
Styx Caching via Journal Callbacks

Venkatesh Srinivas
Nathaniel Wesley Filardo

me@acm.jhu.edu, nwf@cs.jhu.edu

Association for Computing Machinery
Johns Hopkins University

Baltimore, MD

ABSTRACT

Styx is a network protocol used in the Plan 9 and Inferno distributed operating sys-
tems. This protocol provides a common language for communication within the above-
mentioned system. Styx is a simple client-driven, message-oriented protocol. This proto-
col performs poorly on high-latency links, independent of bandwidth, and has no provi-
sions for caching or server-initiated notifications. Previous attempts at hiding latency hav e
either required replacing Styx (Op) or accepting dramatically weaker coherency (cfs(4)).

This paper introduces Journal Callbacks (JC), a mechanism for server-initiated
notifications in client-driven protocols, such as Styx. JC allows for these notifications
without modification to the underlying protocol.

We implemented a cache for Styx using JC. We attempted to hide latency by
caching server responses; JC notifications are used for invalidation events. Notably, our
cache and notification scheme does not alter the Styx protocol; instead, it runs as a side
protocol on top of the existing stream. We present data from several benchmarks, show-
ing our cache reduces effective latency comparably to the Plan 9 cfs cache.

1. Intr oduction and Motivation

1.1. SomeStyx Details

Styx [1] is a very simple resource abstraction protocol. It describes a set of named hierarchical trees
of named objects; leaf entries in the tree are named ‘‘files’’; other entries are termed ‘‘directories’’. All
objects store a fixed set of metadata.Additionally, files each provide a(n optionally seekable) single stream
of bytes. Some Styx servers support Tcreate-ing or Tremove-ing subsets of their exported objects.

Styx allows more than one outstanding request through a client-controlled "tag". Responses may be
uniquely paired to their requesting message since the server will simply copy the tag back. There is a
mechanism for request cancellation by tag, but this facility is rarely used.

A Styx connection uses client-specified integers named "fids" to represent live handles to objects.An
initial fid, naming the root of the server’s hierarchy, is derived from a Tattach message.Tattach messages
speicify which of the server’s hierarchies is desired using theaname field. Fidsmay be Twalk-ed around
the Styx tree (or cloned), Tstat-ed to read metadata, Twstat-ed to write metadata, or Topen-ed for subse-
quent Tread-ing and Twrite-ing. Tcreateoperations take a fid naming the parent directory as well as a fid
naming the result. Once a fid, Topen-ed or not, has finished its purpose, it is Tclunk-ed and its identifier is
safely available for reuse.

-2-

Styx uniquely identifies every version of every object (typically "file") on a server by an entity called
a QID. QIDs expose some minimal "type" information, a "path" identifier (essentially object identifier),
and a "version" field.Typically, versions are incremented whenever a mutation request (i.e. write, wstat,
create, or remove) is successful.

Opened fidstrack the current version of any server-side object.That is, if there are two fids, either
from one or two clients, naming a given object, and one fid is used for a Twrite, then a subsequent Tread on
either fid will reflect the changes made.

1.2. Styxvs. Latency

Prior work [2] has demonstrated that operations over Styx can be dominated by latency of the link,
which indicates that large performance gains may be had by reducing the number of RPCs that cross the
wire. Thereare a number of ways one might go about this:

1. Redefiningthe protocol to need fewer RPCs,

2. Interceptingclient RPCs and answering from cache before they may go over the wire, or

3. Alteringthe behavior of clients to eliminate superfluous RPCs.

Previous work falls into the first and second categories. Thiswork is also of the second variety
though we believe we are the first to investigate and find opportunities of the third flavor; these are dis-
cussed with future work.

