Styx Caching via Journal Callbacks

Venkatesh Sinivas
Nathaniel Wesley Filardo

me@acm.jhu.edu, nwf@cs.jhu.edu

Association for Computing Machinery
Johns Hopkins UnErsity
Baltimore, MD

ABSTRACT

Styx is a netwrk protocol used in the Plan 9 and Inferno distributed operating sys-
tems. This protocol prxides a common language for communication within thev&bo
mentioned system. Styx is a simple clientseni message-oriented protocol. This proto-
col performs poorly on high-latepdinks, independent of bandwidth, and has nwipro
sions for caching or seswinitiated notifications. Previous attempts at hiding laydwayve
either required replacing Styx (Op) or accepting dramatically weaker coféofs(@)).

This paper introduces Journal Callbacks (JC), a mechanism far-gatiated
notifications in client-drien protocols, such as Styx. JC alls for these notifications
without modification to the underlying protocol.

We implemented a cache for Styx using JCe Wtempted to hide lategcby
caching serer responses; JC notifications are used fegliohation events. Notably our
cache and notification scheme does not alter the Styx protocol; instead, it runs as a side
protocol on top of thexésting stream. W present data from seral benchmarks, she
ing our cache reduces effetilatengyy comparably to the Plan 9 cfs cache.

1. Introduction and Motivation

1.1. SomeStyx Details

Styx [1] is a \ery simple resource abstraction protocol. It describes a set of named hierarchical trees
of named objects; leaf entries in the tree are narffiEx’”; other entries are termetlirectories’. All
objects store a fixed set of metadatalditionally, files each provide a(n optionally seekable) single stream
of bytes. Some Styx servers support Tcreate-ing or Trefing subsets of their exported objects.

Styx allows more than one outstanding request through a client-controlled "tag". Responses may be
uniquely paired to their requesting message since the server will simphtlmpag back. There is a
mechanism for request cancellation by tag, but this facility is rarely used.

A Styx connection uses client-specified oges named "fids" to represemndiandles to objectsAn
initial fid, naming the root of the sa@ws hierarcly, is derived from a Tattach messag@attach messages
speicify which of the sesr’s herarchies is desired using theame field. Fidsmay be Walk-ed around
the Styx tree (or cloned), Tstat-ed to read metadatatat-ed to write metadata, or Topen-ed for subse-
guent Tread-ing andvirite-ing. Tcreateoperations tak a fid raming the parent directory as well as a fid
naming the result. Once a fid, Topen-ed or not, has finished its purpose, it is Tclunk-ed and its identifier is
safely aailable for reuse.

Styx uniquely identifies\@ry version of gery object (typically "file") on a server by an entity called
a QD. QIDs expose some minimal "type" information, a "path" identifier (essentially object identifier),
and a "version" field.Typically, versions are incremented whgaea mutation request (i.e. write, wstat,
create, or reme) is successful.

Opened fidgrack the current version of greerverside object.That is, if there are tavfids, either
from one or tw dients, naming a gen object, and one fid is used for a Twrite, then a subsequent Tread on
either fid will reflect the changes made.

1.2. Styxvs. Latency

Prior work [2] has demonstrated that operationa Styx can be dominated by latgnof the link,
which indicates that large performancarg may be had by reducing the number of RPCs that cross the
wire. Thereare a number of ways one might go about this:

1. Redefininghe protocol to need fewer RPCs,
2. Interceptingclient RPCs and answering from cache beforg they go wer the wire, or
3. Alteringthe behavior of clients to eliminate superfluous RPCs.

Previous work falls into the first and second cmiges. Thiswork is also of the secondaxiety
though we beliee we ae the first to imestigate and find opportunities of the thirdvibe; these are dis-
cussed with future work.

