
Research Report: Mitigating LangSec Problems
With Capabilities

Nathaniel Wesley Filardo
Johns Hopkins University

Baltimore, MD
nwf@cs.jhu.edu

Abstract—Security and privacy of computation, and the related
concept of (deliberate) sharing, have, historically, largely been
afterthoughts. In a traditional multi-user, multi-application web
hosting environment, typically applications are public by default.
Applications wishing to offer a notion of private resources must
take it upon themselves to independently manage authentication
and authorization of users, leading to difficult and disjointed
notions of access and sharing. In such a context, LangSec-based
vulnerabilities threaten catastrophic loss of privacy for all users
of the system, likely even of non-vulnerable applications. This is
a tragic state of affairs, but is thankfully not inevitable! We
present the Sandstorm system, a capability-based, private-by-
default, tightly-sandboxing, proactively secure environment for
running web applications, complete with a single, pervasive
sharing mechanism. Sandstorm, and capability systems, are
likely of interest to the LangSec community: LangSec bugs are
mitigated through the robust isolation imposed by the Sandstorm
supervisor, and the mechanism of capability systems offers the
potential to turn difficult authorization decisions into LangSec’s
bread and butter, namely syntactic constraints on requests: every
well-formed request which can be stated is authorized. We present
aspects of the Sandstorm system and show how those aspects
have, by building systematic protection into several levels of
the system, dramatically reduced the severity of LangSec bugs
in hosted applications. To study the range of impact, we will
characterize addressed vulnerabilities using MITRE’s Common
Weakness Enumeration (CWE) scheme.

I. INTRODUCTION

Sandstorm1 bills itself as “an open source operating system
for personal and private clouds.” Key among its features
is proactive, robust inter-application and inter-user default
isolation: users can install a wide variety of applications, of
various degrees of trust-worthiness, and should be confident
that any malicious or errant application will be limited in
the damage it can do. At the same time, Sandstorm offers
an expressive framework for explicitly sharing access to
resources and auditing how far resources have been shared. It
is important to note that Sandstorm is not a “Web Application
Firewall”: the applications under its supervision run largely
as is, and Sandstorm simply routes requests and responses
without altering the display content thereof.

The Sandstorm organization maintains a collection of
“Security non-events”2 which enumerates many Common

1https://sandstorm.io/
2https://docs.sandstorm.io/en/latest/using/security-non-events/; this paper

specifically references the revision as of March 16, 2016 made as Sandstorm
commit https://github.com/sandstorm-io/sandstorm/commit/1a06f547.

Vulnerabilities and Exposure (CVE) identifiers [8] that have
allegedly been completely obviated or largely mitigated by
Sandstorm’s isolation infrastructure. The Sandstorm project
undertook an effort to collect all 2014 and 2015 CVEs affecting
a subset of the applications that had been ported to use
Sandstorm, namely Etherpad, WordPress, Roundcube, and Tiny
Tiny RSS; for WordPress specifically, CVEs were selected only
from those with an associated “severity score” of 6 or more
(out of 10, the most severe). This resulted in a list of 20 CVEs.
Additionally, 27 of the 224 CVEs reported against the Linux
kernel between 2014 and 2016 are enumerated; we presume
that the remainder have simply not been evaluated. The present
paper reviews these CVEs, evaluating the protection afforded by
Sandstorm and affirms the Sandstorm project’s claim that “95%
of (application) security issues automatically mitigated, before
they were discovered.”3 We will categorize the CVEs using
MITRE’s Common Weakness Enumeration (CWE) scheme [9]
to study the range of Sandstorm’s impact.

This paper primarily hopes to stimulate further study both of
the applicability of language security to authorization, beyond
its traditional application to input languages and, dually, of
the applicability of system design for mitigation of traditional
LangSec vulnerabilities. We argue that many vulnerabilities
present in software are only as severe as they are due to
language security issues pertaining to (implicit) authorization
assertions. We argue that the object-capability model of autho-
rization [1, 2] offers a more LangSec-friendly approach which
is less prone to adversarial tampering and misinterpretation.

A. Authorization

Broadly, authorization is a time-varying relation between
agents and entities in a system and might be summarized as
“who can do what to whom when?” Lampson, in [6], formalizes
this (without an explicit notion of time variance) using the
concept of an access matrix, a hypothetical data structure
indexed by both agent (“domain”) and target entity (“object”)
and storing the “rights” (or “permissions”) afforded to that agent
about the target entity. While one might imagine a universal
ontology of rights, it is more common to have the type of
rights be defined by the target entity. Perhaps the most popular
rendering of this data structure in real systems is as “Access
Control Lists” (ACL) whereby each object has associated with

3https://sandstorm.io/news/2016-02-29-security-track-record

https://sandstorm.io/
https://docs.sandstorm.io/en/latest/using/security-non-events/
https://github.com/sandstorm-io/sandstorm/commit/1a06f547
https://sandstorm.io/news/2016-02-29-security-track-record


it a list of agents and their rights to that object. Capability
systems use a transposed view, wherein each agent is associated
with its list of rights to objects.

An important and subtle concept when discussing authoriza-
tion is ambient authorization: authority granted implicitly, used
without explicit justification. On a POSIX system, for example,
any process may grow its memory allocation via sbrk; it
may request to open files relative to the system-wide root
directory; etc.4 By contrast, we could imagine a POSIX-like
system where the only way to open a file was to name it
relative to an existing file descriptor, or where sbrk was a
message written to a (kernel-provided) file descriptor. In this
modified POSIX, some processes may retain access to the real
root directory and/or the ability to invoke sbrk, but it becomes
possible to construct processes which do not, by virtue of not
possessing the requisite explicit witness of authorization, that
is, without the capability to act.

