#### Dyna 2: Towards a General Weighted Logic Language

Nathaniel Wesley Filardo

October 12, 2017

#### Outline

Arithmetic Circuits

The Dyna Project

Solving Circuits

Circuits From Dyna

Arithmetic circuits are abstract data types generalizing key-value stores.

- K-V interface:
  - store, update, and retrieve items (pair of key and value).
- Circuit interface:
  - store, update, and retrieve *input* items.
  - query derived items' values (computed from input).

Why care about circuits?

Pervasive! Can describe:

- data structures' interfaces
- database interface
- database internal data structures
- Statistical AI systems interfaces

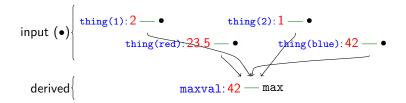
Powerful abstraction:

- Kowalski's observation: "Algorithm = Logic + Control"
- Circuit describes *logic*; a solver implements control.

Why care about circuits?

Describe a priority queue as a circuit?

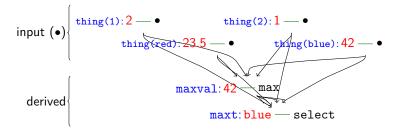
- Input: dynamic collection of keys with associated priorities
- Derived output: maximum of priorities



Why care about circuits?

Describe a priority queue as a circuit?

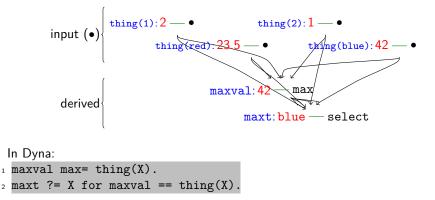
- Input: dynamic collection of keys with associated priorities
- Derived output: maximum of priorities
- Further output: identify item with maximum priority



Why care about circuits?

Describe a priority queue as a circuit?

- Input: dynamic collection of keys with associated priorities
- Derived output: maximum of priorities
- Further output: identify item with maximum priority



Why care about circuits? More interesting example: (CNF) parser!

- Input: sentence (words)
- Input: grammar (binary rewrites, unary pos preterminal rules)
- Output: parse(s) (or statistics) for each span.

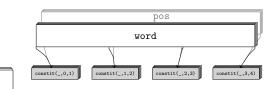


rewrite

rewrite

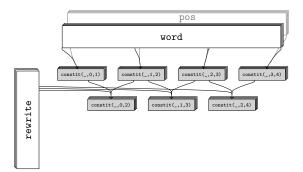
Why care about circuits? More interesting example: (CNF) parser!

- Input: sentence (words)
- Input: grammar (binary rewrites, unary pos preterminal rules)
- Output: parse(s) (or statistics) for each span.



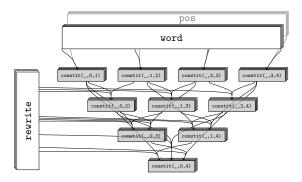
 Words and unary rules combine

- Input: sentence (words)
- Input: grammar (binary rewrites, unary pos preterminal rules)
- Output: parse(s) (or statistics) for each span.



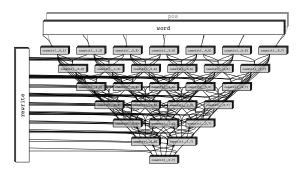
- Words and unary rules combine
- Adjacent spans combine

- Input: sentence (words)
- Input: grammar (binary rewrites, unary pos preterminal rules)
- Output: parse(s) (or statistics) for each span.



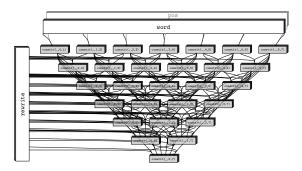
- Words and unary rules combine
- Adjacent spans combine
- And so on

- Input: sentence (words)
- Input: grammar (binary rewrites, unary pos preterminal rules)
- Output: parse(s) (or statistics) for each span.



- Words and unary rules combine
- Adjacent spans combine
- And so on
- Circuit structure is data-dependent:
  - Longer sentence.
  - Regularity of sketch is misleading.

- Input: sentence (words)
- Input: grammar (binary rewrites, unary pos preterminal rules)
- Output: parse(s) (or statistics) for each span.



- Words and unary rules combine
- Adjacent spans combine
- And so on
- Circuit structure is data-dependent:
  - Longer sentence.
  - Regularity of sketch is misleading.

```
1 constit(X,I,J) += word(W,I,J) * pos(W,X).
2 constit(X,I,K) += constit(Y,I,J) * constit(Z,J,K) * rewrite(X,Y,Z).
```

CLSP does lots of diverse research in AI. Repeated pain points:

Systems are large! (Take "a while" to construct or modify.)

Motivation

As of 2011, some examples for scale:

| Package         | Files | SLOC   | Language | Application area          |
|-----------------|-------|--------|----------|---------------------------|
| SRILM           | 285   | 48967  | C++      | Language modeling         |
| Charniak parser | 266   | 42464  | C++      | Parsing                   |
| Stanford parser | 417   | 134824 | Java     | Parsing                   |
| cdec            | 178   | 21265  | C++      | Machine translation       |
| Joshua          | 486   | 68160  | Java     | Machine translation       |
| MOSES           | 351   | 37703  | C++      | Machine translation       |
| GIZA++          | 122   | 15958  | C++      | Bilingual alignment       |
| OpenFST         | 157   | 20135  | C++      | Weighted FSAs & FSTs      |
| NLTK            | 200   | 46256  | Python   | NLP education             |
| HTK             | 111   | 81596  | С        | Speech recognition        |
| MALLET          | 620   | 77155  | Java     | Conditional Random Fields |
| GRMM            | 90    | 12926  | Java     | Graphical model add-on    |
| Factorie        | 164   | 12139  | Scala    | Graphical models          |

CLSP does lots of diverse research in AI. Repeated pain points:

- Systems are large! (Take "a while" to construct or modify.)
- Systems are fast from specialized hand-tuning.
  - Extensions break assumptions made in hand-tuning.
  - Even toolkits can be hard to take in new directions.

