
Towards a Safe, High-
Performance Heap Allocator

Lessons from CHERIfying snmalloc (so far)

David Chisnall

1

Building the object abstraction

2

Many programming languages, from C through Haskell, have some kind of “object”
notion.

2

Building the object abstraction

3

These objects are largely defined by their in-language connectivity to each other and
from some privileged notion of roots, such as thread stacks. These objects
intrinsically have spatial extent and an extrinsic temporal extent (with the limits being
either explicitly programmer-managed or abstracted away, say through garbage-
collection).

3

Building the object abstraction

4

To lower that abstraction to a von Neumann or Harvard architecture, we use a heap
allocator, which places those objects in contiguous ranges of memory. This
introduces a novel relationship between objects: spatial adjacency.

4

Building the object abstraction

5

Free regions for reuse must be
tracked by allocator

But, of course, as we said, objects come and go, and so our heap allocator must track
which regions are allocated for the program’s use or free, which is really another way
of saying allocated for future use. This tracking usually involves some in-band
metadata, such as linked lists plumbed through the “free” space in the heap. By
necessity, the allocator must, itself, keep its own root pointers to these “free”
region(s).

5

Less-than-full abstraction

6

Spatial overflow
to different allocation

Spatial overflow
to free space

Retained pointer to
to-be-reused memory

When combined with other unsafe aspects of the language or bugs in safe languages’
runtimes, spatial adjacency can lead to overflow or out of bounds accesses, which are
particularly exciting when the objects are from different facets of the application. The
use of heap grooming techniques can increase the probability that a given overflow
hits an intended target.

1. Notably, overflowing into free space is possible, which can corrupt the allocator’s
state. Of course, there’s nothing requisite about immediate proximity, and wider
traipsing through the heap is certainly possible.

2. Reuse of memory for new objects also creates yet another new relationship
between objects, one of temporal aliasing. This, in turn, creates its own family of
risks, including disclosing old application state to a different facet and use of
retained pointers to freed objects. Again, grooming techniques can increase the
probability of leaking interesting state or performing accesses to reincarnated
memory whose new and old types are especially interesting in combination.

This list is hardly exhaustive and there are myriad other challenges that emerge as
well.

6

All of this might be fine, in principle: whatever is going to go wrong is going to happen
inside one application. But applications rarely handle only data produced by the user
or agent running the program, and so different facets of the application naturally
encounter data from less-trusted sources, and the less-than-full abstraction we have
obtained by lowering our object graph to integer-indexed memory this way turns
parser bugs into weird machines for arbitrary code execution.

Phrack Magazine: Vudo Malloc Tricks - 2001
Bugtraq: The Malloc Maleficarum (seclists.org) - 2005

6

http://phrack.org/issues/57/8.html
https://seclists.org/bugtraq/2005/Oct/118

Towards full abstraction for the heap

Enforce
reachability in the
abstract machine

Spatial bounds

No temporal
aliasing

No stale
pointers in new

allocations

Protect metadata
against corruption

Only expose
abstract

machine state

Handle API
misuse

Double free

Free in the
middle of an

object

Free a non-heap
address

7

What would we need to be true of our heap implementation for it to be a fully
abstract realization of the object graph abstract machine view of the world?

1. We’d need the objects it allocated to behave like abstract objects: with defined
spatial extent, without surprise mystery pointers inside, and without temporal
confusion.

2. The allocator does not exist within the abstract machine, and since it doesn’t
exist, it can’t have metadata.
When we implement an allocator, the system needs to continue to act like the
allocator doesn’t exist.
Most challengingly, this means that our standard trick of in-band metadata is on
very thin ice.

3. And then there’s the possibility of API misuse, and in particular “Incorrect free”.
Thankfully, that’s almost all the abuse we need to consider, but, historically, it’s
been a huge problem, fouling up allocator metadata in yet more exciting ways!

7

Heap allocator is a core part of the TCB

8

Arena *

Shared Heap

Allocator (TCB)

Client (untrusted)

Allocated Object *Expose for client

Heap Metadata

The picture that emerges is one in which the allocator is part of the TCB, isolated
from untrusted client(s). The allocator holds and protects, by design, authority to the
entire shared heap, as well as its own internal metadata. The allocator defines the
degree to which this shared heap is a leaky or fully abstract implementation of the
graphical object model.

What we are looking for, then, is a set of mechanisms for isolating the allocator and
for enforcing invariants within the shared heap region(s).