B. Object Capabilities

Object-capabilities, in the sense used here, are references to
a target object together with an enumeration of rights to that
object [1, 2]. In OO terms, they can be considered as references
to an implementation instance of an interface, a subset of the
methods exported by the pointed-to object. Crucially, capabili-
ties are first-class components of the system and may be passed
between agents, bestowing a subset of one agent’s authorization
upon another. The issuer of a capability may revoke it, making
it inert, no longer authorizing anything. Capabilities may be
delegated, copying the authorization of one capability to a new
capability which may be revoked by the delegator. Revoking
a capability revokes all its copies and any delegated versions,
recursively. Rights may be attenuated (i.e., reduced) during
delegation; e.g., having read/write access allows delegation of
read-only access in addition to read/write access.5

Secure object capability systems must use tamper-resistant
and unforgeable capabilities. The former property can be
summarized as requiring that an agent holding a capability
may not change anything about that capability: there should
be no general mechanism for the agent to change which object
is referenced or the rights afforded by this capability. The
latter property requires that, at creation, only the creator of
an object holds a reference to the created object, and the only
way for another agent to gain a reference is for one to be

4This is a remarkably simplified view. POSIX defines rlimits for
limiting acquisition of memory and open files, SUSv2 defines chroot, a
privileged mechanism of creating process hierarchies whose root directory is
a subdirectory of the system-wide root directory, etc. We trust that readers
will forgive us the imprecision for the sake of example; the point remains that
it is always possible to request a sbrk operation and there is always some
root directory for a process.

5The target and rights of a capability are sometimes viewed as constants, set
once at capability creation time and unchanging until the capability is revoked
or discarded, but some systems permit agents to change these properties.
Smalltalk [3], an early OO language, permits objects to “become” other
objects, transparently forwarding all references; Smalltalk permits this generally,
allowing any agent to replace any object to which it has a reference, but a
secure version could be engineered. Coyotos [13] has no built-in notion of
rights and instead attaches to each capability a “protected payload” whose
semantics are up to the recipient object.

explicitly passed.6 These are very LangSec-esque properties.
From a formal language perspective we can imagine an infinite
collection of reference symbols, with creation operations
returning never-before-seen elements and all other operations
only able to pass around existing symbols. In practice, a variety
of techniques, sketched below as needed, are used to observably
emulate or approximate such an infinite set.

C. Capabilities and LangSec

Capability designs and LangSec approaches are both proac-
tive approaches to security: they seek to render particular classes
of vulnerabilities impossible by construction. LangSec seeks
to make correct input validation a fundamental part of input
parsing, rather than as a second step, so that parsers correctly
“imbue input with trust” [4]. Capability systems are designed
with the goal of enabling very fine-grained authorization and
pushing this authorization into the computational substrate,
rather than as a second step. We believe the requisite effort
to properly eliminate ambient authority within a capability
system, so that the fine-grainedness is not merely illusory, is in
kinship with the LangSec call to eliminate “weird machines”;7

the goal of capability engineering is to simplify the input
validation effort of computational agents, to make it the case
that any well-formed request which can be stated is authorized.
Thus, after checking that a request is syntactically well-formed,
there should be no need for additional authorization logic. We
contend that systems designed with this goal in mind will
have better security by construction: certain failure modes
can be entirely ruled out and large classes of vulnerabilities,
LangSec-esque and otherwise, will be reduced in severity.

D. Typical Multi-user, Multi-application Web Hosting

In order to properly contrast Sandstorm with what has come
before, we must spend some words detailing the dire typical
state of multi-user, multi-application web application hosting.
In such a setting, applications live side-by-side, in the same
file hierarchy as each other, and are invoked by a single shared
web server; persistent data for multiple users and multiple
applications cohabitate in the same database engine. Inter-
application isolation is achieved by coarse-grained mechanisms,
available only to system administrators, including running
applications as different (kernel) users, setting permissions
in the filesystem appropriately, providing multiple (database)
users within each shared database, etc.

Because isolation mechanisms require privilege far in excess
of what we intend for hosted applications, applications must
typically do without and each manage several users’ data.
Intra-application isolation is implemented separately, within
each application (e.g., files uploaded by one user are readable
by the application when acting on behalf of another user; it
is up to the application to ensure that it will not read that

6One may, perhaps, allow components of the trusted computing base, such
as a trusted garbage collector or, in this case, the Sandstorm core, to have
references to created objects, as well. These components are assumed to not
expose their references to untrusted agents of the system. In practice, this is,
historically, somewhat difficult but not impossible.

7http://www.cs.dartmouth.edu/∼sergey/wm/ and http://langsec.org/occupy/

http://www.cs.dartmouth.edu/~sergey/wm/
http://langsec.org/occupy/


file if it is not intended). Absent privilege, there are no or
few system-level mitigations available: one typically cannot
dynamically create a new (kernel or database) user for each
application user, file system permissions are granular only at
the level of applications, etc. Worryingly, if an application is
vulnerable to remote code injection attacks, the application
often has nearly arbitrary access to the network, allowing
any point of compromise to become a springboard for further
compromises. Further, the (shared) web server and kernels
hosting the application process are themselves large, complex
pieces of software with large surface areas which may be
probed for vulnerabilities by injected code.

With that bleak world in mind, let us proceed on to the
Sandstorm system and particular classes of vulnerabilities
mitigated by its architecture. In the next section, we will focus
on server-side vulnerabilities, largely neglecting the client and
instead focusing on the effects of extremely strong sandboxing,
which make up the bulk of Sandstorm’s “security non-events.”
The section thereafter will turn to concerns of client-server,
inter-application, and multi-user interaction.

II. GRANULARITY IN SANDSTORM

We begin our discussion by focusing on an individual
instance of an application hosted within Sandstorm, focusing
on Sandstorm’s unusually tight sandboxing of application
code. The capability system used for communication with and
within Sandstorm obviates the need for much of the traditional
(POSIX) machinery (e.g., the BSD sockets API) and thereby
enables what might otherwise be seen as impossibly prohibitive
sandboxing, which is, as we now show, able to mitigate many
LangSec-style bugs.

A. Sandstorm User Interface

The Sandstorm user interface is focused on a list of grains:
instances of installed applications. While users may install
new applications, create new grains of installed applications,
and delete grains they have created, the most typical action is
to search for and select an existing grain (to which the user
has access) for further interaction. Like a typical web-server,
Sandstorm launches the application and connects it with the
user’s web browser.

By way of concrete example, to begin authoring a document
such as this in a Sandstorm hosted installation of ShareLaTeX, a
collaborative LATEX document editor,8 this author authenticated
to a local deployment of Sandstorm, instructed the server
to retrieve the ShareLaTeX application from the Sandstorm
market9 and install it, and then requested a new ShareLaTeX
grain. That grain hosts only this document and does not concern
itself with others. When returning to the task of writing this
document, it sufficed to select the appropriate grain from the list
and wait for ShareLaTeX to start up. While that grain existed,
the deployment of Sandstorm, of course, concurrently ran other

8https://www.sharelatex.com/
9Direct uploads of packaged applications are also possible; the marketplace

is a convenience, not requirement.

