
Tradition Sandstorm 95% of CVEs?

Research Report: Mitigating LangSec

Problems With Capabilities

Or: How Sandstorm Taught Me to

Stop Worrying and Love the Web

Nathaniel Wesley Filardo

May 26, 2016

1 / 14



Tradition Sandstorm 95% of CVEs?

One-Slide Elevator Pitch

Actually two, related, pitches:

� Sandstorm’s capability-based design enables very
fine-grained sandboxing of application software, which
largely (sometimes completely!) mitigates the majority of
LangSec bugs seen in practice.

� Capability systems offer the potential to turn difficult
authorization decisions into LangSec’s bread and butter:
syntactic constraints on requests; every well-formed
request which can be stated is authorized.

2 / 14



Tradition Sandstorm 95% of CVEs?

Traditional Web Application Hosting
The Sad Story

Consider a standard LAMP-esque stack.

� Many co-hosted applications at different paths.

� Maybe have separate kernel UIDs when executing?

� System design encourages ambient authority:

� esp. to filesystem, network resources.

� Database processes per-server

� Own notion of users (typ. “app”) and permissions.

� Client authn, authz up to each hosted application.

� Even SSO systems typically require application buy-in.
� Groups, ACLs, etc. per application.

� Web’s failings left to apps: XSRF, XSS, SRI, . . .

3 / 14



Tradition Sandstorm 95% of CVEs?

Traditional Web Application Hosting
The Sad Story

Consider a standard LAMP-esque stack.

� Many co-hosted applications at different paths.

� Maybe have separate kernel UIDs when executing?

� System design encourages ambient authority:

� esp. to filesystem, network resources.

� Database processes per-server

� Own notion of users (typ. “app”) and permissions.

� Client authn, authz up to each hosted application.

� Even SSO systems typically require application buy-in.
� Groups, ACLs, etc. per application.

� Web’s failings left to apps: XSRF, XSS, SRI, . . .

3 / 14



Tradition Sandstorm 95% of CVEs?

Traditional Web Application Hosting
The Sad Story

Consider a standard LAMP-esque stack.

� Many co-hosted applications at different paths.

� Maybe have separate kernel UIDs when executing?

� System design encourages ambient authority:

� esp. to filesystem, network resources.

� Database processes per-server

� Own notion of users (typ. “app”) and permissions.

� Client authn, authz up to each hosted application.

� Even SSO systems typically require application buy-in.
� Groups, ACLs, etc. per application.

� Web’s failings left to apps: XSRF, XSS, SRI, . . .

3 / 14



Tradition Sandstorm 95% of CVEs?

Traditional Web Application Hosting
The Sad Story

Consider a standard LAMP-esque stack.

� Many co-hosted applications at different paths.

� Maybe have separate kernel UIDs when executing?

� System design encourages ambient authority:

� esp. to filesystem, network resources.

� Database processes per-server

� Own notion of users (typ. “app”) and permissions.

� Client authn, authz up to each hosted application.

� Even SSO systems typically require application buy-in.
� Groups, ACLs, etc. per application.

� Web’s failings left to apps: XSRF, XSS, SRI, . . .

3 / 14



Tradition Sandstorm 95% of CVEs?

Traditional Web Application Hosting
The Sad Story

Consider a standard LAMP-esque stack.

� Many co-hosted applications at different paths.

� Maybe have separate kernel UIDs when executing?

� System design encourages ambient authority:

� esp. to filesystem, network resources.

� Database processes per-server

� Own notion of users (typ. “app”) and permissions.

� Client authn, authz up to each hosted application.

� Even SSO systems typically require application buy-in.
� Groups, ACLs, etc. per application.

� Web’s failings left to apps: XSRF, XSS, SRI, . . .

3 / 14



Tradition Sandstorm 95% of CVEs?

Traditional Web Application Hosting
The Impact of LangSec Bugs

In this environment, what do LangSec bugs buy an attacker?