2. RelatedWork

2.1. cfs(4)

cfs(4) is an on-disk cache intended for use by Plan 9 termilatspies data from Rread messages
into an on-disk cachelFor subsequent Tread operations, if the data are already present, cfs responds with
cached data. Once per Topen, cfs will Tstat an object on the server to chealidfty @f cached contents.
cfs does not cache directory contents bgrextension, does it attempt to hideydateny for walk opera-
tions. Eery Twalk, Tstat, and Tread on a directory is simply passed through to thex. seopen messages
become Tstat followed by a Topen when the cached contents are shown to be stale.

cfs by design eliminates thitracking” f eature of fids described al®) that is, opened fids passing
through a cfs instance will continue to expose whesitdata is in cache, not what is present on theeserv
It is therefore possible, since cfs does not do readahead or whole-file caching, to seeti@dife’in a
state that corresponds to no server version avel thae-open the file to resynchronize.

2.2. PlanB’s Op

Op [2] is a revision to the Styx protocol which batches together operations on the wire to minimize
the impact of latenc Ofs, the program which does Styx-to-Op intermediation, may optionally act as a
cache. Wherso doing, it assumes data is unaltered for a brief period of time known as "cghgmenc
dow" before it will act lile ds and check the remote server for validity.

2.3. Network File System

NFS [3] is a protocol in the UNIX orld superficially similar to Styx. At least one modern NFSv3
client provides‘tlose-to-operi’cache coherelyg amilar to that found in cfs(4). When a client has a file
open, it is assumed that the clismache matches the authorivaticopy and that no other client is making
changes. Whethe client close()s the file, all still dirty cache contents are written back to the server and the
client’s kernel issues a GRTTR. If on the next open() call, the GETTR request returns the sanaue,
the cache contents are assumalidv Concurrentvrites, &en concurrent appends, are not sensibly sup-
ported.

2.4. Andrew File System

The Andrev File System [4] also provides client-side cachin@lients are gien time-limited
promises of notification should an opened file char@ients may extend these by aely reregistering
their interest with the seex In Coda, an AFS descendent, these callbacks are able to range in granularity
from files to entire AFS volumes; see5 . AFS assumes only one concurrent writer and generally writes
back to the server only when a file is closed or when the caethftows; therefore, servers do not call for
writeback and there is no inter-client cache cohsgrenc

2.5. Commoninternet File System

Microsoft's AFS [6] supports caching using both "opportunistic” arplieit (byte range) locking
stratgies. CIFSseners will notify clients of imaidations to open files; we are unclear if thidemds to
opened, cached files that are not currently open. CIFS allows cachdfetonites and release them only
on server notification of opportunistic lock breaks. Other clients are stalled while the server waits for the
owning client to write back. The lock taking operations and notificationsualtarbto the underlying RPC
protocol.

3. Designand Implementation

The next fev sections describe the core ideas of JC cfs and thenJBods is put togetheffirst the
cache controlletthen the client-side cache.

3.1. TheDesign

As mentioned, Styx uses QIDs to uniquely identifgrg version of gery object on the seer. The
evdution of a Styx file semr’s date could be described by an append-only logrefyeQID modified (that
is, whose version field changed) or reoh (Sucha journal need not include creatiorvents; we may
assume that the topd directory simply exists by ¢det zero and all subsequent creativenés will mod-
ify the containing directory Eachclient-side operation can be thought of asifig some inde into this
log; corversely each ofset corresponds to zero or more read operations and exactly one write oplraton.
a cache were to read this file anciteh for appends, it would kmowhen, subject to network latendo
invalidate cached data and reread from the server.

There are four agents in the Journal Callback design: the client, tleg #w\client-side cache, and
the (serer-side) cache controllerThe client, often the denel'sdevimt , and Styx server (e.g. fossil)
remain unmodified. The cache and controller act as Styx intermediators: thay isathévo Styx con-
nections and respond teeats from each.The cache and cache controller communicate using tivgir o
Styx messagesver the wire. Additionally, the cache and cache controller are each free to initiate requests
of the serer. To avoid changing the Styx hierargtas vewed from the client, we create a parallel hierar
chy, using theaname feature. Thiglesign decision allows us great flexibility going forward.