8

snmalloc
A High-performance Allocator with Lightweight Hardening

9

(@ 5m00)

snmalloc is, first and foremost, a high-performance allocator that has added security
mechanisms while aiming to preserve its performance. We have used it as our
CHERIfication baseline because we had extensive local expertise and opportunity for
co-design and because we are aware that CHERI will impose some overheads.

So, let’s quickly go over some of the inexpensive defenses that we can add without
CHERI.

9

snmalloc pre-CHERI defenses

Threat Pre-CHERI

Spatial separation General Canaries

Information disclosure

Temporal aliasing

Metadata
access or
corruption

Out-of-band

In-band

Incorrect free

10

Canary free objects and occasional tests of liveness

Randomized defenses Deterministic w/ issues Solved (!?)

To detect out-of-bounds stores, we intersperse random “canary” objects within the
heap and occasionally validate that those canaries are still alive and with us. In
principle, we could, without much effort, leave the occasional gaps between pages as
well, but only at a quite coarse granularity in the heap.

10

snmalloc pre-CHERI defenses

Threat Pre-CHERI

Spatial separation General Canaries

memcpy Checked

Information disclosure

Temporal aliasing

Metadata
access or
corruption

Out-of-band

In-band

Incorrect free

11

Look up allocator metadata for source & dest!

Canary free objects and occasional tests of liveness

Randomized defenses Deterministic w/ issues Solved (!?)

In the specific context of memcpy, a popular gadget since it may have a controllable
length parameter, we do have another trick up our sleeve: we can have memcpy (and
memmove) integrate with the allocator and look up internal metadata. That way, at
least these very common byte-slinging functions enforce heap spatial bounds!

11

snmalloc pre-CHERI defenses

Threat Pre-CHERI

Spatial separation General Canaries

memcpy Checked

Information disclosure 0 on alloc (optional)

Temporal aliasing

Metadata
access or
corruption

Out-of-band

In-band

Incorrect free

12

Opt-in zero when allocating

Canary free objects and occasional tests of liveness

Randomized defenses Deterministic w/ issues Solved (!?)

Look up allocator metadata for source & dest!

snmalloc can, optionally, zero memory before handing it out. That’s a pretty good
defense against revealing someone else’s data, but being opt-in isn’t great and it’s
also not actually a guarantee that allocations return zero, in the face of temporal
aliasing, but still, it’s pretty good.

12

snmalloc pre-CHERI defenses

Threat Pre-CHERI

Spatial separation General Canaries

memcpy Checked

Information disclosure 0 on alloc (optional)

Temporal aliasing Randomized free
queues

Metadata
access or
corruption

Out-of-band
Randomized location
& guard pages

In-band

Incorrect free

13

Canary free objects and occasional tests of liveness

Randomized defenses Deterministic w/ issues Solved (!?)

Opt-in zero when allocating

Look up allocator metadata for source & dest!

Randomization to frustrate attacker’s attempts to locate
objects of interest

We can deploy randomization of heap layouts to help with two different parts of the
problem.

First, snmalloc shuffles the order in which it allocates or reallocates objects (and
takes steps to ensure that it won’t shuffle a very small number of objects). This aims
to frustrate heap grooming.

Second, snmalloc randomly places its metadata amongst guard pages, and preserves
the type distinction between data and metadata.

13

snmalloc pre-CHERI defenses

Threat Pre-CHERI

Spatial separation General Canaries

memcpy Checked

Information disclosure 0 on alloc (optional)

Temporal aliasing Randomized free
queues

Metadata
access or
corruption

Out-of-band
Randomized location
& guard pages

In-band
Pointer obfuscation &
lightweight MAC

Incorrect free ↑ & (opt-in) check of
ptr to object start

14

Randomization to frustrate attacker’s attempts to locate
objects of interest

Optional “encrypt and MAC” on in-band metadata:
minimizes disclosure and detects tampering (whp)

“Same object twice” DF, not “temporally aliased”

Canary free objects and occasional tests of liveness

Randomized defenses Deterministic w/ issues Solved (!?)

Opt-in zero when allocating

Look up allocator metadata for source & dest!

snmalloc also (optionally) has a (novel?) lightweight “encryption with MAC” scheme
for its in-band metadata.