� Outright authn/authz confusion:
� Authn/authz cookie leak & replay
� XSRF & XSS

� Path traversals:
� Access to intra-application resources (almost surely)
� Access to other applications’ resources (maybe)
� Access to system configuration (likely)

� Code injection:
� Probe file system, loopback network
� Make remote network connections
� Probe local kernel for vulnerabilities

Too easy for bug in one application to impact entire server.

4 / 14



Tradition Sandstorm 95% of CVEs?

Traditional Web Application Hosting
The Impact of LangSec Bugs

In this environment, what do LangSec bugs buy an attacker?

� Outright authn/authz confusion:
� Authn/authz cookie leak & replay
� XSRF & XSS

� Path traversals:
� Access to intra-application resources (almost surely)
� Access to other applications’ resources (maybe)
� Access to system configuration (likely)

� Code injection:
� Probe file system, loopback network
� Make remote network connections
� Probe local kernel for vulnerabilities

Too easy for bug in one application to impact entire server.

4 / 14



Tradition Sandstorm 95% of CVEs?

Traditional Web Application Hosting
The Impact of LangSec Bugs

In this environment, what do LangSec bugs buy an attacker?

� Outright authn/authz confusion:
� Authn/authz cookie leak & replay
� XSRF & XSS

� Path traversals:
� Access to intra-application resources (almost surely)
� Access to other applications’ resources (maybe)
� Access to system configuration (likely)

� Code injection:
� Probe file system, loopback network
� Make remote network connections
� Probe local kernel for vulnerabilities

Too easy for bug in one application to impact entire server.
4 / 14



Tradition Sandstorm 95% of CVEs?

Sandstorm Application Hosting
What a mess! Alternative design?

Sweeping changes to design of system:
� Replace web server with application supervisor.

� Not “Web Application Firewall”
� No dynamic inspection of application display content!

� Centralize authn to supervisor.
� Send user display information to application.

� Centralize authz to supervisor (mostly).
� Applications enumerate possible “rights”.
� Supervisor computes agent’s rights; tells application.

� Sandbox server-side resources very tightly.
� Each document in its own container is possible!
� Granularity up to application author and user.
� Possible due to centralized management of sharing.

5 / 14



Tradition Sandstorm 95% of CVEs?

Sandstorm Application Hosting
What a mess! Alternative design?

Sweeping changes to design of system:
� Replace web server with application supervisor.

� Not “Web Application Firewall”
� No dynamic inspection of application display content!

� Centralize authn to supervisor.
� Send user display information to application.

� Centralize authz to supervisor (mostly).
� Applications enumerate possible “rights”.
� Supervisor computes agent’s rights; tells application.

� Sandbox server-side resources very tightly.
� Each document in its own container is possible!
� Granularity up to application author and user.
� Possible due to centralized management of sharing.

5 / 14



Tradition Sandstorm 95% of CVEs?

Sandstorm Application Hosting
What a mess! Alternative design?

Sweeping changes to design of system:
� Replace web server with application supervisor.

� Not “Web Application Firewall”
� No dynamic inspection of application display content!

� Centralize authn to supervisor.
� Send user display information to application.

� Centralize authz to supervisor (mostly).
� Applications enumerate possible “rights”.
� Supervisor computes agent’s rights; tells application.

� Sandbox server-side resources very tightly.
� Each document in its own container is possible!
� Granularity up to application author and user.
� Possible due to centralized management of sharing.

5 / 14



Tradition Sandstorm 95% of CVEs?

Sandstorm Application Hosting
What a mess! Alternative design?

Sweeping changes to design of system:
� Replace web server with application supervisor.

� Not “Web Application Firewall”
� No dynamic inspection of application display content!

� Centralize authn to supervisor.
� Send user display information to application.

� Centralize authz to supervisor (mostly).
� Applications enumerate possible “rights”.
� Supervisor computes agent’s rights; tells application.

� Sandbox server-side resources very tightly.
� Each document in its own container is possible!
� Granularity up to application author and user.
� Possible due to centralized management of sharing.

