
Under consideration for publication in Theory and Practice of Logic Programming 1

Set-at-a-Time Solving in Weighted Logic Programs

NATHANIEL WESLEY FILARDO and JASON EISNER

Johns Hopkins University, Baltimore, MD

(e-mail: {nwf,jason}@cs.jhu.edu)

submitted 4 May 2017; revised 4 May 2017; accepted ?

Abstract

Weighted logic programs specify potentially infinite generalized computational circuits; here,
we consider an extension of our solver [7] to handle these circuits. To maintain computational
tractability and to improve efficiency, we extend that algorithm with set-at-a-time reasoning,
wherein potentially infinite sets of structurally related steps of the solver are processed as a
single step. The new algorithm manipulates representations of sets and bags of trees generated
by the weighted logic program being solved. It assumes, among other operations, the ability to
take unions, intersections, and differences of such sets, to test whether they are subsets of one
another, and to determine their cardinality. We discuss some simple cases where this assumption
is reasonable before introducing a proposal to weaken the assumption and allow for a wider class
of programs.

1 Introduction

A generalized computational circuit is a directed, possibly cyclic graph in which each

non-root node specifies a function. A labeling of the graph maps each node to a value.

Roots (nodes with no parents) may be given any values, but the value at a non-root node

must be the result of applying that node’s function to its parents’ values.

Circuits can be specified by weighted logic programs [5], allowing them to be infinite—

including having infinite fan-in, infinite fan-out, or infinitely long cyclic or acyclic paths.

The nodes of the circuit are ground terms (known as items). Recall that the Prolog rule

“rs(X) :- r(X,Y), s(Y)” asserts that rs(x) is true if ∃y such that r(x,y) and s(y)

are both true. Upper-case X denotes a variable which ranges over lower-case atoms such

as x or (nested) terms such as f(a,g(b)). In this rule, “:-” acts as disjunction across all

conjunctive expressions of the form “r(x,y), s(y)”. We generalize Prolog so that instead

of defining when a ground term such as rs(x) is true, it constrains the term’s value

(or “weight”). Our rules now look like “rs(X) ⊕= r(X,Y) ⊗ s(Y),” which effectively

defines a vector rs by adding (⊕) the product (⊗) of the matrix r and the vector s. For

each item given by instantiating the variables {X} in the rule head, ⊕ aggregates the

values of the expressions given by instantiating the remaining variables {Y} in the rule

body. Thus, the resulting program constrains item rs(x) for each index x to have value

(⊕y r(x,y)) ⊕ v, where v is the ⊕ aggregation of all summands contributed to rs(x)

by other rules. The parents of rs(x) in the resulting circuit include r(x,y) and s(y)

for all y, and the children of each s(y) include rs(x) for all x. In our rules, there is no

restriction on the datatypes of values or on the functions such as ⊗ that combine values

within a rule body, but each rule’s aggregator ⊕ must be associative and commutative.

In prior work [7], we gave a flexible algorithm to handle queries and updates on finite,

2 Nathaniel Wesley Filardo and Jason Eisner

possibly cyclic circuits. The algorithm therein includes a method Compute to compute

a given node’s value from its parents’ values as obtained via a Lookup method (which

finds them cached in a memo table or else recursively calls Compute). When the circuit

is specified by a weighted logic program as above, this task generalizes to one step of

backward-chained reasoning, which computes the values of a given set κ of nodes, such as

might be specified by a non-ground term. The present paper addresses this surprisingly

challenging problem, culminating in the Compute(κ) routine of Listing 1, which returns a

representation of a piecewise constant map from all items in κ to their values.

Although the high-level strategy resembles Prolog’s SLD resolution [11], the complexity

arises from the fact that a goal or subgoal query may match the heads of multiple

overlapping rules, and thus—after aggregation across rules—may return a complicated

map from items to values. While we focus on backward chaining and do not cover [7]’s

additional machinery for forward chaining and revision of cached answers, we conjecture

that these components will readily generalize, as they are consumers of backward reasoning.