2. RelatedWork

2.1. cfs(4)

cfs(4) is an on-disk cache intended for use by Plan 9 terminals.It copies data from Rread messages
into an on-disk cache.For subsequent Tread operations, if the data are already present, cfs responds with
cached data. Once per Topen, cfs will Tstat an object on the server to check for validity of cached contents.
cfs does not cache directory contents nor, by extension, does it attempt to hide any latency for walk opera-
tions. Every Twalk, Tstat, and Tread on a directory is simply passed through to the server. Topen messages
become Tstat followed by a Topen when the cached contents are shown to be stale.

cfs by design eliminates the ‘‘tracking’’ f eature of fids described above; that is, opened fids passing
through a cfs instance will continue to expose whatever data is in cache, not what is present on the server.
It is therefore possible, since cfs does not do readahead or whole-file caching, to see a file’s stream in a
state that corresponds to no server version and have to re-open the file to resynchronize.

2.2. PlanB’s Op

Op [2] is a revision to the Styx protocol which batches together operations on the wire to minimize
the impact of latency. Ofs, the program which does Styx-to-Op intermediation, may optionally act as a
cache. Whenso doing, it assumes data is unaltered for a brief period of time known as "coherency win-
dow" before it will act like cfs and check the remote server for validity.

2.3. Network File System

NFS [3] is a protocol in the UNIX world superficially similar to Styx. At least one modern NFSv3
client provides ‘‘close-to-open’’ cache coherency, similar to that found in cfs(4). When a client has a file
open, it is assumed that the client’s cache matches the authoritative copy and that no other client is making
changes. Whenthe client close()s the file, all still dirty cache contents are written back to the server and the
client’s kernel issues a GETATTR. If on the next open() call, the GETATTR request returns the same value,
the cache contents are assumed valid. Concurrentwrites, even concurrent appends, are not sensibly sup-
ported.

-3-

2.4. Andrew File System

The Andrew File System [4] also provides client-side caching.Clients are given time-limited
promises of notification should an opened file change.Clients may extend these by actively reregistering
their interest with the server. In Coda, an AFS descendent, these callbacks are able to range in granularity
from files to entire AFS volumes; see5 . AFS assumes only one concurrent writer and generally writes
back to the server only when a file is closed or when the cache overflows; therefore, servers do not call for
writeback and there is no inter-client cache coherency.

2.5. CommonInternet File System

Microsoft’s CIFS [6] supports caching using both "opportunistic" and explicit (byte range) locking
strategies. CIFSservers will notify clients of invalidations to open files; we are unclear if this extends to
opened, cached files that are not currently open. CIFS allows caches to buffer writes and release them only
on server notification of opportunistic lock breaks. Other clients are stalled while the server waits for the
owning client to write back. The lock taking operations and notifications are built in to the underlying RPC
protocol.

3. Designand Implementation

The next few sections describe the core ideas of JC cfs and then how JC cfs is put together, first the
cache controller, then the client-side cache.

3.1. TheDesign

As mentioned, Styx uses QIDs to uniquely identify every version of every object on the server. The
ev olution of a Styx file server’s state could be described by an append-only log of every QID modified (that
is, whose version field changed) or removed. (Sucha journal need not include creation events; we may
assume that the toplevel directory simply exists by offset zero and all subsequent creation events will mod-
ify the containing directory.) Eachclient-side operation can be thought of as having some index into this
log; conversely, each offset corresponds to zero or more read operations and exactly one write operaton.If
a cache were to read this file and watch for appends, it would know when, subject to network latency, to
invalidate cached data and reread from the server.

There are four agents in the Journal Callback design: the client, the server, the client-side cache, and
the (server-side) cache controller. The client, often the kernel’sdevmnt , and Styx server (e.g. fossil)
remain unmodified. The cache and controller act as Styx intermediators: that is, they hav etwo Styx con-
nections and respond to events from each.The cache and cache controller communicate using their own
Styx messages over the wire. Additionally, the cache and cache controller are each free to initiate requests
of the server. To avoid changing the Styx hierarchy as viewed from the client, we create a parallel hierar-
chy, using theaname feature. Thisdesign decision allows us great flexibility going forward.