ShareLaTeX grains as well as grains of other applications
entirely, to which this grain had no access.

We will discuss sharing access in Sandstorm more later, but
a few points are important here. When a user creates a grain,
Sandstorm ensures that she alone has a capability to access
it; this capability conveys full authority to the grain. That is,
all grains start off private by default. Any user with access to
given grain may ask Sandstorm to generate a URL that acts as a
capability to access the grain. These capabilities are, of course,
revocable and their rights are a dynamically attenuable subset of
the creator’s.10 Sandstorm has largely-unused plumbing features
to enable delegating access on a more precise model than per-
grain sharing; since these features, collectively known as the
“powerbox”, are not used yet by any apps on the Sandstorm
app market, this paper does not consider them.

B. The View Within A Grain

Sandstorm provides proactive security by offering differ-
ent semantics than we sketched in § I-D; in a sense it
is the notion of (POSIX) software sandboxing taken to an
extreme.11 Relatively new features of the Linux kernel, such as
seccomp-bpf12 private mount name-spaces13 and network
namespaces14 are used to reduce the application’s access
to the system and the network: only a subset of system
calls are permitted, few “device” files exist (and no more
may be created), the only visible network interface(s) are
loopbacks, the application software is mounted read-only, and
only per-instance resources are mounted read-write. The sole
mechanism for communication with the external world is a
Cap’n Proto15 socket to the Sandstorm supervisor, running
outside the sandbox.16 Thus, the ambient authority of an
application hosted within Sandstorm is dramatically reduced
by comparison to a typical UNIX-style process. One could
imagine this entire exercise as a dramatic reduction in the
power of the language that the application speaks with the
system: fewer operations are possible on fewer objects than

10Two subtle points merit brief mention. First: sharing URLs created this
way are not directly usable by application grains, so, for example, even if
one is using Roundcube under Sandstorm to send one’s mail, the Roundcube
grain does not come to hold capabilities transiting it. Second: Sandstorm’s
capability system will transitively re-attenuate rights when it needs to. That is,
if A grants read/write access to B and B grants read/write access to C, but
then A dynamically attenuates the capability held by B to be read-only, then
the capability held by C will also be read-only.

11See https://docs.sandstorm.io/en/latest/using/security-practices/.
12See Linux’s Documentation/prctl/seccomp_filter.txt
13Linux’s Documentation/filesystems/sharedsubtree.txt

may be the appropriate starting point; this feature is remarkably under-
documented. For an overview of name-spaces in UNIX-like systems more
generally, the curious should start with [11].

14See the manual page for Linux’s clone(2) system call, and in particular
the CLONE_NEWNET flag.

15https://capnproto.org/
16The Cap’n Proto serialization and de-serialization code is automatically

generated from schema descriptions and can be robustly tested independently
of its role in the target application, following good LangSec practices. Live
capabilities in Cap’n Proto are rendered on the wire as integers, with no
other structure or meaning to any agent other than the other participant
in the connection; each end of the socket maintains tables mapping wire
representations to pointers. A consequence of this representation is that live
capabilities cannot be transferred without the active participation of other end.

https://www.sharelatex.com/
https://docs.sandstorm.io/en/latest/using/security-practices/
https://capnproto.org/


in the traditional hosting configuration, thereby resulting in a
dramatically simpler kernel-side protocol state machine [12].

C. Granularity As Editorial Decision

In light of the above view, one could intuit that exploits
of application vulnerabilities are already limited: they are
confined to a grain and to the resources available to that
grain. Under fine-grained instances, many vulnerabilities turn
out to not be significant in practice. At one extreme, grains
may host individual documents; at the other extreme, an
entire file storage system (e.g., Davros17) may be a single
grain. The decision of what constitutes a grain is thus up to
the application author and/or packager. Currently, Sandstorm
functions under a per-grain access model, so we see grain
boundaries drawn around sets of objects which are closely
related and which have approximately covarying permissions.
Especially simple cases include when users have read-only or
read/write access to the entire ensemble, but options such as
“read-only for document objects and read/write comments” often
found in document editors are also possible. Thus, for simple
applications like ShareLaTeX, there is a natural, maximally-
fine-grained packaging which puts each document (and its
multiple source files) in an individual grain. Similarly, wiki
engines tend to have rights that apply to all pages within,
perhaps also with limited “administrative” access for some
users, making it appropriate to use a grain for related pages
within some domain of administration, but inappropriate for
multiple administrative domains to share such a grain.

When sharing of individual objects, as defined by particular
applications, becomes available in Sandstorm (as the “power-
box”), we should expect grain boundaries to settle wherever
the risk of accidental exposure or mishandling of material
by the application within the grain outweighs the cost of
crossing the grain boundary. Users may be advised, for example,
to have separate file-hosting grains for widely-shared family
photographs and for narrowly-shared financial documents, so
that Sandstorm’s inter-grain isolation continues to provide
security even if an application’s intra-grain isolation fails.

D. Security Impact

1) Path Traversal Vulnerabilities: Several of the vulnerabil-
ities mitigated by Sandstorm fall under “CWE-22: Improper
Limitation of a Pathname to a Restricted Directory (‘Path
Traversal’).” Path traversal vulnerabilities are authorization
language security issues: the existence of such a vulnerability
requires that an agent be able to access a path outside the set
intended by the application’s authors for this agent in spite of
whatever protections are in place within the application. The
fine-grained isolation approach afforded by capability systems
defangs LangSec bugs; the goal is that encapsulated software
cannot carry out actions that significantly impact user data
privacy or security, even if it incorrectly parses input file paths.

The mechanism of action of a (POSIX system) path traversal
vulnerability provides an example of ambient authority: as

17https://github.com/mnutt/davros/

hinted at in § I-A the POSIX API does not offer a mechanism
for an unprivileged application to confine its actions in the
filesystem to a sub-tree. Absolute paths refer to an (explicitly
named) object relative to an implicitly named, omnipresent
root directory; even the (relatively) modern POSIX openat
system call is specified to interpret absolute paths relative
to this root rather than the provided dirfd. Moreover,
by definition, every directory has a reference to its parent
directory available, as “..”.18 Therefore, if we mean to
manipulate or expose only a particular directory or subtree
of the filesystem in a context where arbitrary paths may be
given, we must be careful to normalize away and eliminate
these possibilities that would escape the subtree, as the kernel
will not enforce our desire for paths to be confined.