By obfuscating pointer bits underneath an allocator-private secret, it minimizes
disclosure of heap pointers.
The MAC half also relies on an allocator-private secret and validates links between in-
band metadata objects, and, so, it serves to detect most forms of corruption as well
as double frees (because you can’t have two distinct predecessors in what should be
a linear order).

(Again, because integer pointers are just integers, snmalloc’s double free detection
only catches the “same object twice” case. It cannot tell, for an allocated object, if
the pointer passed to free traces its provenance back to the most recent allocation or
a prior one.)

14

Enter CHERI

(@ 7m30)

So, what does CHERI get us, and why are we so eager to CHERIfy snmalloc?

15

CHERI capabilities capture provenance

16

Arena

Shared Heap

Allocator (TCB)

Client (untrusted)

Allocated Object

Sub-object

CSetBounds

CSetBounds

Heap Metadata

Spatial adjacency only as addresses;
capabilities do not authorize accesses beyond bounds!

Key property: A heap pointer passed back to free will have bounds less than or equal
to the bounds of an allocated object.
Going back to our earlier picture, of the allocator as part of the TCB, we see that
CHERI is immediately useful, as it gives us an architectural mechanism to ensure that
clients of the allocator cannot exploit the spatial adjacency or proximity of heap
objects.

Addresses are not secret – it would be impractical to do so in C – so software can tell
that objects happen to be adjacent. That is, our heap implementation is not quite
fully abstract, but no amount of address arithmetic will transmute a pointer to one
heap object into another.

16

What about free()?

• Bounding in malloc() means free() can’t use argument as pointer!
• Need to reach metadata via allocator-private state (global/TLS/handle)

17

obj

ptr

hdr meta obj

ptr

obj obj obj obj

∼ 0 mod 16 MiB

Per-object headers? Per-segment headers?

However, bounding capabilities handed out by a CHERIfied heap allocator frustrates
very common design patterns. Traditionally, the allocator was allowed and expected
to take heap object pointers out of bounds to access the allocator’s own metadata.

1. CHERI does not give us a way to have our heap allocators directly amplify the
returned pointer, and so we must appeal to some other construction.

17

free() requires amplification

• snmalloc’s central internal data structure is its “Page Map”
(VA / 16KiB) ↦ Per-Slab or Per-large-object Metadata

• Convenient place to stash widely-bounded pointers

18

Page Map

Slab/Object Metadata

Data Arena

During the repeated rounds of co-design that took place between snmalloc and its
current CHERI-enabled form, snmalloc’s global data structure, its “Page Map”,
changed from storing data about 16MB chunks to storing pointers to metadata at a
16KB granularity. This optimization, which reduced the number of loads and
branches on the free hot path on non-CHERI architectures, turns out to also be very
convenient for CHERI: we can hold widely-bounded pointers within the slab/object
metadata structures for allocated regions and within the pagemap itself for
deallocated regions.
Already need to do these loads to find the correct freelist to add the object to, so no
additional memory accesses.

18

Don’t stare into the void*

mmap()
Arena

Allocated
Object

void * void *

void *
19

free()
pointer

But notice that we now speak of “widely-bounded” or “high-authority” pointers,
drawing a distinction between pointers to the allocation arena and those pointing to
individual objects within.

1. These dramatically different things both have the same C type: “void *”.
It is crucial for security, especially on CHERI, that we not reveal an arena-bounded
pointer to the client; if they are both “void *”, auditing that is harder.

2. In the other direction, anything the client claims to be a pointer to a (to be) freed
object, is, again, a void *.

19

mmap()
Arena

Backend
Chunk

Frontend
Chunk

Slab Fast
Free List

Allocated
Object

Don’t stare into the void*

void * void *void * void * void *

free()
pointer

Freed
Object

Slab Fast
Free List

Frontend
Chunk

Backend
Chunk

void *void * void * void * void *

20

Worse, that’s just a fraction of the real story. As with most high-performance heap
allocators, snmalloc has a pipeline of stacked allocators internally, partitioning the
large arenas into chunks, parceling chunks out to threads, turning some chunks into
slabs of objects, and so on. Again, all of these are probably represented in C as…
“void *”.