The cache controller encapsulates all inter-cache information management. It serves to inform one
cache when another has successfully carried out a mutation of server state. The cache controller is assumed
to sit between all caches and the servihat is, while typically a server is permitted to handle clients
directly, in the JC scheme we assume that the sersgle client is the cache controlfer.

Our cache controller filters the global QID journal to be specific to each connecting cache (which are
identified by UUIDs). Every QID reported to the cache is considered caélfenither it attempts to main-
tain knowledge of which server datavhdeen seen by the cacheee dter the cache disconnects; it is pos-
sible to indicate to the cache that it has been gone too long and that it must assume that all cached data is

1 For performance and security reasons, one might wish tgriiie the cache controller and serWe have
not done so largely for ease of implementation anddi dethering ourselves to a particular server.

2We havenot yet implemented a mechanism -- such as an append-only write-only file located beside the
journals -- for caches to notify the controller that a QID has been flushed. Such a mechanism would reduce
cache controller memory and unnecessary notifications.

out of date.

The cache mediates between a client and the cache conttbllél return cached contents -- file,
stat, and directory data -- quickly when present andJgelito be p-to-date. Cacheare free to adopt a
number of behaviors, including cfs-dikbehavior or simply blocking client requests, when the journal indi-
cates that theare not synchronized with the server.

An example trace of a cache (1) implicitly registering interest in & fileo and another cache (2)
causing the cached contents to beconadithcan be seen belo At point A, Cache 1 beliess itself to be
fully up to date and issues one more reaairegj the journal which blocks. By point B, the cache controller
has registered Cacheslhterest -- that is, the potential tovlkacached -- the QID Q. The second cashe’
Twstat operation at point C will be forwarded to the sgrand if the response is an Rwstat (rather than a
Rerror), the cache controller willake Cache 1 by answering the blocked read (point D) and will doaw
the success to Cache 2.

Cache 1 Cache Controller Cache 2

(Al
Tread tag=4 journal

»
-

Twak /foo

Y

Rwalk QID=Q
[B]

Twalk fid=3 /foo

)

Rwalk QID=Q

[C] Twstat fid=3 ...

)

[D] Rread tag=4 data=Q

Rwstat

3.1.1. PriorArt for Asynchronous Notifications in Styx

We @annot claim that the core idea, of using a synthetic file teai@ients, is nev. From the outset,
one of us used the documented behavior of usb(4) audio devices,

When all values fronaudioctl have been read, a zero-sizedfter is returned (the usual end-

of-file indication). A new read will then block until one of the settings changes and then report

its nev value.
as precedent. As we V@worked on the project, we ha found it to be an often repeated design sugges-
tion. Sape Mullender [prate communication] was amused by our veirtion, and Charlesdfsyth has
suggested that the idea be thought of as "publish/subscribe’ for the 21st centuryidiieve, we ae
unavare of ary prior implementation of the scheme for caching.

3.2. Thelmplementation

As mentioned, both the cache and the controller act as Styx intermediators. Since Styx offers only a
single namespace for each of message tags and fids, both of these programs maintain mapping tables so that
they can safely rerrite incoming and outgoing requests tmid collision and, in the case of the contraller
can map responses back to the appropriate cache.

The cache and cache controller are implemented in the Limbo programming language for the Inferno
operating system; tlgetotal approximately 2400 lines of code. The client-side cache is approximately 600
lines, the server approximately 900, and the remaining 800 dedicated to plumbing - mapping structures for
QIDs, Fids, and File structures, and boilerplate (module loading, argument parsing). Of note is that Plan 9,
unlike Inferno, already contains libraries to handle ynahthese functions and an implementation on that
system should rolve less code.

3.2.1. TheCache Controller

The cache controller is a constructed from a set of concurrent processes synchronizing through mes-
sage passing. On reeiig a connection from a client, the cache controller starts a number of processes to
handle the per-client statesmoteproc, tmsgfd2chan, rmsgfd2chan, andsjournal proc.