All of that to say, path traversal vulnerabilities are also in
the domain of (traditional) LangSec: canonicalizing away “..”
and preventing the initial “/” of an absolute path are obviously
syntactic matters. The design of the POSIX API, with its lack
of confining operations, all but ensures that parsing bugs are
security vulnerabilities.19 We now discuss the path traversal
vulnerabilities in Sandstorm’s non-events list.

a) CVE-2015-0933: ShareLaTeX did not properly restrict
LATEX’s \include facilities, allowing users to read arbitrary
files. The result, again, is arbitrary client-controlled reads of
files on the server. The CWE ontology appears to lack a
designator for this kind of directive-based file-read vulnerability
in general; perhaps “CWE-22” (“Path Traversal”) remains the
most appropriate designation, despite its lack of specificity.
In order to exploit this vulnerability, a user requires write
authority to a document, to insert an \include directive.
Recall from § II-C that each ShareLaTeX document runs in its
own grain on Sandstorm. A user with write authority to that
grain’s single document also, by necessity, has read authority
to that document and the ShareLaTeX application software
itself, and by construction there are no other files in the grain.
Thus we see a common end of vulnerabilities when run under
Sandstorm: users can attack themselves but have no ability to
forge capabilities to other grains to attack.

b) CVE-2015-3297 and -4085: Etherpad, a real-time
collaborative document editor,20 normalized then transformed
client-controlled strings representing filesystem paths. In CWE
terms, the first bug is an instance of “CWE-172: Encoding
Error”, specifically “CWE-180: Incorrect Behavior Order:
Validate Before Canonicalize.” In the second case, “CWE-182:
Collapse of Data into Unsafe Value” appears to be the correct
designation. In both cases, clients can craft paths to reference,

18This reference may not be removed and the only way to prevent its
traversal appears to be to prevent search of the directory or its parent as a
whole, which is rather extreme.

19For brief contrast, a more capability-system style design would be that all
path traversals are confined relative to an explicitly stated directory and that
applications would explicitly hold “cursors” into the system; there would be
no “..” references in the filesystem itself. While such a model may make it
difficult to ask if a particular file is below some path in the file system, there
is very little call to know the answer. Oddly, many UNIX shells manually
interpret “..” internally, to prevent user confusion in the face of links [10].

20http://etherpad.org/

https://github.com/mnutt/davros/
http://etherpad.org/


and cause the server to read for the client, arbitrary files on
the server system.21 In Sandstorm, each Etherpad document is
a separate grain, so as with ShareLaTeX, users could exploit
pads to which they have access but no others.

c) CVE-2015-5382 (AKA CVE-2015-8794): The
Roundcube web-mail program22 contained an inadvertent
implementation of cat: an authenticated user could request
an arbitrary absolute file name and the server would read
back the contents.23 This may be an example of “CWE-36:
Absolute Path Traversal” (if the intent was to allow only
relative paths) or “CWE-73: External Control of File Name
or Path” (if restrictions were intended but never implemented).
Again, clients can construct requests to read arbitrary files on
the server, including other users’ mail. Each Sandstorm grain
of Roundcube manages but one user’s mail, rendering this
moot: a user can read only that which they could already read.

We can see that the path traversal vulnerabilities take many
forms, but that the unusually fine-grained sandboxing of
Sandstorm mitigates the problem. Applications which, unlike
the examples given above, continue to maintain differing
permissions for different subsets of agents and objects will
continue to be at risk of bugs which unintentionally bestow
rights to agents, including accidental information disclosure
and unintended path traversals in particular. While one can
hope to mitigate the damage, ultimately, sandboxing cannot
eliminate the burden of correctness within a grain. However,
often (admittedly, not always), the need for such difficult
authorization juggling is precisely the lack of fine-grained parti-
tioning! All three applications listed above, when run outside of
Sandstorm, attempt to restrict users to access only their objects
(i.e., documents and email); wrapping these applications in a
capability system removes this need as, within a grain, there is
no longer any information which a user is not authorized to see.

2) Other Information Disclosures: CVE-2015-5383 is a case
of “CWE-532: Information Exposure Through Log Files” (as
well as possibly “CWE-117: Improper Output Neutralization for
Logs”) in Roundcube; log files were visible to unauthenticated
users. The Roundcube log occasionally contains authentication
cookie text; this would allow anyone to impersonate a legitimate
user.24 The Sandstorm port of Roundcube hosts only one user’s
mailbox, largely mooting this vulnerability. Generally speaking,
log leakage from within a Sandstorm sandbox is unlikely to
be catastrophic due to the fine-grained nature of instances

21The fix to the first CVE is https://github.com/ether/etherpad-lite/commit/
9d4e5f6 and corrects backslash characters’ replacement with slashes (an attempt
to reconcile different platforms’ directory separators) after checking that the
path had not escaped the server’s intended directory. (In passing, we note
that CVE-2015-3309, not enumerated on the Sandstorm non-events page, is a
follow-up to this being an incomplete fix, missing identical code elsewhere in
the software.) The second is fixed by https://github.com/ether/etherpad-lite/
commit/5409eb3; here, a client-controlled suffix was concatenated to a server
prefix with only the first occurrence of “..” eliminated and no validation was
performed.

22https://roundcube.net/
23http://trac.roundcube.net/ticket/1490379
24http://trac.roundcube.net/ticket/1490378

and Sandstorm’s access control.25 However, Sandstorm sharing
URLs intended for user distribution may be unintentionally
shared through such leaks (e.g., if Roundcube improperly
included one email body in a message to another address); the
only silver lining there are the possibility of auditing to reveal
the flow of (unintentional) delegation and the ease of revocation.

3) Code Injection: In addition to mitigating “passive” attacks
like path traversals, fine-grained sandboxing and the attendant
permissions management performed by the Sandstorm core
largely moots many code injection exploits wherein an attacker
comes to run adversarially-chosen instructions server-side.
Often, the only possible attackers are users with full access to
the grain, and the Sandbox should prevent cross-grain attacks.

CVE-2015-0934 is a case of “CWE-77: Improper Neutral-
ization of Special Elements used in a Command (’Command
Injection’),” wherein ShareLaTeX could execute arbitrary
commands when given file names involving back-quotes. Only
users with write access can trigger this bug, and each grain
contains only one document, rendering it useless.