CLSP does lots of diverse research in AI. Repeated pain points:

- Systems are large! (Take "a while" to construct or modify.)
- Systems are fast from specialized hand-tuning.
  - Extensions break assumptions made in hand-tuning.
  - Even toolkits can be hard to take in new directions.
- Lots of code and data out there!
  - Systems are hard to integrate.
  - Lots of data formats (and quadratically many Perl scripts).

Motivation

Especially frustrating, because

- Al systems' cores are circuits!
  - Behavior specified by a handful of equations.
  - Given a series of facts (input data).
  - Queried on results of applying equations.

Motivation

Especially frustrating, because

- Al systems' cores are circuits!
  - Behavior specified by a handful of equations.
  - Given a series of facts (input data).
  - Queried on results of applying equations.
- it is as if we are building
  - databases before DBMS and SQL.
  - file processing before regexps / parser generators.

Motivation

For scale, some example Dyna 2 program sizes:

| Lines | Program                                                       |  |  |
|-------|---------------------------------------------------------------|--|--|
| 2-3   | Dijkstra's shortest-path algorithm                            |  |  |
| 4     | Feed-forward neural network                                   |  |  |
| 11    | Bigram language model with Good-Turing backoff smoothing      |  |  |
| 6     | Arc-consistency constraint propagation                        |  |  |
| +6    | With backtracking search                                      |  |  |
| +6    | With branch-and-bound                                         |  |  |
| 6     | Loopy belief propagation                                      |  |  |
| 3     | Probabilistic context-free parsing                            |  |  |
| +3    | Earley's algorithm                                            |  |  |
| +7    | Conditional log-linear model of grammar weights (toy example) |  |  |
| +10   | Coarse-to-fine A* parsing                                     |  |  |
| 4     | Value computation in a Markov Decision Process                |  |  |
| 5     | Weighted edit distance                                        |  |  |
| 3     | Markov chain Monte Carlo (toy example)                        |  |  |

(See our 2011 position paper for most of these programs.)

Motivation

Additional historical precedent: Logic-based AI efforts give rise to Prolog in 1970-72.

- A logic programming language.
- Simplifies specification of logic-based AI.
  - Factors much of *control* aspect into language and runtime.

Motivation

Additional historical precedent: Logic-based Al efforts give rise to Prolog in 1970-72.

- A logic programming language.
- Simplifies specification of logic-based AI.
  - Factors much of *control* aspect into language and runtime.

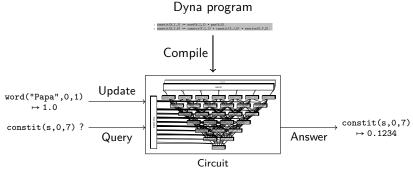
1976: Fred Jelinek at IBM introduces information theory for speech recognition.

Birth of *statistical AI* approach, now the dominant paradigm.

#### No single Prolog-like substrate has emerged for this new era.

- Prolog, even with answer subsumption, only handles a subset of needs.
- PRISM, Dyna 1: restricted expressiveness
- Problog: enforces particular probabilistic semantics
- TensorFlow: static circuit (but fast!), no updates
- (py)Torch, Dynet: procedural description of circuits, no updates



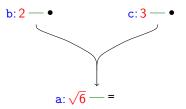


- > Dyna is narrowly scoped to describe data interdependence.
  - It is a domain-specific language for circuit specification.
  - No user control of I/O.
  - No (explicit) reference cells, no threads, ...
  - · Goal: let the *compiler* figure out how to make things fly.
- Generated circuit does not stand alone: requires a "driver program"
  - Driver intermediates all exchanges with the real world

The Language

Basic units of Dyna: *items* and *rules*.

- Rule a = sqrt(b \* c) relates several items.
- a is the head, sqrt(b \* c) the body.
- Not an assignment, but a live relationship.
- Feed-forward: specifies how to compute a from b and c.
  - No backward constraint: b defined elsewhere, used here.



The Language

Items have structured names:

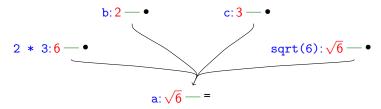
- Like arrays, f(3) = "hello"
- > Or maps, edge("bal", "was") = 35
- Deep structure, too: color(edge("bal","was")) = red

The Language

Items have structured names:

- Like arrays, f(3) = "hello"
- or maps, edge("bal", "was") = 35
- Deep structure, too: color(edge("bal","was")) = red

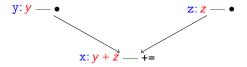
Used for arithmetic, too! a = sqrt(b \* c)



The Language

Aggregation combines contributions from several rules:

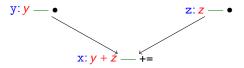
• Two rules with same head: x += y and x += z (x = y + z)



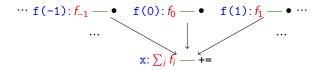
The Language

Aggregation combines contributions from several rules:

• Two rules with same head: x += y and x += z (x = y + z)



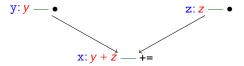
A single rule with variable(s) in body:  $x += f(I) (x = \sum_i f_i)$ ("Fan-in" to x.)



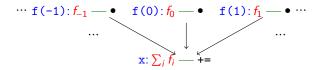
The Language

Aggregation combines contributions from several rules:

• Two rules with same head: x += y and x += z (x = y + z)



A single rule with variable(s) in body:  $x += f(I) (x = \sum_i f_i)$ ("Fan-in" to x.)

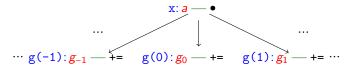


• Given all three rules,  $x = y + z + \sum_{i} f_{i}$ .

The Language

Rules are *schemata* for data relationships:

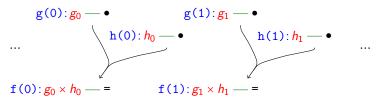
Defaults (fan-out): g(X) += a.