We must generalize Prolog’s ability to reason about sets of items all at once. Prolog’s

solver does this using non-ground terms (partitioning them as needed by by unification

against the heads of rules). For example, in a program that supports proofs of the

non-ground terms r(1,Y) and s(Y), the above rs rule would construct infinitely many

justifications of rs(1) at once—all of the form r(1,Y), s(Y). The same rule would

combine proofs of r(X,2) and s(2) to justify infinitely many rs(X) items at once,

including contributing an additional justification of the rs(1) item. Generalizing to the

weighted case, our circuit semantics specifies that each item’s value is given by aggregating

the values of expressions corresponding to all its justifications. Because rs(1) has an

additional justification compared to the other rs(X) items, it will have a different total

value, meaning that when rs(X) appears in some other expression, it is necessary to

distinguish two cases X = 1,X ≠ 1. These issues do not arise in the restricted case of Prolog,

nor even in semiring-weighted logic programs [16, 6], where distributivity properties make

it possible to process the aggregands separately. (This separate processing is why a Prolog

query leads to a stream of proved answers that may include unaggregated duplicates.)

Our treatment is intended to be applicable to any weighted logic language. Our particular

formalism herein, µDyna, pronounced “micro-Dyna,” is built up of little more than set

theory and has a straightforward, declarative semantics, detached from any particular

implementation, and devoid of metalogical escapes. We first introduce some notation

(§1.1) before describing our model weighted logic language in more detail (§1.2). So armed,

we begin with brief consideration of ground reasoning, under the assumption of a finite

item universe (§2). We then motivate our non-ground reasoning with an example (§3.1)

before discussing the generalizations to reasoning and giving an algorithm (§3.2-3.4). We

then step back to assess what we have wrought, considering µDyna in more generality

(§3.5) and some special cases of µDyna programs in which our algorithm may be tractable

(§3.6). We discuss related work in §4.

1.1 Notation

Sets We adopt set- and bag- theoretic semantics throughout this paper, relying on

a well-typed underlying theory. Sets are constructed and manipulated by the typical

operators (e.g., {. . .}, ∪, ∩, ∈, ⊆, ∖). ℘ sends a set to its powerset; ℘fin sends a set to its

set of finite subsets. ∣σ∣ denotes the cardinality of σ; we take cardinalities to be limited

3

to N∞
def= N ∪ {∞}. (That is, naturals and only one infinity. The (N,+,0, ⋅,1) semiring

extends as might be expected: m +∞ def= ∞ for all m ∈ N∞. 0 ⋅ ∞ def= 0, and m ⋅ ∞ def= ∞ for

m ≠ 0.) The partial function selt(σ) projects a singleton set to its element: selt({s}) def= s.

We use the shorthands ⋃σ def= ⋃s∈σ s and Nn1
def= {1,2, . . . , n} ⊊ N.

Bags We will use {|. . .|} for bag literals. {|s@m|} denotes a bag holding exactly m

copies of s, also said as s with multiplicity m ∈ N∞ (with 0 being identified with

absence from the bag). Multiplicities of 1 may be suppressed: {|s|} = {|s@1|}. As with

sets, comprehension notation may be employed, quantifying over both elements and

multiplicities. Bag multiplicities add, so {|s@m1, s@m2|} = {|s@(m1 +m2)|}. The traditional

symbols of set-theory with a plus sign superimposed will be used for bag operations: ⊎,

?, F, etc., though we overload ∅ for the empty bag as well. ℘+σ denotes the set of all

sub-bags of bag σ. U−1
m σ is the bag whose elements are from σ, all with multiplicity m.

Tuples We assume our theory contains n-ary tuples, denoted ⟨ti⟩i∈Nn1
def= ⟨t1, . . . , tn⟩; we

use t⃗ when n is clear from context. A pair is a tuple of length 2. ++ is the associative

tuple concatenation operator. The length of a tuple is denoted tlen(⟨t1, . . . , tn⟩)
def= n; ⟨⟩

is the tuple of length 0. For ease of reading, this paper will use color-matched brackets

for deeply nested tuple structures, e.g., ⟨⟨⟩, ⟨⟨a⟩, b⟩⟩. We define a projection operator,

denoted ⋅⇃⋅, to access components of (nested) tuples. t⃗⇃k, for k ∈ Nn1 , means simply the k-th

component of t⃗, i.e., tk. More generally, we write t⃗⇃k1.k2.k3 to mean the k3-th component

of the k2-th component of the k1-th component of t⃗. The subscript k1.k2.k3 is called a

path and can in general be any tuple of positive integers; π denotes such a path.1 We

will often define mnemonic names for particular common path prefixes.