Remoteproc exports a path in its namespace as the main filesystem to its client; to do this, it con-
structs a pipe and spas an asynchronous exportfs kernel process. It then constracfsaeesses;ms-
gfd2chan andtmsgfd2chan , to corvert reads and writes on the pipe and client file descriptors into Limbo
channel messages.

The remoteproc accepts Styx T-messages from its client and R-messages frompibréfse lernel
process. It dispatches messages to the correct destination, based on a sniEhskigssages destined to
the main file system are forwarded along the pipe totpert#fs process; most messages destined to the
cache control file system are handled internally andwe@egnchronous response. Read requests on jour
nal files, havever, are handled by starting a procebandle_async_cc_read , which returns data from the
journal when it is aailable.

When a client cache first starts up and connects to a cache coritrattaches to the cache-control
file system and attempts to open its journal file, identified by a UUID. If its journal file doegistpite
attempts to create and then open it. In the cache contwéating a journal starts another process, sjour
nalproc, which mediates sending andafféring invalidation messages from the cache controller to the
client. Sjournalproc listens on oaper-journal Limbo channels; one reees cache iwvalidation esents, the
other recaies response channels framandle async_cc_read Handle_async_cc_read provides sjournalproc
with a channel in response to a client cache read on its journal. If the journay lvasstanding updates, it
sends them along thewehannel and drops its references to both tleats and the return channel. Other
wise, the reply along the return channel is withheld uméhes are wailable. In this vay, journals can con-
tinue to enqueuevents ezen when a client is not attached.

3.2.2. TheClient

The client-side cache acts as a Styx eepn its standard input/output, for its client, and as a Styx
client to the cache controlleFhe cache is constructed from a set of concurrent processes, similar to the
cache controllerThese processetinsgfd2chan, rmsgfd2chan, msg2wire, journalproc, and locasdcfs,for-
ward They also maintain the read and stat cache data structiiresgfd2chan andrmsgfd2chan are as in
the cache controller - thecorvert Styx messages to Limbo channel messadsg2wire provides synchro-
nization for the connection to the cache contrpler hat the main procesfs and the journal process
gournalproc do not interfere.

Sfsis the cache main process. It re.esiSyx T-messages from a client, typically Infereokvmnt,
rewrites the FIDs, and forwards most of those messages to the remote cache controller it is connected to.
For TStat and TRead messages, it looks up treeflie structure by its FID; the per-FID structure points to
a per-QID structure, which holds a cppf the file’s drectory entry and a reference to its read cache. So
long as the directory entry and read cache are presentrthesed to seevreads entirely locally.

Journalproc is the main journal process; on starting, it attaches to the cache camdned and
attempts to open its journal via a UUID; if the journal is not present, it creatisiinal proc then enters a
state machine, issuing Reads to the journal file and waiting for replies. Oring@ereply it extracts the
encoded QID, looks up the p&ID structure via a hash table, anddidates both the directory entry and
read cache contents for that file, thus keeping the read cache current.

4. Results

4.1. Methodologyand Environment

As a test workload, as well as a mechanism for ensuring that our cokiEdywe use our owruild
process as a benchmark. Thigdiwes runningrk and thel i nho compiler reading system headers and
our source files, and generating dirs executables. The total number and distribution of RPCs forkhe
workload is provided in the Execution Characteristics sectiom.hvpe it prawides a typical, read-hea
workload.

Measurements were taken in avfenvironments:

1. atrans-Rcific link, from a client in Baltimore to a servin Tokyo, Japan.Typical lateng in this
link was roughly 180 ms.

2. atrans-continental U.S. link, from a client in Baltimore to a sein San FranciscoTypical latenyg
here was roughly 90 ms.

3. withthe client and server both on the same machine.

RPC traces were captured witbunt -S and a tool to capture Styx protocol tracdsat | i st en.
For execution workloads, timing data, as reported lbyre, as shown is thevarage of three runs.