The Language

Rules are *schemata* for data relationships:

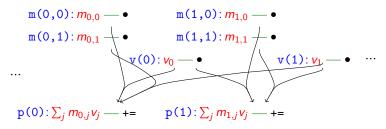
- Defaults (fan-out): g(X) += a.
- Pointwise products:  $f(I) = g(I) * h(I) (f_i = g_i * h_i)$ .



The Language

Rules are schemata for data relationships:

- Defaults (fan-out): g(X) += a.
- Pointwise products:  $f(I) = g(I) * h(I) (f_i = g_i * h_i)$ .
- Matrix-vector products:  $p(I) += m(I,J) * v(J) (p_i = \sum_j m_{ij} * v_j)$ .



The Challenge

Several challenges for bringing vision to reality:

- Need a good solver for Dyna programs (§2).
- Solver should handle as many programs as possible (§3, §4).
- Static analysis for checking programs to be well-defined & feasible (§5).
  - Also useful for optimization!
- Features for "programming in the large" (module system §6.2).

#### Entr'acte 1

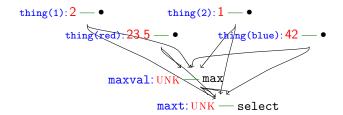
Before we continue, questions so far?

#### Solving Circuits

- Circuits just describe relation among values.
  - No hint of execution.
- Multiple options for how to execute!
  - Different space/time trade-offs.
  - Different performance under different workloads.
  - Want to support as many as possible!
    - (And let an optimizer select!)

#### Solving Circuits

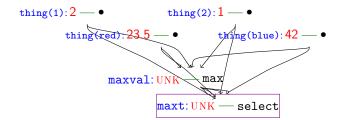
**Backward Chaining** 



"Laziest" extreme: store values of input items, do nothing else until queried.

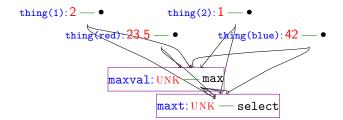
- Introduce "non-value" UNK for unknown values.
- Upon query, if item is UNK, must compute from parents.

**Backward Chaining** 



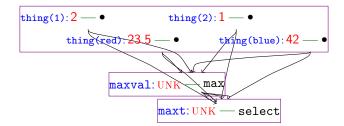
- Introduce "non-value" UNK for unknown values.
- Upon query, if item is UNK, must compute from parents.
  - Driver queries for value of maxt.

**Backward Chaining** 



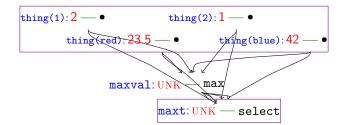
- Introduce "non-value" UNK for unknown values.
- Upon query, if item is UNK, must compute from parents.
  - Driver queries for value of maxt.
  - Internal query for value of maxval from maxt.

#### **Backward Chaining**



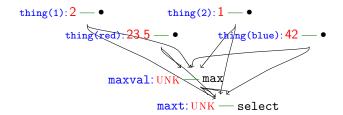
- Introduce "non-value" UNK for unknown values.
- Upon query, if item is UNK, must compute from parents.
  - Driver queries for value of maxt.
  - Internal query for value of maxval from maxt.
  - Internal query all values of thing(X) from maxval.

#### **Backward Chaining**



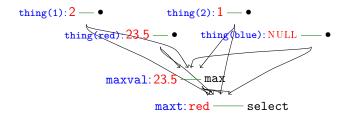
- Introduce "non-value" UNK for unknown values.
- Upon query, if item is UNK, must compute from parents.
  - Driver queries for value of maxt.
  - Internal query for value of maxval from maxt.
  - Internal query all values of thing(X) from maxval.
  - > Internal query for thing(X) with value 42 from maxt.

**Backward Chaining** 



- Introduce "non-value" UNK for unknown values.
- Upon query, if item is UNK, must compute from parents.
  - Driver queries for value of maxt.
  - Internal query for value of maxval from maxt.
  - Internal query all values of thing(X) from maxval.
  - > Internal query for thing(X) with value 42 from maxt.
  - Finish; return answer blue.

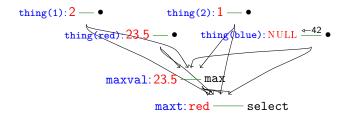
**Forward Chaining** 



"Most eager" extreme:

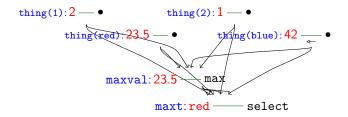
• Define NULL for the aggregation of  $\emptyset$  (roughly, "item not present")

**Forward Chaining** 



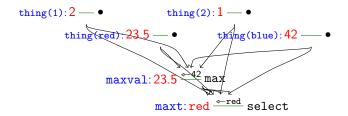
- Define NULL for the aggregation of  $\emptyset$  (roughly, "item not present")
- Upon *update*, must revise *descendants*:

**Forward Chaining** 



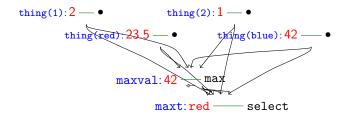
- Define NULL for the aggregation of  $\emptyset$  (roughly, "item not present")
- Upon *update*, must revise *descendants*:
  - apply update to item, and prepare to *notify* children.