20

free()
pointer

Freed
Object

Slab Fast
Free List

Frontend
Chunk

Backend
Chunk

mmap()
Arena

Backend
Chunk

Frontend
Chunk

Slab Fast
Free List

Allocated
Object

Don’t stare into the void*

Arena<void> void *Chunk<void> Chunk<void> Alloc<Free>

void *Chunk<void> Alloc<Free> Wild<void>Chunk<void>

Safe affordances:
CapPtr<T, BOut> capptr_bound(CapPtr<U, BIn>, size_t); // BOut ≤ BIn
void* capptr_reveal(Alloc<void>); 21

CapPtr<T,B> aka B<T>: T* with static bound annotation B (Arena > Chunk > Alloc > Wild)

snmalloc is written in C++, so we can use a richer type system! We introduce
“CapPtr<T,B>”, or "B<T>”, a pointer to type T with static bound annotation B. Our
bounds ontology captures the role of the pointer (whether its CHERI bounds are
expected to be the whole arena, an individual allocation, or something in between)
and its domestication (ensuring that we pass wild user-sourced or user-exposed
pointers through defensive measures before they are presumed tame for
dereference). Our ontology is reasonably extensible to track other aspects as well.

In addition to discouraging disclosure bugs, where we have failed to apply bounds to
pointers given to clients, CapPtr also ensures that we use suitably amplified views of
larger chunks as slabs are repurposed internally within snmalloc. That is, we are
guided by the type system to fetch the widely bounded internal pointers held in our
metadata, since we cannot pass too-narrow pointers backwards through our internal
pipeline.

1. While there are, out of necessity, “unsafe” operations for constructing and
destructing CapPtr wrappers, these are used sparingly and generally within safe
affordances like capptr_bound, which ensures that the spatial role of its output is
more restrictive than that of its input, or like capptr_reveal, which exposes a

21

void * from a CapPtr that has been refined down to being a single allocation.
These safety requirements are imposed statically, even on non-CHERI architectures;
getting them wrong is a compilation failure and their portability should help to ensure
that snmalloc remains CHERI-aware even as it undergoes third-party development.

21

Initial CHERIfication of snmalloc

Threat Pre-CHERI CHERI

Spatial separation General Canaries Set bounds

memcpy Checked

Temporal aliasing Randomized free
queues

←

Information disclosure 0 on alloc (optional) ←, CapPtr

Metadata
access or
corruption

Out-of-band
Randomized location
& guard pages

Capability
reachability

In-band
Pointer obfuscation
& lightweight MAC

Seal*
& MAC

Incorrect free ↑ & (opt-in) check of
ptr to object start

↑ &
←’s check

23

CHERI spatial bounds do their thing!

Clients not linked to snmalloc globals,
but arena caps can still be leaked

Capability bits are precious; can’t obfuscate,
but can seal (not yet done) and can still MAC

Randomized defenses Deterministic w/ issues Solved (!?)

CapPtr eases auditing

Still just randomized defenses

(@ 13m00)

So, here’s our current state of having CHERIfied snmalloc.

1. CHERI gives us some green in the table, since spatial bounds are CHERI’s bread
and butter.

2. CapPtr gives us increased assurance that snmalloc is correctly CHERI-aware.

3. Capability reachability should mean that client programs cannot see library-
private globals, and so the internal metadata is reasonably protected at the
language level. However, the ABI still has snmalloc sharing stacks with the client,
so that’s an open challenge.

4. And last, while we lose the ability to encrypt pointers, we gain the ability to seal
them, and we can still MAC links within metadata.

5. Unfortunately, we’re still left with just randomization as our defense against
temporal abuses.

23

Cornucopia, Take 2
CHERI heap temporal safety

24

(@ 14m00)

Which brings us to Cornucopia, our approach for deterministic mitigation of temporal
aliasing.

24

Address-space quarantine

Free Allocated

25

malloc

free

To pull off a deterministic defense against temporal aliasing, we’re going to expand
the usual view of heap memory, in which things are either free or allocated and just
bounce back and forth…

25

Address-space quarantine

Free

AllocatedQuarantined

26

malloc

free

revoke

By introducing a new state – quarantined. Address space becomes quarantined when
the application calls free() and only actually becomes free (ready for allocation) again
after a global sweep through the application’s memory.

This sweep will remove capabilities pointing into quarantine. Since sweeping is global
and involves testing every capability in the address space, we allow quarantine to
accumulate for a while and make each revocation pass process a batch of
quarantined address space at once.

26

Cornucopia quarantine & revocation

27

• Application free()-s object, might retain references.

• Express quarantine by painting shadow bitmap
• Live and free objects have 0 shadow bits.