All jccfs measurements were &kin Inferno 4e on a Linux 2.6 host. All measurements of cfs were
taken on a nate Ran 9 CPU Server.

Results are not directly comparable between the Plan 9 and Inferno systems - the Plan 9 system hard-
ware was different than that of the Inferno systems and the Plan 9 client issueseatdifumber and dis-
tribution of RPCs to our cache. RPC counts and percent wall-clock time reduction are perhaps the most
useful statistics.

4.2. ExecutionCharacteristics

Total RPC counts, for un- and cold-cache behavior

Host Job Wak Clunk Stat Read Write Open Create+tRem OTAL
Inferno

(uncached) miall 151 83 7 99 49 62 14 465
(uncached) re-mk | 5 3 0 6 0 3 0 17
(uncached) mkuke | 28 5 0 12 0 5 14 64
(jccfs) mkall 151 83 7 139* 48 62 14 504
(jccfs) re-mk 5 3 0 3 0 3 0 14
(jccfs) mknuke | 18 5 0 18** 0 5 14 60
Plan 9

(uncached) miall 151 83 14 97 21 55 14 435
(uncached) re-mk | 5 3 0 4 0 3 0 15
(uncached) mkuke | 26 5 2 8 0 5 14 60
(cfs) mkall 151 83 14 43 21 55 14 381
(cfs) re-mk 5 3 0 4 0 3 0 15
(cfs) mknuke | 26 5 2 8 0 5 14 60

*: 139 TReads were issued; 96 were asynchronous and to the cache aname; 43 were to the main aname **:
18 TReads were issused; 7 were asynchronous and to the cache aname; 11 were to the main aname

4.3. Measuements

mk all times vs latency

Latenyy System Uncached Cold Hot

14 ms Infernoljccfs | 7.8 75s(3.8%) 6.8s(13%)

90 ms Infernol/jccfs | 49.5% 43.6 s (12%) 38.5s (22%)
180 ms Inferno/jccfs | 92.% 8.3s(13%) 73.15s(21%)
180 ms Plan 9/cfs(4 103.1s 79.4s (23%) 72.2s(30%)

re-mk times vs latency

Latenyy System Uncached Cold Hot

90 ms Inferno/jccfs | 2.8 - 18 s (36%)
180 ms Infernofjccfs | 5.3 33s(38%) 2.9s (45%)
180 ms Plan9/cfs(4) | 3.3 23s(41%) 2.3s(41%)

mk nule imes vs latency

Lateny System Uncached Cold Hot
180 ms Inferno/jccfs | 12.& 11.9s (7.0%) 6.6s (48%)
180 ms Plan9/cfs(4) | 11.4 11.1s(2.6%) 6.15s (46%)

We demonstrate a percentagealirclock time reduction roughly in line with cfs(4), though we pay a little
bit for our (unoptimized; see future work) journals.

5. Discussiomand Conclusions

Our implementation of Journal Callbacks and cache for Styx exhibits similar performance gains in
absolute time to the Plan 9 cfs cache. Also looking at the timing measurements in the previous section, as
lateng rises, both cfs and jccfs scale similarly - their mechanism of operati@nidifferent, haever.

Cfs reduces the total number of read requests. JC Cfs, while increasing the number of REbpterv
Stat and Read requests from its cache.

Compared to cfs or an uncached client, jccfs increases the total number of TRead ré&hgsts.
does jccfs exhibit anperformance gainwer an uncached client, then? The answer is that reads to the
cache control aname are not synchronous with RPCs to the main aname. When we described Styx as 'per
forming poorly’ on high-latenclinks, one the reasons is that Styx clients synchronously far RPC
responses before sending future messages, making poor use obe&'sdBandwidth-Delay Product. The
added cost of journal reads and response& sk of this gailable capacity to enable semninitiated noti-
fications.

