

▸ Distributivity: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

⟨B,∨,f,∧,t⟩ is a semiring (rig). This kind of structure abounds!
▸ Numbers with + and ∗: ⟨R,+,0,∗,1⟩.

▸ a ∗ (b + c) = (a ∗ b) + (a ∗ c).
▸ “Tropical” semiring: ⟨R ∪ {∞},min,∞,+,0⟩.

▸ a +min(b, c) = min(a + b, a + c).
▸ Formal languages, probabilities, provenance, expectations, …
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Proof Search
Dyna 1: Semirings and Horn Equations

Consider again our Prolog parsing program:
1 constit(X,I,J) :- word(W,I,J), pos(W,X).
2 constit(X,I,K) :- constit(Y,I,J), constit(Z,J,K),
3 rewrite(X,Y,Z).

Can see that it uses OR and AND operations. That’s all it does!

Could use different semiring addition and semiring product operations:
1 constit(X,I,J) += word(W,I,J) * pos(W,X).
2 constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K)
3 * rewrite(X,Y,Z).

(Tarjan ’81, “A Unified Approach to Path Problems”)
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Proof Search
Dyna 2: Generalized Expressions

Dyna 2 moves us beyond semirings:
▸ Different aggregators for different items.
▸ Generalized expressions in the body:

▸ Mix weights and booleans: a += 1 for f(X).
▸ Values can become keys: goal += constit("s",0,length) evaluates length

in place.
▸
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