**Forward Chaining** 



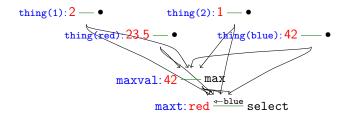
- Define NULL for the aggregation of  $\emptyset$  (roughly, "item not present")
- Upon update, must revise descendants:
  - apply update to item, and prepare to *notify* children.
  - propagate notification to update children

**Forward Chaining** 



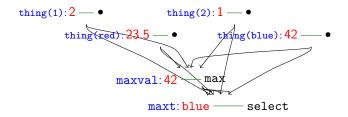
- Define NULL for the aggregation of  $\emptyset$  (roughly, "item not present")
- Upon update, must revise descendants:
  - apply update to item, and prepare to *notify* children.
  - propagate notification to update children
  - repeat until no work left

**Forward Chaining** 



- Define NULL for the aggregation of  $\emptyset$  (roughly, "item not present")
- Upon update, must revise descendants:
  - apply update to item, and prepare to *notify* children.
  - propagate notification to update children
  - repeat until no work left

**Forward Chaining** 



- Define NULL for the aggregation of  $\emptyset$  (roughly, "item not present")
- Upon update, must revise descendants:
  - apply update to item, and prepare to *notify* children.
  - propagate notification to update children
  - repeat until no work left
  - ready to be queried (or updated again)

#### Solving Circuits Hybridized Chaining

- · Forward and backward chaining typically viewed as alternatives.
- Have complementary jobs:
  - Backward chaining computes values for items missing memos.
  - Forward chaining refreshes (potentially) stale memos.
- Extremes of a spectrum:
  - ▶ Pure BC never creates memos: no refresh ever necessary.
  - Pure FC always memoizes: no recursive computation necessary.

#### Solving Circuits Hybridized Chaining

§2.2 contains a hybridized algorithm for solving finite, acyclic circuits.

- finiteness: steps involving "all children" OK.
- acyclicity: backward-chaining never loops.
- many subtleties when forward-chaining through un-memoized items!

Several extensions considered:

- Increased efficiency via "obligation" (§2.2.4.3, §2.3.5)
- Parallel processing, viewing items as actors (§2.3)
- Large taxonomy of update and notification messages (§2.4)
- · Cyclicity: on-demand conversion of backward to forward reasoning (§2.5)

#### Entr'acte 2

Circuitous questions before more programmatic concerns?

§3 to §5 address the challenge of deriving a circuit from a Dyna program.

- Dyna programs typically specify *infinite* circuits!
- Some programs must be rejected: might take infinite time to solve (§5.3)
- Can handle piecewise-constant infinite circuits (§3)
  - Given a runtime vocabulary for item sets (§4)

**Rule Planning** 

CNF parser binary rule defines infinitely many edges in an infinite circuit. constit(X,I,K) += constit(Y,I,J) \* constit(Z,J,K) \* rewrite(X,Y,Z).

• Literal implementation of algorithm from §2 will run forever.

**Rule Planning** 

CNF parser binary rule defines infinitely many edges in an infinite circuit. constit(X,I,K) += constit(Y,I,J) \* constit(Z,J,K) \* rewrite(X,Y,Z).

 $\operatorname{Constit}(X, I, K) \stackrel{\text{\tiny Constit}(I, I, J) = \operatorname{Constit}(Z, J, K) = \operatorname{Tewrite}(X, I)$ 

- Literal implementation of algorithm from §2 will run forever.
- Instead: find subset of "active" edges.
  - Merge *finite descriptions* of values for parent item sets.
  - Here: all constit(\_,\_,\_), rewrite(\_,\_,\_), and \_ \* \_ items.
  - > If only finitely many such items with values, this would be especially easy.

**Rule Planning** 

CNF parser binary rule defines infinitely many edges in an infinite circuit.

- Literal implementation of algorithm from §2 will run forever.
- Instead: find subset of "active" edges.
  - Merge *finite descriptions* of values for parent item sets.
  - Here: all constit(\_,\_,), rewrite(\_,\_,), and \_ \* \_ items.
  - > If only finitely many such items with values, this would be especially easy.
  - But: Infinitely many \_ \* \_ items with values. Yet: still OK?

**Rule Planning** 

CNF parser binary rule defines infinitely many edges in an infinite circuit.

constit(X,I,K) += constit(Y,I,J) \* constit(Z,J,K) \* rewrite(X,Y,Z).

- Literal implementation of algorithm from §2 will run forever.
- Instead: find subset of "active" edges.
  - Merge *finite descriptions* of values for parent item sets.
  - Here: all constit(\_,\_,), rewrite(\_,\_,), and \_ \* \_ items.
  - > If only finitely many such items with values, this would be especially easy.
  - But: Infinitely many \_ \* \_ items with values. Yet: still OK?

Informally, still expect finite set of edges because:

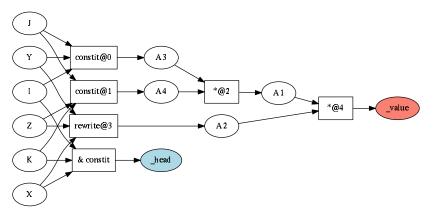
- Given constit(\_,\_,) and rewrite(\_,\_,) items,
- only need particular \_ \* \_ items (e.g. 2 \* 3)

**Rule Planning** 

Parser binary rule defines infinitely many edges in an infinite circuit.

constit(X,I,K) += constit(Y,I,J) \* constit(Z,J,K) \* rewrite(X,Y,Z).

Can think of this rule as having a factor graph:



This is *not* an arithmetic circuit. It is a useful formalism for considering how to find the *active subset* of edges created by this rule.

**Rule Planning** 

Looking for active subset of edges:

- those for which all parents are non-NULL.
- want a *finite description* of these (infinitely many) edges.

Assume procedures that enumerate finite descriptions of subgoals' answers.

- Assume finitely many words, so finitely enumerable.
- Multiplication only can when two of the three components are known.
  - $\{x \mid 2 * 3 = x\}$  or  $\{x \mid x * 7 = 42\}$ , but not  $\{\langle x, y \rangle \mid x * y = 23.5\}$ .
- rewrite might be of either flavor (input or derived).
- constit inductively finite.

Need to track *instantiation state*:

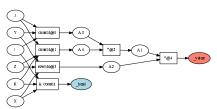
- "At runtime, this variable is still unknown."
- "At runtime, we will know the value of this variable."

**Rule Planning** 

Example: Looking for active subset of edges

Given known head, e.g. constit("s",0,7).

constit(X,I,K) += constit(Y,I,J) \* constit(Z,J,K) \* rewrite(X,Y,Z).