TinyTinyRSS (TTRSS), a RSS reader,26 suffered a SQL
injection (“CWE-89: Improper Neutralization of Special Ele-
ments used in an SQL Command (’SQL Injection’)”) attack,27

enabling authenticated users to take complete control of the
server. On Sandstorm, each TTRSS grain is typically unshared,
the sole capability to it held by its creator.

Last, CVE-2014-5203 in the WordPress web framework28 is
a classic language security problem: it is a case of “CWE-502:
Deserialization of Untrusted Data” due to “CWE-354: Improper
Validation of Integrity Check Value;” in particular, the integrity
check was done after deserialization.29 (Further, the hash used
was MD5, making this “CWE-327: Use of a Broken or Risky
Cryptographic Algorithm,” too.) This bug, too, required write
access to exploit.

As with path traversal vulnerabilities (§ II-D1), these
particular vulnerabilities are not terribly interesting: they either
require write access or are to grains typically kept private to
a user. In principle, however, code injection attacks could be
used to escalate permissions. If, for example, read access to
one object is sufficient authority to invoke the code injection
bug, then a user intended to have only that authority in fact
has read/write access to the entire application.

4) Kernel Vulnerabilities: Sandstorm is a shared-hosting
infrastructure: it potentially hosts applications on behalf of
multiple users. As such, in addition to mitigating attacks against
applications by users or third parties, must protect applications
from other applications resident on the same host. Because
all communication is forced through the Sandstorm core,
applications see each other as foreign agents, so there is no risk

25Once the aforementioned “powerbox” features are more widely used,
grains will hold capabilities to other objects in the system. These capabilities
will be bound by Sandstorm to be useful only to the grain that holds them,
making them un-leakable by information disclosure.

26https://tt-rss.org
27No CVE is assigned for this vulnerability; see http://security.szurek.pl/

tiny-tiny-rss-blind-sql-injection.html;
28https://wordpress.com/
29http://openwall.com/lists/oss-security/2014/08/13/3

https://github.com/ether/etherpad-lite/commit/9d4e5f6
https://github.com/ether/etherpad-lite/commit/9d4e5f6
https://github.com/ether/etherpad-lite/commit/5409eb3
https://github.com/ether/etherpad-lite/commit/5409eb3
https://roundcube.net/
http://trac.roundcube.net/ticket/1490379
http://trac.roundcube.net/ticket/1490378
https://tt-rss.org
http://security.szurek.pl/tiny-tiny-rss-blind-sql-injection.html
http://security.szurek.pl/tiny-tiny-rss-blind-sql-injection.html
https://wordpress.com/
http://openwall.com/lists/oss-security/2014/08/13/3


of inadvertent cross-application escalation of privileges due to
seeing requests from loopback addresses or similar (a common
form of “CWE-266: Incorrect Privilege Assignment”). However,
the local kernel is a high-value target for malicious applications:
successful compromise offers unlimited control of the entire
hosting machine, including the Sandstorm supervisor and all
applications running there. The Sandstorm security non-events
page enumerates 24 CVEs completely obviated by Sandstorm’s
use of system-call filtering (seccomp-bpf). This filter is
obviously effectively reducing the Linux kernel’s attack surface.

However, system call filtering is not a panacea: at least three
kernel-vulnerability CVEs remain possibly applicable (CVE-
2014-9090 and -9322, possibly best categorized as “CWE-755:
Improper Handling of Exceptional Conditions,” and CVE-2016-
2069, a particularly exotic form of “CWE-416: Use After Free”).
These bugs are fundamental problems in the kernel’s state ma-
chine and no user-land mitigation is possible. Some small solace
can be taken from the apparent difficulty of reliable exploitation.

III. MULTI-USER SANDSTORM

A. Sandstorm Multi-User Interface

Revisiting the ShareLaTeX example above, when the owner
of a grain (hosting a single document, recall) is ready to share
the document with collaborators (in a read-write manner) or
for review (in a read-only manner), she asks the Sandstorm
core itself, not ShareLaTeX, to grant access to this grain and
is given a URL representing the appropriate level of access.

A single-document ShareLaTeX grain is particularly
amenable to the kinds of permissions that Sandstorm un-
derstands well: there is just one permission bit (write or
not) beyond access to a grain. Thus, the Sandstorm port
of ShareLaTeX no longer maintains its own notion of user
authentication and user authorization, though it retains the
notions of concurrent access to one document by multiple
agents and the authority required by particular requests (i.e.,
read or write). Our goal that all well-formed requests are
authorized means that the sole check of a request to determine
authority is one of syntax: any request to mutate the document
must be stamped with a Sandstorm header that indicates that the
requestor has write access. If this is so, it must be authorized
according to the Sandstorm core capability system; if not, the
request is not well-formed and can be aborted as such.

Sandstorm’s capability system contains an unusual feature
intended to make human understanding of delegation simpler:
if a user comes to hold multiple capabilities to a grain (or
object, more generally), their rights are the union of the
rights conferred by any of those capabilities. Any request
made by that user to that grain will be labeled with this
union. Revocation or dynamic attenuation will prompt the
recomputation of a user’s rights, as expected. The net effect
is a familiar user interface: when a user visits a grain, they
are always able to use all permissions given to them, even if

those permissions were granted separately. This glosses over
the capability implementation details of Sandstorm.30

B. Implementation

When references must be serialized for presentation, such as
when users wish to share a grain by URL, Sandstorm provides
to the users an opaque, unforgeable sharing URL. These long,
random bit-strings are the computational approximation of the
infinite formal language of § I-B and their opacity ensures
an absence of LangSec bugs such as path traversals.31 The
Sandstorm supervisor is responsible for mapping these URLs
back to capabilities within the system (and is the sole agent
in the system that can), including checking for validity and
revocation. This life-cycle management is entirely implemented
in the Sandstorm core;32 applications are largely oblivious and
are simply told what (application-defined) rights are associated
with every incoming request.33

Apps that run on Sandstorm can leverage these trusted
headers to make it easier to audit them for security. Note that
there is a syntactic LangSec opportunity here! The application
(and its API) should be structured so that it is easy to deduce
from the request what rights are required, so that this can
be compared against the set of rights asserted by Sandstorm.
In a traditional web application, this is often the case, by
recommendation: POST and PUT verbs are used for things
requiring some kind of mutation authority while GET is
typically used for read-only actions, and, moreover the path of a
URL often straightforwardly corresponds to more refined rights
(e.g. objects within an /admin/ path may require greater
permission to access than other paths). Sandstorm replaces the
application’s “weird machine” which maps requests to users
to authority with a (hopefully) simpler machine which maps
requests to required authority which is then checked against a

30This does increase the risk of a “confused deputy” attack [5], in which a
user is tricked to into carrying out operations on a grain by another agent that
does not have the requisite authority. The tradeoff in favor of simplicity is
probably justified in that we may expect humans to exercise better judgement
than autonomous software agents. This unioning of rights does not happen for
capabilities held by software.