The cache controller encapsulates all inter-cache information management. It serves to inform one
cache when another has successfully carried out a mutation of server state. The cache controller is assumed
to sit between all caches and the server. That is, while typically a server is permitted to handle clients
directly, in the JC scheme we assume that the server’s sole client is the cache controller.1

Our cache controller filters the global QID journal to be specific to each connecting cache (which are
identified by UUIDs).Every QID reported to the cache is considered cached.2 Further, it attempts to main-
tain knowledge of which server data have been seen by the cache even after the cache disconnects; it is pos-
sible to indicate to the cache that it has been gone too long and that it must assume that all cached data is

1 For performance and security reasons, one might wish to integrate the cache controller and server. We hav e
not done so largely for ease of implementation and to avoid tethering ourselves to a particular server.

2 We hav enot yet implemented a mechanism -- such as an append-only write-only file located beside the
journals -- for caches to notify the controller that a QID has been flushed. Such a mechanism would reduce
cache controller memory and unnecessary notifications.

-4-

out of date.

The cache mediates between a client and the cache controller. It will return cached contents -- file,
stat, and directory data -- quickly when present and believed to be up-to-date. Cachesare free to adopt a
number of behaviors, including cfs-like behavior or simply blocking client requests, when the journal indi-
cates that they are not synchronized with the server.

An example trace of a cache (1) implicitly registering interest in a file/foo and another cache (2)
causing the cached contents to become invalid can be seen below. At point A, Cache 1 believes itself to be
fully up to date and issues one more read against the journal which blocks. By point B, the cache controller
has registered Cache 1’s interest -- that is, the potential to have cached -- the QID Q. The second cache’s
Twstat operation at point C will be forwarded to the server, and if the response is an Rwstat (rather than a
Rerror), the cache controller will wake Cache 1 by answering the blocked read (point D) and will forward
the success to Cache 2.

Cache ControllerCache 1 Cache 2

[A]
Tread tag=4 journal

Tw alk /foo

Rwalk QID=Q

[B] Tw alk fid=3 /foo

Rwalk QID=Q

[C] Twstat fid=3 ...

[D] Rread tag=4 data=Q

Rwstat

3.1.1. PriorArt for Asynchronous Notifications in Styx

We cannot claim that the core idea, of using a synthetic file to deliver events, is new. From the outset,
one of us used the documented behavior of usb(4) audio devices,

When all values fromaudioctl have been read, a zero-sized buffer is returned (the usual end-
of-file indication). A new read will then block until one of the settings changes and then report
its new value.

as precedent. As we have worked on the project, we have found it to be an often repeated design sugges-
tion. Sape Mullender [private communication] was amused by our reinvention, and Charles Forsyth has
suggested that the idea be thought of as "‘publish/subscribe’ for the 21st century" [7]. Howev er, we are
unaware of any prior implementation of the scheme for caching.

3.2. TheImplementation

As mentioned, both the cache and the controller act as Styx intermediators. Since Styx offers only a
single namespace for each of message tags and fids, both of these programs maintain mapping tables so that
they can safely rewrite incoming and outgoing requests to avoid collision and, in the case of the controller,
can map responses back to the appropriate cache.

-5-

The cache and cache controller are implemented in the Limbo programming language for the Inferno
operating system; they total approximately 2400 lines of code. The client-side cache is approximately 600
lines, the server approximately 900, and the remaining 800 dedicated to plumbing - mapping structures for
QIDs, Fids, and File structures, and boilerplate (module loading, argument parsing). Of note is that Plan 9,
unlike Inferno, already contains libraries to handle many of these functions and an implementation on that
system should involve less code.

3.2.1. TheCache Controller

The cache controller is a constructed from a set of concurrent processes synchronizing through mes-
sage passing. On receiving a connection from a client, the cache controller starts a number of processes to
handle the per-client state:remoteproc, tmsgfd2chan, rmsgfd2chan, andsjournalproc.