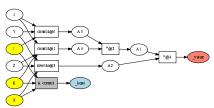


Backward chain w/ head known

**Rule Planning** 

Example: Looking for active subset of edges

Given known head, e.g. constit("s",0,7).

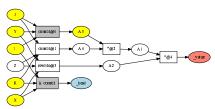


- Backward chain w/ head known
- Unpack head; X, I, K known

**Rule Planning** 

Example: Looking for active subset of edges

Given known head, e.g. constit("s",0,7).

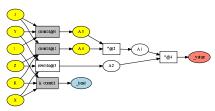


- Backward chain w/ head known
- Unpack head; X, I, K known
- Iterate Y, J from constit(Y,I,J)

**Rule Planning** 

Example: Looking for active subset of edges

Given known head, e.g. constit("s",0,7).

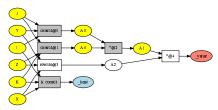


- Backward chain w/ head known
- Unpack head; X, I, K known
- Iterate Y, J from constit(Y,I,J)
- Iterate Z from constit(Z,J,K)

**Rule Planning** 

Example: Looking for active subset of edges

Given known head, e.g. constit("s",0,7).

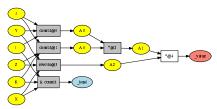


- Backward chain w/ head known
- Unpack head; X, I, K known
- Iterate Y, J from constit(Y,I,J)
- Iterate Z from constit(Z,J,K)
- Multiply

**Rule Planning** 

Example: Looking for active subset of edges

Given known head, e.g. constit("s",0,7).

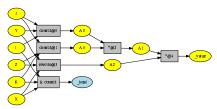


- Backward chain w/ head known
- Unpack head; X, I, K known
- Iterate Y, J from constit(Y,I,J)
- Iterate Z from constit(Z,J,K)
- Multiply
- Probe grammar at rewrite(X,Y,Z)

**Rule Planning** 

Example: Looking for active subset of edges

Given known head, e.g. constit("s",0,7).



- Backward chain w/ head known
- Unpack head; X, I, K known
- Iterate Y, J from constit(Y,I,J)
- Iterate Z from constit(Z,J,K)
- Multiply
- Probe grammar at rewrite(X,Y,Z)
- Multiply

**Rule Planning** 

This simple example well within reach of existing systems.

Thesis (§5.3) adds:

- Ability to track "partially known" structure.
  - Also within reach of existing systems
- *Type-aware* planning: variables' ranges are explicitly tracked.
- More versatile procedure selection (e.g., upcasts, case analysis)
- Result-dependent forks in plans.

**Default Reasoning** 

Often, want to say "unless otherwise specified."

Sparse arithmetic objects ("elements are zero, unless...")

f(X,Y) += 0. % all cells f(2,X) += 2. % a column  $f(X,X) \neq 1$ . % the diagonal  $f(2,2) \neq 4$ . % a particular cell

Default arcs in finite state machines:

trans(state(4), ) := state(6). % every input but 'a' trans(state(4), 'a') := state(5).

Ontologies

fly(X : bird) := true . % absent other data... fly(X : penguin) := false. % but not these birds fly(bigbird) := false. % nor that one in particular

- Lifted inference in MLN
  - Identify all nodes in a graph until reason to split

All of these have one very important thing in common:

- Finitely many rules with constant values.
- A *pointwise-constant* function of (in)finitely many things.

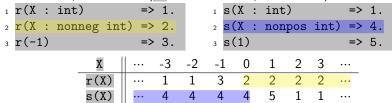
**Conjoining Defaults** 

Define two sparse vectors (=> means "most-specific wins"):

|            | •            | `  |    |    |       | •   |      |    |      |     |    |
|------------|--------------|----|----|----|-------|-----|------|----|------|-----|----|
| 1 r(X : in | t)           | => | 1. |    | 1 S ( | X : | int) |    |      | =>  | 1. |
| 2 r(X : no | nneg int)    | => | 2. |    | 2 s ( | X : | nonp | os | int) | =>  | 4. |
| 3 r(-1)    |              | => | 3. |    | 3 S ( | 1)  |      |    |      | =>  | 5. |
|            | X            |    | -3 | -2 | -1    | 0   | 1    | 2  | 3    | ••• |    |
|            | r(X) ·       | •• | 1  | 1  | 3     | 2   | 2    | 2  | 2    |     |    |
|            | r(X)<br>s(X) | •• | 4  | 4  | 4     | 4   | 5    | 1  | 1    | ••• |    |

**Conjoining Defaults** 

Define two sparse vectors (=> means "most-specific wins"):



**Conjoining Defaults** 

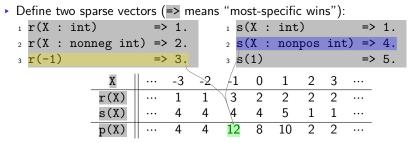
Define two sparse vectors (=> means "most-specific wins"):

| •            |          | · · |    |    |       | •    |      |    |      |     |    |
|--------------|----------|-----|----|----|-------|------|------|----|------|-----|----|
| 1 r(X : int) | )        | =>  | 1. |    | 1 S ( | (X : | int) |    |      | =>  | 1. |
| 2 r(X : non  | neg int) | =>  | 2. |    | 2 s(  | (X : | nonp | os | int) | =>  | 4. |
| ₃ r(-1)      | Ū        | =>  | 3. |    | 3 s(  | (1)  | -    |    |      | =>  | 5. |
|              | X        | ••  | -3 | -2 | -1    | 0    | 1    | 2  | 3.   |     |    |
| -            | r(X)     | ••  | 1  | 1  | 3     | 2    | 2    | 2  | 2 .  | ••• |    |
|              | s(X) ·   | ••  | 4  | 4  | 4     | 4    | 5    | 1  | 1 .  | ••• |    |

**Conjoining Defaults** 

- Define two sparse vectors (=> means "most-specific wins"):  $_1 r(X : int)$ => 1. 1 s(X : int)=> 1.  $_2$  s(X : nonpos int) => 4.  $_2$  r(X : nonneg int) => 2. 3 r(−1) => 3. 3 s(1) => 5. -3 -2 Х ... -1 0 1 2 3 ... r(X)1 1 3 2 2 2 2 ... ... s(X)4 4 5 1 4 4 1 ... ... 12 8 10 2 2 p(X) 4 4 ... ...
- Define their pointwise product: p(X) = r(X) \* s(X). Compute by cross-product of defaults.