31There are emerging interfaces in Sandstorm for sharing different views
of an application, including access to specific objects (recall § II-C); here,
Sandstorm hides the application’s potentially insecure object identifier (e.g.,
row ID in a database) behind its unforgeable URL.

32A major design requirement is that Sandstorm be aware of all capability
passing within the system it constructs. The restrictions on tokens ensure,
among other things, that applications which are permitted to exchange data
(using capabilities) cannot exchange capabilities without explicit authorization.
This mitigates accidental leakage and enables auditing of permissions, and
is crucial for enforcing the “*-property” of confinement [7]. That is, merely
knowing the bytes of a Sandstorm capability representation is not necessarily
sufficient to use that capability.

33Sandstorm additionally informs the application of the “display name” of
the user making the request and, for legacy applications’ use, provides a hash
of the user’s identity as a surrogate “user name”. While not viewed as ideal
by all Sandstorm developers, some applications’ Sandstorm ports use this
information to update the application’s authorization database and then run
existing code unmodified, as if the user had logged in.



trusted part of the request itself.34

1) Authorization Vulnerabilities: CVE-2015-2298 is an
information disclosure vulnerability in Etherpad whereby a
request to export a pad’s contents by its server-side identifier
exports the contents of all pads whose identifiers contain the
requested one as a substring, regardless of the requesting agent’s
authority.35 It is, in one sense, a standard LangSec-esque bug,
a failure to normalize input into a lookup so that it carried
out exact, rather than substring match, but we prefer to think
of it as a missing autorization check. Like the path traversals
in Etherpad, this bug is completely neutralized in Sandstorm:
each grain has only one document and so even overzealous
selection code can only select that one document. A user with
sufficient privileges to request export already has sufficient
rights to read that document directly.

CVE-2015-9038 is a WordPress vulnerability in which
an unauthenticated attacker can induce WordPress to make
HTTP requests of itself. WordPress, like many other programs,
recognizes these “loopback” connections and endows them
with additional rights under the premise that only a machine
administrator could cause them to be made. That is, these
connections are given ambient authority merely by virtue of
their source, and requests from the application itself, naturally,
share that source. This particular vulnerability is exploitable
under Sandstorm only by users holding editor or administrative
access to the WordPress grain, largely rendering it unimportant:
an attacker gains no more authority than they previously had.
Applications should be discouraged, as a general rule, from
providing ambient authority to loopback connections and should
instead ensure that there is some explicit token indicating that
the request came from an administrator.

While the above bugs have straightforward resolution under
Sandstorm, missing or broken authorization checks are a real
risk. Sandstorm’s simplified story of being able to replace all
authorization checks with simpler syntactic-well-formedness
tests on requests has the potential to make it much easier to
not only audit, manually or mechanistically, that the checks are
in place, but, potentially, to automatically generate them from
high-level specifications. For example, it may be possible to
verify that all code paths leading to SQL INSERT statements
first check the trusted Sandstorm headers.

2) Authentication Vulnerabilities: Three of the CVEs doc-
umented (CVE-2015-9037, CVE-2014-9033, and CVE-2014-
0166) are in code involved in authenticating users or associated
functionality within WordPress. CVE-2014-9033 is a CSRF
vulnerability, a class we will address in the next section. CVE-
2014-0166 and CVE-2015-9037 both arise as a result of PHP’s

34When all is said and done, a HTTP application running under Sandstorm’s
supervision is given a “X-Sandstorm-Permissions” header as part of its requests.
This header is generated by the Sandstorm HTTP bridge from information
carried within the Cap’n Proto encoding of the request from the supervisor
and, ultimately, its content derives from the capabilities held by the agent
making the request. Crucially, the client may not influence the value of this
header; it would not transit the HTTP application component of the Sandstorm
core. Its format is a comma-separated list of alphanumeric identifiers; it is
designed to be easy to unambiguously parse.

35https://github.com/ether/etherpad-lite/commit/a0fb6520

implicit coercion for comparisons (“type juggling”);36 here, an
MD5 output from a password hashing function could be coerced
and compared incorrectly (“CWE-187: Partial Comparison”).
However, the vulnerable code is simply unused on Sandstorm,
where user authentication and authorization logic is centralized
to the core and therefore reusable across all applications and
independently testable.

IV. SESSIONS AS CAPABILITIES

The Web is a scary platform on which to build secure
software, as it was largely not designed with security in mind;
the attack surface of a modern web application is not only the
endpoints running on the server but also its JavaScript running
client-side (as well as any JavaScript that could be loaded from
the same host, even from a different application, due to the
web’s “same origin policy”37), the client JavaScript engine, any
unintended interactions between resources within the client,
etc. We discuss some of the effort Sandstorm invests in closing
Web-specific bugs, the CVEs mitigated and not, and briefly
look towards future plans for increasing platform security.

A. Implementation

In order to ensure that only the anticipated user may access
a particular grain, every session (i.e., an individual user’s
access to individual grain) is given a cryptographically-random
hostname and old names are expired from the Sandstorm core
quickly; Sandstorm itself uses a session cookie to authorize
access to a particular generated hostname.38 Thus, despite
Sandstorm not altering the display content of grains, a measure
of unforgability is introduced into all requests. While the
hostnames are leaked by the client in clear-text (due to DNS and
TLS SNI), they are still difficult for off-network-path attackers
to forge. The session cookie is guarded against evesdroppers
by wire cryptography and against exfiltration by the user’s
web browser. While not a complete solution, these tricks do
mitigate real security vulnerabilities.