Remoteproc exports a path in its namespace as the main filesystem to its client; to do this, it con-
structs a pipe and spawns an asynchronous exportfs kernel process. It then constructs two processes,rms-
gfd2chan and tmsgfd2chan , to convert reads and writes on the pipe and client file descriptors into Limbo
channel messages.

The remoteproc accepts Styx T-messages from its client and R-messages from the exportfs kernel
process. It dispatches messages to the correct destination, based on a message’s fid. Messages destined to
the main file system are forwarded along the pipe to the exportfs process; most messages destined to the
cache control file system are handled internally and receive a synchronous response. Read requests on jour-
nal files, however, are handled by starting a process,handle_async_cc_read , which returns data from the
journal when it is available.

When a client cache first starts up and connects to a cache controller, it attaches to the cache-control
file system and attempts to open its journal file, identified by a UUID. If its journal file does not exist, it
attempts to create and then open it. In the cache controller, creating a journal starts another process, sjour-
nalproc, which mediates sending and buffering invalidation messages from the cache controller to the
client. Sjournalproc listens on two per-journal Limbo channels; one receives cache invalidation events, the
other receives response channels fromhandle_async_cc_read Handle_async_cc_read provides sjournalproc
with a channel in response to a client cache read on its journal. If the journal has any outstanding updates, it
sends them along the new channel and drops its references to both the events and the return channel. Other-
wise, the reply along the return channel is withheld until events are available. In this way, journals can con-
tinue to enqueue events even when a client is not attached.

3.2.2. TheClient

The client-side cache acts as a Styx server on its standard input/output, for its client, and as a Styx
client to the cache controller. The cache is constructed from a set of concurrent processes, similar to the
cache controller. These processes,tmsgfd2chan, rmsgfd2chan, msg2wire, journalproc, and localscfs,for-
ward They also maintain the read and stat cache data structures.Tmsgfd2chan andrmsgfd2chan are as in
the cache controller - they convert Styx messages to Limbo channel message.Msg2wire provides synchro-
nization for the connection to the cache controller, so that the main processscfs and the journal process
sjournalproc do not interfere.

Scfs is the cache main process. It receives Styx T-messages from a client, typically Inferno’s devmnt,
rewrites the FIDs, and forwards most of those messages to the remote cache controller it is connected to.
For TStat and TRead messages, it looks up the live file structure by its FID; the per-FID structure points to
a per-QID structure, which holds a copy of the file’s directory entry and a reference to its read cache. So
long as the directory entry and read cache are present, they are used to serve reads entirely locally.

Journalproc is the main journal process; on starting, it attaches to the cache controlaname and
attempts to open its journal via a UUID; if the journal is not present, it creates it.Journalproc then enters a
state machine, issuing Reads to the journal file and waiting for replies. On receiving a reply, it extracts the
encoded QID, looks up the per-QID structure via a hash table, and invalidates both the directory entry and
read cache contents for that file, thus keeping the read cache current.

-6-

4. Results

4.1. Methodologyand Environment

As a test workload, as well as a mechanism for ensuring that our code worked, we use our own build
process as a benchmark. This involves runningmk and thelimbo compiler, reading system headers and
our source files, and generating ourdis executables. The total number and distribution of RPCs for themk
workload is provided in the Execution Characteristics section. We hope it provides a typical, read-heavy
workload.

Measurements were taken in a few environments:

1. a trans-Pacific link, from a client in Baltimore to a server in Tokyo, Japan.Typical latency in this
link was roughly 180 ms.

2. atrans-continental U.S. link, from a client in Baltimore to a server in San Francisco.Typical latency
here was roughly 90 ms.

3. with the client and server both on the same machine.

RPC traces were captured withmount-S and a tool to capture Styx protocol traces,statlisten.
For execution workloads, timing data, as reported bytime, as shown is the average of three runs.