**Conjoining Defaults** 

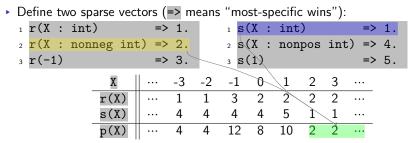


- Define their pointwise product: p(X) = r(X) \* s(X). Compute by cross-product of defaults.
  - p(-1) and p(1) come from the most-specific entries.

- Define two sparse vectors (=> means "most-specific wins"):  $_1 r(X : int)$ => 1. 1 s(X : int)=> 1.  $_2$  s(X : nonpos int) => 4.  $_2$  r(X : nonneg int) => 2. => 3. => 5.  $_{3} r(-1)$ 3 s(1) -3 -2 -1 0 1 Х ... 2 3 ... r(X)1 1 3  $\overline{2}$ 2 2 2 ... ... s(X)4 5 1 4 4 4 1 ... ... 8 10 2 2 p(X) 4 4 12 ... ...
- Define their pointwise product: p(X) = r(X) \* s(X). Compute by cross-product of defaults.
  - p(-1) and p(1) come from the most-specific entries.

- Define two sparse vectors (=> means "most-specific wins"):  $_1 r(X : int)$ => 1. s(X : int)=> 1.  $_2$  r(X : nonneg int) => 2. 2 s(X : nonpos int) => 4. => 3.  $_{3} r(-1)$  $_{3}$  s(1) => 5. -3 -2 Х ... 0 1 2 3 ... r(X)1 1 3 2 2 2 2 ... ... s(X)4 5 1 4 4 4 1 ... ... 12 8 10 2 p(X) 4 4 2 ... ...
- Define their pointwise product: p(X) = r(X) \* s(X). Compute by cross-product of defaults.
  - p(-1) and p(1) come from the most-specific entries.
  - Mixing *defaults* gives rise to p(0).

- Define two sparse vectors (=> means "most-specific wins"):  $_1 r(X : int)$ 1 s(X : int)=> 1. => 1.  $_2$  r(X : nonneg int) => 2. 2 s(X : nonpos int) => 4.  $_{3} r(-1)$ => 3. 3 s(1) => 5. -3 Х ... -1 0 1 2 3 ... r(X)1 1 3 2 2 2 2 ... ... s(X)4 4 5 1 4 1 ... ... 12 8 2 p(X)4 4 10 2 . . . ...
- Define their pointwise product: p(X) = r(X) \* s(X). Compute by cross-product of defaults.
  - p(-1) and p(1) come from the most-specific entries.
  - Mixing *defaults* gives rise to p(0).
  - > p(X : nonneg int) and p(X : nonpos int) arise from other defaults.
    - Do not contribute to p(-1), p(0), p(1); contributions masked.



- Define their pointwise product: p(X) = r(X) \* s(X). Compute by cross-product of defaults.
  - ▶ p(-1) and p(1) come from the most-specific entries.
  - Mixing *defaults* gives rise to p(0).
  - p(X : nonneg int) and p(X : nonpos int) arise from other defaults.
    - Do not contribute to p(-1), p(0), p(1); contributions masked.

**Conjoining Defaults** 

Define two sparse vectors (=> means "most-specific wins"):

| 1 r(X : int | )    | =>  | 1.   |    | 1 s(  | X : | int | ) | , | =>    | 1. |
|-------------|------|-----|------|----|-------|-----|-----|---|---|-------|----|
| 2 r(X : non |      |     |      |    |       |     |     |   |   | ;) => |    |
| 3 r(-1)     |      |     | • 3. |    | 3 s ( |     |     | r |   | =>    |    |
|             | X    |     | -3   | -2 | -1    | 0   | 1   | 2 | 3 |       |    |
|             | r(X) |     | 1    | 1  | 3     | 2   | 2   | 2 | 2 |       |    |
|             | s(X) |     | 4    | 4  | 4     | 4   | 5   | 1 | 1 |       |    |
|             | p(X) | ••• | 4    | 4  | 12    | 8   | 10  | 2 | 2 |       |    |

- Define their pointwise product: p(X) = r(X) \* s(X). Compute by cross-product of defaults.
  - p(-1) and p(1) come from the most-specific entries.
  - Mixing *defaults* gives rise to p(0).
  - $\blacktriangleright$  p(X : nonneg int) and p(X : nonpos int) arise from other defaults.
    - Do not contribute to p(-1), p(0), p(1); contributions masked.
  - > p(X : int) arises as well, but entirely masked.

**Conjoining Defaults** 

Define two sparse vectors (=> means "most-specific wins"):

| 1 r(X : int | )    | =>  | 1.   |    | 1 s(  | X : | int | ) | , | =>    | 1. |
|-------------|------|-----|------|----|-------|-----|-----|---|---|-------|----|
| 2 r(X : non |      |     |      |    |       |     |     |   |   | ;) => |    |
| 3 r(-1)     |      |     | • 3. |    | 3 s ( |     |     | r |   | =>    |    |
|             | X    |     | -3   | -2 | -1    | 0   | 1   | 2 | 3 |       |    |
|             | r(X) |     | 1    | 1  | 3     | 2   | 2   | 2 | 2 |       |    |
|             | s(X) |     | 4    | 4  | 4     | 4   | 5   | 1 | 1 |       |    |
|             | p(X) | ••• | 4    | 4  | 12    | 8   | 10  | 2 | 2 |       |    |

- Define their pointwise product: p(X) = r(X) \* s(X). Compute by cross-product of defaults.
  - p(-1) and p(1) come from the most-specific entries.
  - Mixing *defaults* gives rise to p(0).
  - $\blacktriangleright$  p(X : nonneg int) and p(X : nonpos int) arise from other defaults.
    - ▶ Do not contribute to p(-1), p(0), p(1); contributions masked.
  - > p(X : int) arises as well, but entirely masked.
    - > So p min= p(X) gives p => 2, not p => 1 (No p(X) with value 1!)