• Eventually, ask kernel to revoke stale caps
• Sweep AS & remove caps w/ base address shadow bit set

• After revocation, stale caps gone,
• Now safe to clear shadow bits, &

• re-issue unaliased address space!

Kernel

Stack

Globals

Heap

Shadow

Registers

So, how do we do this?

1. Cornucopia exposes a shadow bitmap that allocators can use to mark address
space held in quarantine.

2. Eventually, userspace requests the kernel to interpret that bitmap and remove all
capabilities pointing to memory with set shadow bits.

3. Once the shadow has been imposed on the set of capabilities, it is safe for the
allocator to…

4. Clear the shadow bits, and…
5. Re-issue alias-free address space!

Of course, revocation is expensive, so we don’t call it after every free(). Instead, we
“quarantine” address space until a significant fraction of the heap is quarantined.
The cost of a revocation pass is roughly independent of the quarantined address
space or number of capabilities revoked; the bulk of the time is spent in finding and

27

testing capabilities.

The shadow bits also give us a defense against Incorrect free, even in highly
decoupled/per-thread allocators like snmalloc: we LL/SC CAS the first word of the
shadow that needs to change and bail if the bits are already set.
The same atomic sequence also guards us against concurrent revocation, where the
shadow is clear but the pointer given to free is revoked.

27

New architecture
Per-page capability load generations

28

TTBR PD PT Phys mem

0

1

0

0

1

1-bit generation counter in core

… and in each PTE

Trap: tag set, gen ≠

No trap: tag clear

No trap: tag set, gen =

Loads trap if (core gen ≠ source page PTE gen) and (loaded CHERI tag is set)

The first Cornucopia design, published at IEEE S&P 2020, demonstrated viability but
suffered from large pause times. We have subsequently introduced an architectural
notion of capability load generations. This feature is available in both CHERI-RISC-V
and Morello (where it was a pretty late addition, so thanks to Arm!) and our
implementation of revocation will use it by default.

1. The system tracks a generation bit in each CPU core and in each PTE.

2. If the core loads a tagged capability through a PTE whose generation bit does not
match that of the core, the processor raises a trap.

Data dependence means independent instructions after load may not retire until
CHERI tag value is available to be checked. PTE generation value available as part of
the translation.

28

Revoking with capability load generations

29

0

1

0

0

1

0

01

1

1

1

1

Revocation begins by stepping
global load generation on all cores

As loads cause traps, sweep per page
and update PTE generation

Background scan visits all pages w/ caps,
updates PTE generation

TTBR PD PT Phys mem

This feature lets us revoke a page of capabilities just in time, as the application
accesses that memory.

Steady state, when we’re not revoking, is all generation bits equal

1) Revocation begins by incrementing the in-core generation. Now all capabilities
are considered untested.

2) Sweep on pages as traps arrive, mark them as up to date.

3) Visit pages in background as well (currently done with a dedicated thread, so
takes advantage of SMP systems w/ idle core)

4) Eventually, back in the steady state with all generations equal.

(Optimization: pages known to not contain capabilities are not brought up to date,
but generation bits can’t matter)

29

Threat assessment w/ CHERI & cornucopia

30

Threat CHERI CHERI+Revocation

Spatial separation Set bounds ←

Temporal aliasing Randomized
free queues

Quarantine & revocation

Information disclosure 0 on alloc 0 on de-quarantine

Metadata
access or
corruption

Out-of-band
Capability
reachability

←

In-band
Seal*
& MAC

Reuse only after
revocation

Incorrect free ↑ & (opt-in)
ptr check

Interlocks w/ quarantine

Zeroing post quarantine implies 0 at alloc,
but leaves quarantine full of junk.

Address space quarantine & revocation
eliminates dangling pointers

Quarantine tracked out-of-band;
metadata in-band only once unaliased

At entry to quarantine:
pointer validation & atomic claim of AS

Randomized defenses Deterministic w/ issues Solved (!?)

30

Very early revocation benchmarks

• An unoptimized implementation, no statistical power; do not quote!

• SPEC CPU2006 on Morello w/ load generations

31

Wall time gobmk 13x13 astar BigLakes2048 omnetpp xalancbmk

Single core 0.69% 1.7% 24% 23%

Revocation offload (SMP) 0.44% 1.1% 12% 20%

So, we have all this machinery implemented… how much does it cost to run?