All jccfs measurements were taken in Inferno 4e on a Linux 2.6 host. All measurements of cfs were
taken on a native Plan 9 CPU Server.

Results are not directly comparable between the Plan 9 and Inferno systems - the Plan 9 system hard-
ware was different than that of the Inferno systems and the Plan 9 client issues a different number and dis-
tribution of RPCs to our cache. RPC counts and percent wall-clock time reduction are perhaps the most
useful statistics.

4.2. ExecutionCharacteristics

Total RPC counts, for un- and cold-cache behavior

Host Job Walk Clunk Stat Read Write Open Create+Rem TOTAL

Inferno
(uncached) mkall 151 83 7 99 49 62 14 465
(uncached) re-mk 5 3 0 6 0 3 0 17
(uncached) mknuke 28 5 0 12 0 5 14 64
(jccfs) mkall 151 83 7 139 * 48 62 14 504
(jccfs) re-mk 5 3 0 3 0 3 0 14
(jccfs) mknuke 18 5 0 18 ** 0 5 14 60

Plan 9
(uncached) mkall 151 83 14 97 21 55 14 435
(uncached) re-mk 5 3 0 4 0 3 0 15
(uncached) mknuke 26 5 2 8 0 5 14 60
(cfs) mkall 151 83 14 43 21 55 14 381
(cfs) re-mk 5 3 0 4 0 3 0 15
(cfs) mknuke 26 5 2 8 0 5 14 60

*: 139 TReads were issued; 96 were asynchronous and to the cache aname; 43 were to the main aname **:
18 TReads were issused; 7 were asynchronous and to the cache aname; 11 were to the main aname

-7-

4.3. Measurements

mk all times vs latency

Latency System Uncached Cold Hot

14 ms Inferno/jccfs 7.8s 7.5 s (3.8%) 6.8 s (13%)
90 ms Inferno/jccfs 49.5s 43.6 s (12%) 38.5 s (22%)
180 ms Inferno/jccfs 92.7s 80.3 s (13%) 73.1 s (21%)
180 ms Plan 9/cfs(4) 103.1 s 79.4 s (23%) 72.2 s (30%)

re-mk times vs latency

Latency System Uncached Cold Hot

90 ms Inferno/jccfs 2.8s - 1.8 s (36%)
180 ms Inferno/jccfs 5.3s 3.3 s (38%) 2.9 s (45%)
180 ms Plan9/cfs(4) 3.9s 2.3 s (41%) 2.3 s (41%)

mk nuke times vs latency

Latency System Uncached Cold Hot

180 ms Inferno/jccfs 12.8s 11.9 s (7.0%) 6.6 s (48%)
180 ms Plan9/cfs(4) 11.4s 11.1 s (2.6%) 6.1 s (46%)

We demonstrate a percentage wall clock time reduction roughly in line with cfs(4), though we pay a little
bit for our (unoptimized; see future work) journals.

5. Discussionand Conclusions

Our implementation of Journal Callbacks and cache for Styx exhibits similar performance gains in
absolute time to the Plan 9 cfs cache. Also looking at the timing measurements in the previous section, as
latency rises, both cfs and jccfs scale similarly - their mechanism of operation is very different, however.
Cfs reduces the total number of read requests. JC Cfs, while increasing the number of RPCs, serves both
Stat and Read requests from its cache.

Compared to cfs or an uncached client, jccfs increases the total number of TRead requests.Why
does jccfs exhibit any performance gain over an uncached client, then? The answer is that reads to the
cache control aname are not synchronous with RPCs to the main aname. When we described Styx as ’per-
forming poorly’ on high-latency links, one the reasons is that Styx clients synchronously wait for RPC
responses before sending future messages, making poor use of a network’s Bandwidth-Delay Product. The
added cost of journal reads and responses make use of this available capacity to enable server-initiated noti-
fications.