**Conjoining Defaults** 

Define two sparse vectors (=> means "most-specific wins"):

| <pre>1 r(X : int</pre> | )       | =>    | • 1. |    | 1 S (        | (X : | int | )   |     | =>    | 1. |
|------------------------|---------|-------|------|----|--------------|------|-----|-----|-----|-------|----|
| 2 r(X : non            | neg int | ;) => | · 2. |    | 2 <b>s</b> ( | (X : | non | pos | int | ;) => | 4. |
| 3 r(-1)                |         | =>    | • 3. |    | 3 S (        | (1)  |     |     |     | =>    | 5. |
|                        | X       |       | -3   | -2 | -1           | 0    | 1   | 2   | 3   |       |    |
|                        | r(X)    |       | 1    | 1  | 3            | 2    | 2   | 2   | 2   |       |    |
|                        | s(X)    |       | 4    | 4  | 4            | 4    | 5   | 1   | 1   |       |    |
|                        | p(X)    |       | 4    | 4  | 12           | 8    | 10  | 2   | 2   |       |    |

- Define their pointwise product: p(X) = r(X) \* s(X). Compute by ► cross-product of defaults.
  - p(-1) and p(1) come from the most-specific entries.
  - Mixing defaults gives rise to p(0).
  - > p(X : nonneg int) and p(X : nonpos int) arise from other defaults.
    - Do not contribute to p(-1), p(0), p(1); contributions masked.
  - p(X : int) arises as well, but entirely masked.
    - So p min= p(X) gives p => 2, not p => 1 (No p(X) with value 1!)
  - See thesis for more complex examples.

**Aggregating Defaults** 

- Intra-rule aggregation is complicated!
  - Relies on set representation for computing *cardinality of set subtraction*.
- Cross-rule aggregation of defaults is relatively straightforward:
  - Rather like the simple *conjunction* on previous slide.
  - A cross-product construction, with set intersections at each.
- Too hard & not sufficiently interesting for talk; see thesis for details.

Interaction of Defaults with Planning

Defaults make planning more challenging:

- May only partially specify variables in rules.
  - May want *different loop orders* for defaults vs. overrides.
- Combination of defaults may result in sets of aggregands.
  - Despite having visited each subgoal.
  - Must ensure that we can manipulate the result (e.g., count it).

Piecewise constancy is, indeed, a constraint on the system:

- We will reject f(X) += X for default reasoning.
  - (But is OK for individual queries, like f(3).)
- ▶ Is a sweet spot between expressiveness of program and complexity of solver.
- Generalizes existing system: all items' values NULL, unless otherwise specified.

#### What next?

This thesis: foundational work for Dyna 2.

- §2 Flexible solver designs enable as many runtime strategies as possible.
- §3 Default-based reasoning enlarges the space of acceptable programs.
- §4 Discussion of representations of sets within solver.
- §5 Static analysis of Dyna programs
  - Finds space of strategies for solver.
- §6 Extensions, including declarative module system.
  - (Much of the work is not *specific* to Dyna; applicable to other systems.)

Proof of concept work along the way:

- > 2013 implementation of a solver for finite programs (no default reasoning).
- Used at Linguistic Institute summer program at University of Michigan.

Enough foundational theory done, serious building underway.

- Tim Vieira: Exploring machine learning for solver policies.
- Matthew Francis-Landau: aggressively-optimizing, JIT Dyna on Java.
- Dr. Vivek Sarkar and Farzad Khorasani: *parallel* and *GPU* runtime.

#### What next?

Thank you. Questions?

- Computations often amount to search for justification.
  - Reachability in a graph: edges forming a path.
  - Parsing a sentence: grammatical expansions.
  - (co-)NP complexity classes: witness.
  - Post Correspondence: sequence of tiles.
- These justifications can be recast as proofs in a logic.
  - Enter logic programming.
- More generally, we might want quantifier alternation:  $\forall_a \exists_b \forall_c \cdots$

What's in a proof, anyway?

• Inference rules: "R proves a given proofs of b and c," written

$$\frac{b}{a}$$
 C R

- Axioms: inference rules without conditions:  $\overline{f}$ .
- Proof combines rules into a tree:
  - Given the rules

$$\frac{1}{\mathsf{bal} \to \mathsf{was}} \quad \frac{\mathsf{phl} \to \mathsf{bal}}{\mathsf{phl} \to \mathsf{bal}} \quad \frac{\mathsf{nyc} \to \mathsf{phl}}{\mathsf{nyc} \to \mathsf{phl}} \quad \frac{\mathsf{s} \to t \quad t \to u}{\mathsf{s} \to u} \quad \text{STEP}$$

• A proof of nyc  $\rightarrow^*$  was is

$$\frac{\hline \frac{bal \rightarrow was}{msc \rightarrow r} \frac{bal \rightarrow was}{bal \rightarrow r} \frac{bal \rightarrow was}{s}}{msc \rightarrow r} \frac{END}{STEP}}{\frac{bal \rightarrow r}{s} STEP}$$

Grammaticality of a sentence can be expressed as inference rules, too:

Core rules:

$$\frac{X \to w \quad _{i}w_{j}}{_{i}X_{j}} \qquad \frac{_{i}Y_{j} \quad _{j}Z_{k} \quad X \to Y \quad Z}{_{i}X_{k}}$$

- $_i w_j$ : word w from position i to j.
- $_iX_k$ : nonterminal X from position i to k.
- ▶  $X \rightarrow w$ : word w has PoS (preterminal) X (e.g. Noun  $\rightarrow$  time).
- $X \rightarrow YZ$ : combine Y and Z to make X (e.g.  $\overrightarrow{PP \rightarrow P NP}$ ).
- Goal:  ${}_{0}S_{k}$  (for sentence of length k).