B. Security Impact

1) CSRF vulnerabilities: A popular attack vector against
(web) applications is “CWE-352: Cross-Site Request Forgery,”
(CSRF or XSRF) wherein a resource provided by one server (A)
causes the client to make requests of another server (B). This
kind of linkage is fundamental to the Web’s success, but care
must be taken to ensure that privileged requests (of B) are not
merely authorized (i.e., made by a client with sufficient access
to B) but deliberate. Failure to properly vet requests is rampant;
the Sandstorm security non-events page enumerates five in its
sampling (CVE-2014-5204, CVE-2014-5205, CVE-2014-9033,
CVE-2014-9587, and CVE-2015-5731).

CSRF vulnerabilities can be viewed in at least two lights.
First, as LangSec bugs: (web) applications, with their open

36As documented at http://php.net/manual/en/language.types.type-juggling.
php. The author contends that this “feature” could not have been better designed
to produce LangSec issues.

37https://www.w3.org/Security/wiki/Same Origin Policy
38See “Client Sandboxing” at https://docs.sandstorm.io/en/latest/using/

security-practices/.

https://github.com/ether/etherpad-lite/commit/a0fb6520
http://php.net/manual/en/language.types.type-juggling.php
http://php.net/manual/en/language.types.type-juggling.php
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://docs.sandstorm.io/en/latest/using/security-practices/
https://docs.sandstorm.io/en/latest/using/security-practices/


channels of communication (where nearly arbitrary clients may
make requests) must ensure that multi-stage communication
with their clients recognizably bind together the client’s
next answer to the application’s previous response. A web
application must generate content for the client that will, in
turn, cause the client’s next request to attest continuity of
conversation. That is, CSRF protection amounts to a recognizer
of requests that are authorized to convey a user’s authority.
Second, we may also understand CSRF attacks as a failure
of the web to offer unforgeable capabilities to make requests
bearing the user’s authorization: the attacker is able, with
cooperation of the client (and its authorization by B) to convert
a sequence of bytes into a capability they should not hold.
Indeed, popular mitigations are excitingly similar to those used
by capability systems; most often, CSRF protection involves
embedding cryptographically random nonces in ways that will
be echoed back to the server by legitimate requests but will
be omitted or incorrect in forged requests.

Sandstorm’s creation of a unique hostname for each session
implies that a would-be attacking server A must either guess
the hostname (impractical if Sandstorm’s randomness is not
severely flawed) or obtain the hostname by sniffing client traffic
(requiring that the attacker be in a position to do so; CSRFs
are powerful in most settings precisely because they do not
typically have this requirement). Because CSRF requests are,
ultimately, made by the user’s client, the session cookie will
be passed along with them. While less ideal than correct CSRF
protection, the use of unguessable hostnames still raises the
bar of exploitation and acts as a form of failsafe.

2) XSS attacks: The web as a platform is also vulnerable to
so-called “Cross-site Scripting” (almost always abbreviated as
XSS) attacks, designated “CWE-79: Improper Neutralization
of Input During Web Page Generation (’Cross-site Scripting’).”
The simplest sub-class of XSS are “reflected XSS” attacks
in which a malicious agent crafts a URL to a vulnerable
server in such a way that the server embeds attacker-controlled
content into the material the server feeds to the client, escaping
the intended grammar of the server’s response: a classic
LangSec problem. When the client loads this URL, it will
consider the provided material to be server-originated, and so
any scripts therein will run with appropriate privileges. The
Sandstorm security non-events page contains two reflected XSS
attacks (CVE-2015-2213 and CVE-2015-5381 (confusingly,
also known as CVE-2015-8793)), mitigated by Sandstorm in
the same way as CSRF requests: the malicious agent must know
the name of the vulnerable application host, which is unlikely.

The third XSS attack on the security non-events page is
CVE-2015-1433 and is correctly listed as not mitigated at
all. This is a vulnerability in Roundcube’s display of email
to clients, allowing attackers to email victims JavaScript that
will be executed when the mail is rendered.39 As Sandstorm
does not alter the content served by applications to clients,
this exploit continues to work. Future work on Sandstorm
will strengthen the client-side sandboxing, rendering similar

39http://trac.roundcube.net/ticket/1490227

XSS attacks unable to communicate outside the vulnerable
application. Despite that, these more advanced (“non-reflected”)
XSS vulnerabilities represent a serious threat to all web
applications, even when within Sandstorm’s sandbox, as there
appears to be little possibility of automatic, external mitigation
that would eliminate unintended actions within the application
given the design of the web platform.40

However, the platform is changing with time. The W3C has
defined a “Content Security Policy” (CSP) mechanism41 to
address XSS vulnerabilities. CSP achieves its protection by
allowing web resources to specify, in their response headers,
origins for resources, including JavaScript and CSS, that may
be legitimately referenced by the body content; of particular
note is the ability to disable so-called “inline” and “data URI”
resources. This raises the bar of XSS attacks: the response
body often deliberately contains text from numerous sources
(including email messages, as we see with CVE-2015-1433),
requiring extensive LangSec mitigation to ensure that the
composite XML/HTML document ascribes to the structure
intended by the application, while the response headers are
likely specified fully by the application itself.42 Sandstorm
does not yet support CSP, but support is planned.

V. CONCLUSION

Security and privacy of computation has, historically, largely
been an afterthought, both within individual products, where
having something that works is more important than something
secure, and within the discipline of computing as a whole,
where most efforts originated in small groups of mostly-
mutually-trusting individuals. Most systems are, thus, either
through design or oversight, “public by default.” Capability
systems, with their goal of minimizing ambient authority, offer a
vision of a “private by default” world. Moreover, the mechanism
of capability systems offers the potential to turn authorization
decisions into easily verified syntactic constraints on requests:
every well-formed request which can be stated is authorized.
Sandstorm builds on such a system and allows users to track
how far access has been shared (i.e., what incoming capabilities
exist to each grain) as well as revoke access at any time. The
strong reduction in ambient authority imposed on applications
hosted within Sandstorm can further mitigate or eliminate
many flaws in application software. Expressed another way,
Sandstorm-like supervisors potentially reduce the difficulty of
developing secure multi-user software.

MITRE’s CWE vulnerability ontology is an interesting
intellectual exercise but encourages a reactive, point-wise

40It is similarly possible for an application to suffer from “non-reflected
CSRF” vulnerabilities, too, if, for example, it is possible to embed attacker-
controlled relative URLs into displayed documents.