An initial implementation of Journal Cachebacks for caching appears to be approximatéc-as ef
tive & the open-to-close cohersgncache, cfs. Moreger, Journal Callbacks are a general technique with
further applications, which we talk about in our futurerkv We haveshawvn that our technique is viable
and that een a ninimal implementation offers real-world performance gains while maintaining the Styx
protocol.

6. Future Work

There are a number ofenues of further imestigation which merit attentionFirstly, while we hae
shavn that our schemeavks, we hae ot yet shown at least one of its conjectured major stren@@es-
ondly, our journal metadata could ba&posed and/or enhanced to gredeaf Thirdly we have found,
through testing and observation, avfepportunities to impree the behavior of Inferng’ Syx client.

Fourthly, we feel we are in a good position tosgiwell-motivated suggestions for a hypotheticaktigen-
eration Styx.

6.1. On-DiskCaching

As a proof of concept, our cache does quite wellyever, it is unable to demonstrate a serious
adwantage of the JC schemeepthat of cfs(4): a cache which has been offline may quickly catch\gp.
expect an on-disk, terminal-side jccfs cache to dramatically reduce the number of RPCs generated at startup
relative o cfs(4). Ourcache controller already ensures that journals are maintained and popuéated e
after the cache has hung up or closed its journal; the on-disk cache simply wautakba more time than
we had.

6.2. ExposingNotifications to Programs

The journal callback mechanism and controliepresent on a gen mount, could be made to pro-
vide a file or file system monitoring API, similar to Linsx'not i f y[8] Unlikei noti fy, however, a
JC-based API would workver networks (NFSv3 and prior do not seem to be sufficiently capable; NFSv4
is) and could be presented as just another kernel virtuarssith ctl file, requiring no additional syscalls.

6.3. ExposingMor e Information to Caches

The current data stream in the journal file contains only QID8s is tragically little information,
allowing a cache the sole action of/@idation of cached contentsyen if it was the reason for the muta-
tion. Ewery Twrite in fact inalidates the entire file’content as well as the containing directoihis is
hardly ideal, so we would lé&to report "re-QID operations" to caches emitting mutation operatiSimsi-
larly, we ould report "small" changes to directoriegrsion increment and other stat changes, insertions,
deletions) and possiblyen files.

It will be easy to accomidate these features dgraling our (fortunately not yet standardized and docu-
mented) on-the-wire protocol to embed additional data records after each QID in the juvemate that

as long as these data are well framed (by using, e.gV &drimat), the protocol is extensible withoutwha

ing to update all caches and controllers in lockstep: a cache encountering a metadata field it does not under
stand may simply ket to invalidating all data corresponding to the QID, as if there were no ancillary
fields.

6.4. Changego devmmt or Additional Latency Reductions
We haveobserved Inferno’sevimt to generate unnecessary RPCs, such as

; pwd ;ed .
Tmsg.Walk(1,45,26,nil) Tmsg.\Alk(1,46,45,nil)
Rmsg.Walk(1,array[] of {}) Rmsg.Walk(1,array[] of {})

Tmsg.Open(1,26,0)
Rmsg.Open(1,Qid(16r8,73,16r80),8192)

Tmsg.Clunk(1,26) Tmsg.Clunk(1,46)
Rmsg.Clunk(1) Rmsg.Clunk(1)

For the pwd case, a single Tstat requestuld hare afficed. Inthecd. case, no messages shouldéa
been sent at all. Whether these traces are dusg®dy deliberate simplification of the logicdevimt is
unclear We rote, havever, that for correctness we can nao@ sending Topen messagesiothe wire,
and so the impact of an intermediator may be lower than the impact of an optimal redeterot .

We o not currently but are in a good position to, synthesize Rwalk messages to entries in cache and only
instantiate them on demandlValks that merely clone may be thought of asagk in cache. This auld

eliminate both RPCs in the cd cadeor ordinary file objects, we could also merge open requestsdp k
only one such fid operver the wire.