An initial implementation of Journal Cachebacks for caching appears to be approximately as effec-
tive as the open-to-close coherency cache, cfs. Moreover, Journal Callbacks are a general technique with
further applications, which we talk about in our future work. We hav eshown that our technique is viable
and that even a minimal implementation offers real-world performance gains while maintaining the Styx
protocol.

6. Future Work

There are a number of avenues of further investigation which merit attention.Firstly, while we have
shown that our scheme works, we have not yet shown at least one of its conjectured major strengths.Sec-
ondly, our journal metadata could be exposed and/or enhanced to great effect. Thirdly, we hav e found,
through testing and observation, a few opportunities to improve the behavior of Inferno’s Styx client.

-8-

Fourthly, we feel we are in a good position to give well-motivated suggestions for a hypothetical next-gen-
eration Styx.

6.1. On-DiskCaching

As a proof of concept, our cache does quite well; however, it is unable to demonstrate a serious
advantage of the JC scheme over that of cfs(4): a cache which has been offline may quickly catch up.We
expect an on-disk, terminal-side jccfs cache to dramatically reduce the number of RPCs generated at startup
relative to cfs(4). Ourcache controller already ensures that journals are maintained and populated even
after the cache has hung up or closed its journal; the on-disk cache simply would have taken more time than
we had.

6.2. ExposingNotifications to Programs

The journal callback mechanism and controller, if present on a given mount, could be made to pro-
vide a file or file system monitoring API, similar to Linux’s inotify[8] Unlike inotify, however, a
JC-based API would work over networks (NFSv3 and prior do not seem to be sufficiently capable; NFSv4
is) and could be presented as just another kernel virtual server with ctl file, requiring no additional syscalls.

6.3. ExposingMor e Information to Caches

The current data stream in the journal file contains only QIDs.This is tragically little information,
allowing a cache the sole action of invalidation of cached contents, even if it was the reason for the muta-
tion. Every Twrite in fact invalidates the entire file’s content as well as the containing directory. This is
hardly ideal, so we would like to report "re-QID operations" to caches emitting mutation operations.Simi-
larly, we could report "small" changes to directories (version increment and other stat changes, insertions,
deletions) and possibly even files.

It will be easy to accomidate these features by extending our (fortunately not yet standardized and docu-
mented) on-the-wire protocol to embed additional data records after each QID in the journal.We note that
as long as these data are well framed (by using, e.g., a TLV format), the protocol is extensible without hav-
ing to update all caches and controllers in lockstep: a cache encountering a metadata field it does not under-
stand may simply revert to invalidating all data corresponding to the QID, as if there were no ancillary
fields.

6.4. Changesto devmnt or Additional Latency Reductions

We hav eobserved Inferno’sdevmnt to generate unnecessary RPCs, such as

; pwd ; cd .
Tmsg.Walk(1,45,26,nil) Tmsg.Walk(1,46,45,nil)
Rmsg.Walk(1,array[] of {}) Rmsg.Walk(1,array[] of {})
Tmsg.Open(1,26,0)
Rmsg.Open(1,Qid(16r8,73,16r80),8192)
Tmsg.Clunk(1,26) Tmsg.Clunk(1,46)
Rmsg.Clunk(1) Rmsg.Clunk(1)

For thepwd case, a single Tstat request would have sufficed. In thecd. case, no messages should have
been sent at all. Whether these traces are due to bugs or deliberate simplification of the logic indevmnt is
unclear. We note, however, that for correctness we can not avoid sending Topen messages over the wire,
and so the impact of an intermediator may be lower than the impact of an optimal rewrite ofdevmnt.

We do not currently, but are in a good position to, synthesize Rwalk messages to entries in cache and only
instantiate them on demand.Walks that merely clone may be thought of as always in cache. This would

-9-

eliminate both RPCs in the cd case.For ordinary file objects, we could also merge open requests to keep
only one such fid open over the wire.