41https://www.w3.org/TR/CSP2/
42Of course, the design of the web platform is such that response bodies

make frequent indirect reference to other resources, i.e. by URL. http and
https schemes do not have a mechanism for binding to the expected response
body; for security-sensitive resources, such as JavaScript and CSS, this loss
of binding between intended resource and name could be leveraged into code
injection by an attacker. An emerging technology called “Subresource Integrity”
(SRI; https://www.w3.org/TR/SRI/) allows pairing a URL with the hash of
the expected response body.

http://trac.roundcube.net/ticket/1490227
https://www.w3.org/TR/CSP2/
https://www.w3.org/TR/SRI/


approach to security, fixing individual exploits as they are
discovered. Many of its entries are predicated on the existence
of structured, malleable remote references, such as exposed
local file paths. By reinforcing the notion that the problem
is merely in how these references are filtered, we worry that
CWE encourages perpetuation of dangerous designs rather than
proposing alternatives which cannot, by construction, suffer
from these flaws.

VI. ACKNOWLEDGEMENTS

We are deeply indebted to Asheesh Laroia, Kenton Varda,
and Drew Fisher for their work on Sandstorm and many, useful
suggestions for this paper. We would like to thank, as well,
our anonymous reviewers for their excellent feedback.

REFERENCES

[1] Jack B. Dennis and Earl C. Van Horn. Programming
semantics for multiprogrammed computations. Commun.
ACM, 9(3):143–155, March 1966. ISSN 0001-0782. URL
http://doi.acm.org/10.1145/365230.365252.

[2] M. S. Doerrie. Confidence in Confinement: An Axiom-free,
Mechanized Verification of Confinement in Capability-
based Systems. PhD thesis, Johns Hopkins Univer-
sity, July 2015. URL http://www.doerrie.us/assets/
doerrie-dissertation-jhu.pdf.

[3] Adele Goldberg and David Robson. Smalltalk-80: The
Language and Its Implementation. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1983.
ISBN 0-201-11371-6.

[4] Robert David Graham and Peter C. Johnson. Finite state
machine parsing for internet protocols: Faster than you
think. In Proceedings of the 2014 IEEE Security and
Privacy Workshops, SPW ’14, pages 185–190, Washing-
ton, DC, USA, 2014. IEEE Computer Society. ISBN
978-1-4799-5103-1. URL http://www.cs.dartmouth.edu/
∼pete/pubs/LangSec-2014-fsm-parsers.pdf.

[5] Norm Hardy. The confused deputy: (or why capabilities
might have been invented). SIGOPS Oper. Syst. Rev., 22
(4):36–38, October 1988. ISSN 0163-5980.

[6] Butler W. Lampson. Protection. SIGOPS Oper. Syst.
Rev., 8(1):18–24, January 1974. ISSN 0163-5980. URL
http://doi.acm.org/10.1145/775265.775268.

[7] Mark Miller, Ka-Ping Yee, and Jonathan Shapiro. Capa-
bility myths demolished. Technical report, 2003. URL
http://zesty.ca/capmyths/usenix.pdf.

[8] Common Vulnerability Enumeration: The Standard for
Information Security Vulnerability Names. MITRE Inc.,
1999. URL https://cve.mitre.org/index.html.

[9] Common Weakness Enumeration: A Community-
Developed Dictionary of Software Weakness Types.
MITRE Inc., 2006. URL https://cwe.mitre.org/index.html.

[10] Rob Pike. Lexical file names in plan 9 or getting dot-
dot right. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference, ATEC ’00.
USENIX Association, 2000. URL http://plan9.bell-labs.
com/sys/doc/lexnames.html.

[11] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey,
and Phil Winterbottom. The use of name spaces in
plan 9. In Proceedings of the 5th Workshop on ACM
SIGOPS European Workshop: Models and Paradigms for
Distributed Systems Structuring, EW 5, New York, NY,
USA, 1992. ACM. URL http://plan9.bell-labs.com/sys/
doc/names.html.

[12] E. Poll, J. D. Ruiter, and A. Schubert. Protocol state
machines and session languages: Specification, imple-
mentation, and security flaws. In Security and Privacy
Workshops (SPW), 2015 IEEE, pages 125–133, May 2015.
URL http://cs.ru.nl/E.Poll/papers/langsec draft.pdf.

[13] Jonathan Shapiro, Michael Scott Doerrie, Eric Northup,
Swaroop Sridhar, and Mark Miller. Towards a
verified, general-purpose operating system kernel,
2004. URL http://www.coyotos.org/docs/osverify-2004/
osverify-2004.html.

http://doi.acm.org/10.1145/365230.365252
http://www.doerrie.us/assets/doerrie-dissertation-jhu.pdf
http://www.doerrie.us/assets/doerrie-dissertation-jhu.pdf
http://www.cs.dartmouth.edu/~pete/pubs/LangSec-2014-fsm-parsers.pdf
http://www.cs.dartmouth.edu/~pete/pubs/LangSec-2014-fsm-parsers.pdf
http://doi.acm.org/10.1145/775265.775268
http://zesty.ca/capmyths/usenix.pdf
https://cve.mitre.org/index.html
https://cwe.mitre.org/index.html
http://plan9.bell-labs.com/sys/doc/lexnames.html
http://plan9.bell-labs.com/sys/doc/lexnames.html
http://plan9.bell-labs.com/sys/doc/names.html
http://plan9.bell-labs.com/sys/doc/names.html
http://cs.ru.nl/E.Poll/papers/langsec_draft.pdf
http://www.coyotos.org/docs/osverify-2004/osverify-2004.html
http://www.coyotos.org/docs/osverify-2004/osverify-2004.html

	Introduction
	Authorization
	Object Capabilities
	Capabilities and LangSec
	Typical Multi-user, Multi-application Web Hosting

	Granularity in Sandstorm
	Sandstorm User Interface
	The View Within A Grain
	Granularity As Editorial Decision
	Security Impact
	Path Traversal Vulnerabilities
	Other Information Disclosures
	Code Injection
	Kernel Vulnerabilities


	Multi-User Sandstorm
	Sandstorm Multi-User Interface
	Implementation
	Authorization Vulnerabilities
	Authentication Vulnerabilities


	Sessions as Capabilities
	Implementation
	Security Impact
	CSRF vulnerabilities
	XSS attacks


	Conclusion
	Acknowledgements