Core rules:

$$\frac{X \to w_{i} w_{j}}{i X_{j}} \qquad \frac{i Y_{j} \quad j Z_{k} \quad X \to Y \quad Z}{i X_{k}}$$

Consider the sentence " $_{0}time_{1}$   $_{1}flies_{2}$   $_{2}like_{3}$   $_{3}an_{4}$   $_{4}arrow_{5}$ ." If we consider all ways of combining our inference rules (core and grammar), we find *several* proofs of grammaticality, which correspond to *readings*:

|                                                                 | $\overline{V \rightarrow \text{flies}}  \overline{1^{\text{flies}_2}}$ | $\frac{\vdots}{{}_2P_3} \ \frac{\vdots}{{}_3NP_5}$ | $\overline{\text{PP} \rightarrow \text{P NP}}$ |                       |                       |                     |
|-----------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|-----------------------|-----------------------|---------------------|
| $\overline{N \rightarrow time}  \overline{0^{time_1}}$          | 1V2                                                                    | 2 <sup>P</sup>                                     | °P5                                            | $VP \rightarrow V PP$ |                       |                     |
| 0 <sup>N</sup> 1                                                |                                                                        | 1                                                  | VP <sub>5</sub>                                |                       | $S \rightarrow N VP$  | Pertains to         |
|                                                                 |                                                                        | 0 <sup>S5</sup>                                    |                                                |                       |                       | passage of time     |
| $\frac{N \rightarrow \text{time}}{0}  \frac{1}{0}  \frac{1}{1}$ |                                                                        |                                                    |                                                |                       |                       |                     |
| 0 <sup>N</sup> 1                                                | 1 <sup>N</sup> 2                                                       | $NP \rightarrow N N$                               | 2V3 3NP4                                       |                       |                       |                     |
|                                                                 | 0 <sup>NP</sup> 2                                                      |                                                    | 2 V P                                          | 5                     | $S \rightarrow NP VP$ | "Time flies,"       |
|                                                                 |                                                                        |                                                    | 0 <sup>S5</sup>                                |                       |                       | like "fruit flies." |

#### Pure Prolog Core rules:

$$\frac{X \to w_{i} w_{j}}{_{i}X_{j}} \qquad \frac{_{i}Y_{j} \quad _{j}Z_{k} \quad X \to Y \ Z}{_{i}X_{k}}$$

Recast these in Prolog. Item names:

- word(W,I,J) for iwj
- constit(X,I,K) for  $_iX_k$

▶ pos(W,X) for  $X \rightarrow W$ ▶ rewrite(X,Y,Z) for  $X \rightarrow Y Z$ 

And rules:

1 constit(X,I,J) :- word(W,I,J), pos(W,X).
2 constit(X,I,K) :- constit(Y,I,J), constit(Z,J,K),
3 rewrite(X,Y,Z).

Equivalent formulation in more traditional logic (first rule):

$$\forall_{i,j,x} (\mathsf{c}_{x,i,j} \Leftarrow \exists_{w} (\mathtt{w}_{w,i,j} \land \mathtt{p}_{w,x})) \Leftrightarrow \forall_{i,j,w,x} (\mathsf{c}_{x,i,j} \lor \neg \mathtt{w}_{w,i,j} \lor \neg \mathtt{p}_{w,x})$$



Can think of Prolog program as specifying a hypergraph with:

- items as nodes, rules as hyperedges
- the value of a hyperedge is the AND ( $\wedge$ ) of its tails
- the value of an item is the OR  $(\vee)$  of its incident hyperedges

(Have not discussed negation, but could add w/ more hyperedge types.)

**Dyna 1: Semirings and Horn Equations** 

A little algebra. Let  $B = \{t, f\}$ . AND:  $x \land y = t$  iff x = y = tOR:  $x \lor y = f$  iff x = y = fDistributivity:  $a \land (b \lor c) = (a \land b) \lor (a \land c)$ .

**Dyna 1: Semirings and Horn Equations** 

A little algebra. Let  $B = \{t, f\}$ . • AND:  $x \land y = t$  iff x = y = t• OR:  $x \lor y = f$  iff x = y = f• Distributivity:  $a \land (b \lor c) = (a \land b) \lor (a \land c)$ .  $\langle B, \lor, f, \land, t \rangle$  is a *semiring (rig)*. This kind of structure abounds!

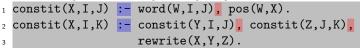
• Numbers with + and \*: 
$$(\mathbb{R}, +, 0, *, 1)$$
.

• a \* (b + c) = (a \* b) + (a \* c).

- "Tropical" semiring:  $\langle \mathbb{R} \cup \{\infty\}, \min, \infty, +, 0 \rangle$ .
  - $a + \min(b, c) = \min(a + b, a + c)$ .
- Formal languages, probabilities, provenance, expectations, ...

**Dyna 1: Semirings and Horn Equations** 

Consider again our Prolog parsing program:



Can see that it uses OR and AND operations. That's all it does!

Could use *different* semiring addition and semiring product operations: constit(X,I,J) += word(W,I,J) \* pos(W,X). constit(X,I,K) += constit(Y,I,J) \* constit(Z,J,K) rewrite(X,Y,Z).

(Tarjan '81, "A Unified Approach to Path Problems")

**Dyna 2: Generalized Expressions** 

Dyna 2 moves us beyond semirings:

- Different aggregators for different items.
- Generalized expressions in the body:
  - Mix weights and booleans: a += 1 for f(X).
  - Values can become keys: goal += constit("s",0,length) evaluates length in place.

►