Further Tclunk messages may Rerrastlihe result is not meaningful if so: the fid is no longer valid and
the semantics of close() are that it cannot fail wheenga real, open fd. Since the kernel knows the open-
ness state of an fd, there is no need for the kernel to wait aTf@ilMRen it emits a TclunkWe have
shavn remarkable impneements in performance (as might beected from the RPC count table, eéo

by merely generating Rclunk messages in the cache.

6.5. Recommendationfor a Next-edition Styx

Based on the implementatiorf@t and measurements done afove havesome small recommen-
dations to mad the protocol more amenable to intermediation:

6.5.1. Standardizddentification of Synthetic Files

Currently Styx does not hae a sandard mechanism for discriminating between synthetic and real
files. Byreal files, we mean Styx objects which axpexted to read back what was written and, in the case
of single open or successfulcdusive gen, report the same contents for each read through start to*finish.
On the other hand, things éiloontrol files, named pipes, and netlk connections, are "synthetic" -- that is,
we are not surprised, and do not assume another concurrentheserread at a fixed offset returnsfeif-
ent data or an error.

This lack of differentiation means that currently care must bentalk to what portions of the namespace
(equivalently, what serers) are subject to (caching) intermediatidfor example, cfs intermediating an
imported /net would almost surely render the /net so imported inoperable.

A previous proposal, to add a bit to the type field of the QID to indicate the syntheticness (or realness) of an
object was previously put foawd [9] and met with some resistance. There is an undocumentashttom

that synthetic files ha a QD version of zero.We propose that this be a requirement of correctesstv

With objects so labeled, our cache and controller will be able to correctly when to simply pass
requests through to the server.

6.5.2. Standardizeor Report Mutation Effects on QIDs

Currently in response to a mutation, our cache controller madi @& fid to the sers’s file and re-
collect the stat information, despite alreadywimy the mutated object(s)ate. In particular this walk is
necessary to rewer the version field, which is entirely under server contidk therefore suggest that a
next-generation Styx standardize on the already traditional behavior of merely incrementing the version on
evay mutation gent. Should this standardized behavior be seen as unacceptable, we suggeset instead that
all mutating Styx RPCs be adjusted to return the QID of objects mutated -- Rcreate must cor@ibstw
all others just one.

We rote in passing that there has been some discussion of maksignvfields propagate to root. If this
behaior were @er adopted, our cache and cache controller could certainly be made to work with it, b
since it is not likely to be standardized we propose that servers doing anything atypical witkrsfenv

field be forced to declare so in theirdRsion messages, so that (our) intermediators may either adopt the
propagation of updates to root behavior or fall back to more pessimistic but safe behaviors.

3 Directories do not permit seeking and are generally considered "feal'hon-QTDIR objects, we may
further require that all reads at the same offset, again with only oxe i return the same contents.

-10-

7. Acknowledgements

We would like to acknovledge David Eckhardt for getting the idea of journals planted in one of our

heads manyears ago.

References

1. RobPike and Dennis RitchieThe Styx Architecture for Distributed Systems.

2. Franciscd. Ballesteros, Gorka Guardiola, Enrique Soriano, and Spyros Lalis, “Op: Styx batching for
High Lateng Links,” IWP9 2007.

3. Network File System. http://nfs.sourceforge.net/.

4. J.H. Morris, M. Satyanarayanan, M. H. Connér H. Howad, D. S. Rosenthal, and B. Snith,
“Andrew: A distributed personal computingw@mnment.,”Commun. ACM, 29, 3, pp. 184-201 (Mar
1986).

5. L. Mummert and M. Satyanarayanafyiable Granularity Cache Coherence.

6. Common Internet File System. http://msdn.microsoft.com/en-us/library/aa365233(VS.85).aspx.

7. Charled=orsyth,Re: [9fans] 9P2000 and p9p. http://9fans.net/arctae/2007/04/252.

8. Robert_ove, Kernel Korner - Intro to inotify. http://www.linuxjournal.com/article/8478.

9. Franciscd Ballesteros|[9fans] QTCTL?. http://9fans.net/arctae/2007/10/539.