Looking at some of the worst-case tests of SPEC CPU2006, we see that even in some
“worst cases” it costs barely anything at all, while for others we’re starting to see
significant overheads approaching 20% wall clock.

OK, that’s not “turn it on in production” levels of performance, but it’s likely useful for
high-value targets.

We think some engineering can bring the costs down some, but we have also been
thinking about an architectural extension that may simplify software and give an
order of magnitude overhead improvement.

31

CHERI+MTE

Memory colouring for faster and better temporal safety

Which brings us to memory colouring.

32

Pointer

What is memory colouring?

Granule

Granule

Granule

Addressable
memory granules

(typically 16 bytes)

Non-addressable
colour (typically 4

bits)

Colour value embedded
in the ‘spare’ top bits of

a pointer.

Granule

Granule

Granule

Granule

Granule

Main memory

Pointers may access
granules only if the

colours match

33

Beyond Morello:
non-orthogonal CHERI+MTE in heaps

Arena

Shared HeapCapability colour

Memory granule colour

Allocator (TCB)

Client (untrusted)

Capability (allocated object)

Capability (allocated object)

Capability (freed object)

Heap Metadata

Change colour: inline metadata

In our proposed non-orthogonal composition of MTE and CHERI, colour bits become
part of the capability metadata, and so are protected against tampering. Let’s see
how this new feature could improve Cornucopia.

1) On allocation, allocator derives a bounded, coloured capability to heap memory
and grants this to the client.
The distinguished “rainbow” colour value is allowed to derive capabilities of any
colour and change the colour of memory.
Other colours can only produce the same colour progeny and cannot change
memory’s colour.

2) The client is then free to use the derived capability, and eventually frees it.

3) The allocator uses its elevated authority to recolour memory, preventing the
client’s valid capability from reaching memory. (Can zero memory itself with
little/no additional cost at the same time.)

34

4) Recolour-on-free closes UAF window, which gives a better debugging story, and
enables secure in-band metadata, simplifying allocator design.

5) CHERI handles the spatial safety concerns, so adjacent heap objects can have the
same colour without loss of security.

6) Re-allocation proceeds as last time, with the allocator constructing a new
capability of the right colour for the client. (Any in-band metadata cleared before
return.)

7) Clients cannot change the colour of their capabilities, nor can they recolour
memory.

• Mismatching loads trap; data dependence may delay retirement of subsequent
independent instructions, but no other costs.
Mismatching stores can fizzle: can retire immediately and will be dropped from the
store buffer rather than updating in L1. Some complexity around store-to-load
forwarding (wait, don’t trap, if colours mismatch?), but should hide latency of fetch
for colour comparison.

• A purpose-built atomic compare-and-decrement-colour instruction catches would-
be double-frees and handles concurrent interaction with the revocation.

• Even 1-bit “scaled down” MTE has useful security properties (closes UAF window)
and simplifies software design (allows in-band metadata) but loses performance
win of delayed revocation

34

Quarantined

Colouring & Revocation

35

Free

AllocatedRecolour
last colour

malloc

free

reuse

revoke

Putting everything together, CHERI and memory colouring let us give out spatially-
bounded pointers to heap objects at particular colours.

1. When those objects are freed, we can recolour their backing memory, invalidating
pointers to free memory.

2. If we have not exhausted the colour space, memory can be queued for reuse
immediately including in-band metadata! This means that address space enters
quarantine at roughly 1/colours the rate it used to!

3. When we have exhausted the colour space for a given piece of memory, it is
instead unmapped, if possible, and the address space held in quarantine.

4. Only when we are close to exhausting address space or when mapped memory is
sufficiently fragmented must we run the revoker, which then makes address space
safe for reuse.

Therefore, address space enters quarantine at a rate inversely proportional to the
number of colours available.

35

snmalloc CHERI+MTE threat assessment

Threat CHERI+Revocation CHERI+Rev+MTE

Spatial separation Set bounds ←

Temporal aliasing Quarantine & revocation Recolour & ←

Information disclosure 0 on de-quarantine 0 on free

Metadata
access or
corruption

Out-of-band
Capability reachability ←

In-band
Reuse only after
revocation

Reuse only after
recolouring

Incorrect free Interlocks w/ quarantine Interlocks w/
recolouring

36

Zero-on-free combines w/ recolouring,
clears stale caps, & is safe from client

Recolouring reduces
quarantine pressure

Quarantine/free state in-band again!