5 / 14



Tradition Sandstorm 95% of CVEs?

Sandstorm Application Hosting
What a mess! Alternative design?

Old world:
� As admin, install application to web server (or find host)
� Users register with each application (or be anonymous)
� Application juggles many documents / objects / . . .
� User rights managed within each application

New world:
� As admin, install sandstorm server (or . . . )
� Users register once with sandstorm installation (or . . . )
� Users install arbitrary applications as desired!
� Users instantiate applications as “grains.”

� Each user may have zero or more grains of any app.
� Grains begin private to creator.

� Users share (and revoke) appropriate access to grains.

6 / 14



Tradition Sandstorm 95% of CVEs?

Sandstorm Application Hosting
What a mess! Alternative design?

Old world:
� As admin, install application to web server (or find host)
� Users register with each application (or be anonymous)
� Application juggles many documents / objects / . . .
� User rights managed within each application

New world:
� As admin, install sandstorm server (or . . . )
� Users register once with sandstorm installation (or . . . )
� Users install arbitrary applications as desired!
� Users instantiate applications as “grains.”

� Each user may have zero or more grains of any app.
� Grains begin private to creator.

� Users share (and revoke) appropriate access to grains.
6 / 14



Tradition Sandstorm 95% of CVEs?

Sandstorm Application Hosting
User’s Perspective

7 / 14



Tradition Sandstorm 95% of CVEs?

Sandstorm Application Hosting
User’s Perspective

7 / 14



Tradition Sandstorm 95% of CVEs?

Sandstorm Application Hosting
User’s Perspective

https://main.sandstorm.acm.jhu.edu/shared/

pruMzgByO3ReRVV9tT5uQQyhwXJulmoMCSNSFutPjXJ
7 / 14

https://main.sandstorm.acm.jhu.edu/shared/pruMzgByO3ReRVV9tT5uQQyhwXJulmoMCSNSFutPjXJ
https://main.sandstorm.acm.jhu.edu/shared/pruMzgByO3ReRVV9tT5uQQyhwXJulmoMCSNSFutPjXJ


Tradition Sandstorm 95% of CVEs?

Sandstorm Application Hosting
Supervisor’s Perspective

Supervisor tracks capabilities conveying rights to grains:

� Each application specifies a collection of rights.

� ShareLaTeX: “read”, “write”
� DokuWiki: “user”, “manager”, “admin”
� When grain is created, owner gets all rights.
� Nobody else gets any rights

� Users delegate access to grains:

� Creates a new capability object held by designated
user(s) or within a sharing link.

� Delegated access is a subset of delegator’s access.
� Sandstorm tracks provenance of rights & adjusts.

8 / 14



Tradition Sandstorm 95% of CVEs?

Sandstorm Application Hosting
Supervisor’s Perspective

Supervisor tracks capabilities conveying rights to grains:

� Each application specifies a collection of rights.

� ShareLaTeX: “read”, “write”
� DokuWiki: “user”, “manager”, “admin”
� When grain is created, owner gets all rights.
� Nobody else gets any rights

� Users delegate access to grains:

� Creates a new capability object held by designated
user(s) or within a sharing link.

� Delegated access is a subset of delegator’s access.
� Sandstorm tracks provenance of rights & adjusts.

8 / 14



Tradition Sandstorm 95% of CVEs?

Sandstorm Application Hosting
Supervisor’s Perspective

Supervisor juggles sessions: user’s live connection to a grain.

� Grains started and stopped by supervisor as needed.

� At session startup, the grain is told what rights the
initiator has to the grain.

� Each request by a user will be part of a session.
Application just needs to check that request is permitted
by session’s rights.

� Web sessions on random hostnames (anti-XSRF, -XSS).

� Not as good as if application didn’t have bugs, but ups
ante to require that attacker can see client traffic.

9 / 14



Tradition Sandstorm 95% of CVEs?

Sandstorm Application Hosting
Supervisor’s Perspective

Supervisor juggles sessions: user’s live connection to a grain.