Further, Tclunk messages may Rerror but the result is not meaningful if so: the fid is no longer valid and
the semantics of close() are that it cannot fail when given a real, open fd. Since the kernel knows the open-
ness state of an fd, there is no need for the kernel to wait a full RTT when it emits a Tclunk.We hav e
shown remarkable improvements in performance (as might be expected from the RPC count table, above)
by merely generating Rclunk messages in the cache.

6.5. Recommendationsfor a Next-edition Styx

Based on the implementation effort and measurements done above, we hav esome small recommen-
dations to make the protocol more amenable to intermediation:

6.5.1. StandardizeIdentification of Synthetic Files

Currently, Styx does not have a standard mechanism for discriminating between synthetic and real
files. Byreal files, we mean Styx objects which are expected to read back what was written and, in the case
of single open or successful exclusive open, report the same contents for each read through start to finish.3

On the other hand, things like control files, named pipes, and network connections, are "synthetic" -- that is,
we are not surprised, and do not assume another concurrent user, when Tread at a fixed offset returns differ-
ent data or an error.

This lack of differentiation means that currently care must be taken as to what portions of the namespace
(equivalently, what servers) are subject to (caching) intermediation.For example, cfs intermediating an
imported /net would almost surely render the /net so imported inoperable.

A previous proposal, to add a bit to the type field of the QID to indicate the syntheticness (or realness) of an
object was previously put forward [9] and met with some resistance. There is an undocumented convention
that synthetic files have a QID version of zero.We propose that this be a requirement of correct servers.
With objects so labeled, our cache and controller will be able to correctly know when to simply pass
requests through to the server.

6.5.2. Standardizeor Report Mutation Effects on QIDs

Currently, in response to a mutation, our cache controller must walk a fid to the server’s file and re-
collect the stat information, despite already knowing the mutated object(s)state. In particular, this walk is
necessary to recover the version field, which is entirely under server control.We therefore suggest that a
next-generation Styx standardize on the already traditional behavior of merely incrementing the version on
ev ery mutation event. Should this standardized behavior be seen as unacceptable, we suggeset instead that
all mutating Styx RPCs be adjusted to return the QID of objects mutated -- Rcreate must contain two QIDs,
all others just one.

We note in passing that there has been some discussion of making version fields propagate to root. If this
behavior were ever adopted, our cache and cache controller could certainly be made to work with it, but
since it is not likely to be standardized we propose that servers doing anything atypical with the version
field be forced to declare so in their Rversion messages, so that (our) intermediators may either adopt the
propagation of updates to root behavior or fall back to more pessimistic but safe behaviors.

3 Directories do not permit seeking and are generally considered "real".For non-QTDIR objects, we may
further require that all reads at the same offset, again with only one active user, return the same contents.

-10-

7. Acknowledgements

We would like to acknowledge David Eckhardt for getting the idea of journals planted in one of our
heads many years ago.

References

1. RobPike and Dennis Ritchie,The Styx Architecture for Distributed Systems.

2. FranciscoJ. Ballesteros, Gorka Guardiola, Enrique Soriano, and Spyros Lalis, “Op: Styx batching for
High Latency Links,” IWP9 2007.

3. Network File System. http://nfs.sourceforge.net/.

4. J.H. Morris, M. Satyanarayanan, M. H. Conner, J. H. How ard, D. S. Rosenthal, and F. D. Smith,
“A ndrew: A distributed personal computing environment.,”Commun. ACM, 29, 3, pp. 184-201 (Mar.
1986).

5. L. Mummert and M. Satyanarayanan,Variable Granularity Cache Coherence.

6. Common Internet File System. http://msdn.microsoft.com/en-us/library/aa365233(VS.85).aspx.

7. CharlesForsyth,Re: [9fans] 9P2000 and p9p. http://9fans.net/archive/2007/04/252.

8. RobertLove, Kernel Korner - Intro to inotify. http://www.linuxjournal.com/article/8478.

9. FranciscoJ Ballesteros,[9fans] QTCTL?. http://9fans.net/archive/2007/10/539.