Similar atomic sequence

Randomized defenses Deterministic w/ issues Solved (!?)

As we just saw, the ability to recolor memory saves us from having to quarantine
memory except when colours are exhausted. Sound recolouring requires a very
similar atomic sequence as was needed in Cornucopia, and so we continue to catch
incorrect frees as part of our operation.

1. Because we can safely reuse memory immediately, it makes sense to zero the
memory while recolouring. This has the advantages of clearing out stale
capabilities while being safe from client tampering, so memory is definitely still
zero once we hand it back out to the client.

2. Another benefit of safe immediate reuse is that the allocator can, even when
client-useable colours are exhausted, repurpose returned memory for its own
use. This means we no longer need to track quarantine out of band and can
safely use in-band metadata even to track quarantine.

36

snmalloc with CHERI summary

Threat Pre-CHERI CHERI CHERI+Revocation CHERI+Rev+MTE

Spatial separation General Canaries Set bounds ← ←

memcpy Checked

Temporal aliasing Randomized free
queues

← Quarantine & revocation Recolour & ←

Information disclosure 0 on alloc (optional) ← 0 on de-quarantine 0 on free

Metadata
access or
corruption

Out-of-band
Randomized location
& guard pages

Capability
reachability

← ←

In-band
Pointer obfuscation
& MAC

Seal*
& MAC

Reuse only after
revocation

Reuse only after
recolouring

Incorrect free ↑ & (opt-in) check of
ptr to object start

↑ &
←’s check

Interlocks w/ quarantine Interlocks w/
recolouring

37

Randomized defenses Deterministic w/ issues Solved (!?)

So, by way of reminder, here’s what we have done and hope to do with further
research and engineering of revocation: a high-performance heap allocator that
attempts to deliver a deterministic, mostly-abstract lowering of the object graph
model.

37

Current state of CheriBSD temporal safety

• snmalloc has baseline CHERI support (no quarantine)
• Composes with “mrs wrapper” library providing a form of quarantine
• Active work towards integrated quarantine

• Available for experimentation now, from source:
• Kernel, userspace support, mrs, & integrated dlmalloc

• Next CheriBSD release (October) should have initial support:
• Baseline support in userspace, bypassed on default non-Cornucopia kernels
• 2nd, Cornucopia-enabled kernel as boot option
• LD_PRELOAD malloc(s) and mrs wrapper as optional packages

38

38

One more thing…

39

https://aka.ms/smallestcheri

39

https://aka.ms/smallestcheri

	Slide 1: Towards a Safe, High-Performance Heap Allocator
	Slide 2: Building the object abstraction
	Slide 3: Building the object abstraction
	Slide 4: Building the object abstraction
	Slide 5: Building the object abstraction
	Slide 6: Less-than-full abstraction
	Slide 7: Towards full abstraction for the heap
	Slide 8: Heap allocator is a core part of the TCB
	Slide 9: snmalloc
	Slide 10: snmalloc pre-CHERI defenses
	Slide 11: snmalloc pre-CHERI defenses
	Slide 12: snmalloc pre-CHERI defenses
	Slide 13: snmalloc pre-CHERI defenses
	Slide 14: snmalloc pre-CHERI defenses
	Slide 15: Enter CHERI
	Slide 16: CHERI capabilities capture provenance
	Slide 17: What about free()?
	Slide 18: free() requires amplification
	Slide 19: Don’t stare into the void*
	Slide 20: Don’t stare into the void*
	Slide 21: Don’t stare into the void*
	Slide 23: Initial CHERIfication of snmalloc
	Slide 24: Cornucopia, Take 2
	Slide 25: Address-space quarantine
	Slide 26: Address-space quarantine
	Slide 27: Cornucopia quarantine & revocation
	Slide 28: New architecture Per-page capability load generations
	Slide 29: Revoking with capability load generations
	Slide 30: Threat assessment w/ CHERI & cornucopia
	Slide 31: Very early revocation benchmarks
	Slide 32: CHERI+MTE
	Slide 33: What is memory colouring?
	Slide 34: Beyond Morello: non-orthogonal CHERI+MTE in heaps
	Slide 35: Colouring & Revocation
	Slide 36: snmalloc CHERI+MTE threat assessment
	Slide 37: snmalloc with CHERI summary
	Slide 38: Current state of CheriBSD temporal safety
	Slide 39: One more thing…