� Grains started and stopped by supervisor as needed.

� At session startup, the grain is told what rights the
initiator has to the grain.

� Each request by a user will be part of a session.
Application just needs to check that request is permitted
by session’s rights.

� Web sessions on random hostnames (anti-XSRF, -XSS).

� Not as good as if application didn’t have bugs, but ups
ante to require that attacker can see client traffic.

9 / 14



Tradition Sandstorm 95% of CVEs?

Sandstorm Application Hosting
Supervisor’s Perspective

Supervisor juggles sessions: user’s live connection to a grain.

� Grains started and stopped by supervisor as needed.

� At session startup, the grain is told what rights the
initiator has to the grain.

� Each request by a user will be part of a session.
Application just needs to check that request is permitted
by session’s rights.

� Web sessions on random hostnames (anti-XSRF, -XSS).

� Not as good as if application didn’t have bugs, but ups
ante to require that attacker can see client traffic.

9 / 14



Tradition Sandstorm 95% of CVEs?

Sandstorm Application Hosting
Application’s Perspective

Grain subject to extremely fine sandboxing:

� Filesystem (private mount namespace) contains only:

� grain’s application mounted read-only
� grain’s data mounted read-write
� Minimal collection of “device” nodes

� Native network access limited to “dummy” interface.

� Many syscalls are disabled via seccomp-bpf.

10 / 14



Tradition Sandstorm 95% of CVEs?

Sandstorm Application Hosting
Application’s Perspective

Grain software is born (exec()’d) with a socket to the
supervisor. All communication flows over this socket.

� Outbound network requests overseen by supervisor!

� Inbound requests, naturally, too.

� Uses “Cap’n Proto” capability-based RPC.

11 / 14



Tradition Sandstorm 95% of CVEs?

Sandstorm Application Hosting
Application’s Perspective

Grain software is born (exec()’d) with a socket to the
supervisor. All communication flows over this socket.

� Outbound network requests overseen by supervisor!

� Inbound requests, naturally, too.

� Uses “Cap’n Proto” capability-based RPC.

11 / 14



Tradition Sandstorm 95% of CVEs?

95% of CVEs?

Sandstorm project claims

95% of (application) security issues automatically
mitigated, before they were discovered.

That is borne out by the data:

� 20 CVEs in sampled applications (some restrictions apply)

� Only one, an XSS exploit, was not fully mitigated.
� All path traversal bugs (4) mooted.
� Most code injection bugs (2 of 3) required write access

to the grain to execute; 3rd in typically unshared grains.
� Authn (3) & authz (2) bugs eliminated: supervisor’s job!

� Additionally: 27 (of 224) Linux kernel CVEs considered;
only 3 pose threat to Sandstorm hosts.

12 / 14



Tradition Sandstorm 95% of CVEs?

95% of CVEs?

However, capabilities and sandboxing are not a panacea!

� Still possible to have bad authz checks in applications.

� May be difficult to draw sandbox boundaries neatly in all
cases; authz, path traversal, and/or code injection bugs
here could still lead to unintentional information
disclosure.

13 / 14



Tradition Sandstorm 95% of CVEs?

The hope is that this approach...

� rules out or confines damage from certain classes of bugs

� makes it easier to write secure multi-user applications

� Provides new slogan and grounds for LangSec:
“Every well-formed request is authorized” means that
parsers become the place for authn checks.

Questions?

14 / 14



Tradition Sandstorm 95% of CVEs?

The hope is that this approach...

� rules out or confines damage from certain classes of bugs

� makes it easier to write secure multi-user applications

� Provides new slogan and grounds for LangSec:
“Every well-formed request is authorized” means that
parsers become the place for authn checks.

Questions?

14 / 14


	Traditional Web Application Hosting
	The Sad Story
	The Impact of LangSec Bugs

	Sandstorm Application Hosting
	What a mess! Alternative design?
	User's Perspective
	Supervisor's Perspective
	Application's Perspective

	95% of CVEs?