Sets of Tuples Dependent sums are written Σs∈σYs
def= {⟨s, ts⟩ ∣ s ∈ σ, ts ∈ Ys}, where

Y is a σ-indexed collection of sets. (Dually, every set of pairs is a dependent sum of

some indexed collection.) As we will often have sets described by tuples of elements

sampled from a product of other sets, we introduce a product-forming tuple operator,

jσ, τo def= {⟨s, t⟩ ∣ s ∈ σ, t ∈ τ}. Projection is extended to sets: σ⇃π
def= {s⇃π ∣ s ∈ σ}. Since

restricting focus to a particular path in a set of tuples may yield a smaller set, we have a

bag-view projector as well: σ⇃@π
def= {|s⇃π ∣ s ∈ σ|}.2 In addition to projection from sets,

we will make extremely heavy use of refinement, σ[τ/π] def= {s ∈ σ ∣ s⇃π ∈ τ}.

Functions The set of total functions from set σ to set τ is denoted σ → τ . When the

codomain is potentially dependent upon the input, we use the dependent product operator:

Πs∈σYs where Y is a σ-indexed collection of sets.3 (σ → τ is just the special case of a

constant collection, i.e., ∃τ∀s∈σYs = τ .) The domain of a function f ∈ Πs∈σYs is denoted

dom(f) def= σ. Functions may be written as sets of tuples, i.e., {s ↦ t ∣ ⋯}, where s is

from the domain and t is its corresponding element of the (dependent) codomain and ↦
is simply an infix pair constructor (i.e., (a ↦ b) def= ⟨a, b⟩). We also use this notation in

1 Formally, we should write e.g., π = ⟨k1, k2, k3⟩, but the dot notation is standard and risks less confusion.

Projection is defined inductively: t⇃
⟨⟩

def= t (even for non-tuple t) and ⟨τ1, . . . , τn⟩⇃⟨k⟩++π
def= τk⇃π .

2 Our restriction on multiplicities implies {⟨2, r⟩ ∣ r ∈ R}⇃@1 = {⟨2, n⟩ ∣ n ∈ N}⇃@1 = {|2@∞|}.
3 For readers unfamiliar with the notation and alarmed by the apparent reuse of numeric product

notation for something completely different, a worthwhile exercise is to demonstrate, for all sets α
and α-indexed collections of sets Y , that ∣Πa∈αYa∣ = Πa∈α∣Ya∣, where the quantifier on the left is our
set-theoretic one and that on the right is the numeric product operator operating on cardinalities. We
avoid the term “function” for Y to skirt the question of its codomain.

4 Nathaniel Wesley Filardo and Jason Eisner

quantification, e.g., {ϕ(s, t) ∣ s↦ t ∈ f}, to range over the domain of a function (so, e.g.,

dom(f) = {s ∣ s↦ t ∈ f}). Functions can be constructed out of other notation by use of

the usual argument placeholder, “⋅”: e.g., if a is a σ-indexed family of objects from a

set τ then by “a⋅” (subscripted with ⋅) we mean the function {s↦ as ∣ s ∈ σ} ∈ (σ → τ).
Terms We assume a Herbrand universe H from the underlying collection of symbols F ;

elements of H are called (ground) terms. Explicitly, t ∈ H is composed of a functor

with fixed arity n ∈ N, denoted f/n ∈ F , and a tuple of n terms: t = f⟨t1, . . . , tn⟩; functors

with arity 0 form the base case. A non-ground term is a subset of H.4 We use the

product-forming tuple operator as a shorthand for non-ground terms: fjτ1, . . . , τno
def=

{f⟨t1, . . . , tn⟩ ∣ ∀iti ∈ τi}. Projection is extended, within its inductive definition, to work on

trees as well as on tuples by ignoring any functors along the path: e.g., ⟨t⟨t1, t2⟩, x⟩⇃1.2 = t2;

this applies to the extension to sets of tuples as well. We will avail ourselves of a symbol

null /∈H to indicate the absence of a value assigned to an item. Let H+ def= ℘+U−1
∞ H be

the set of all bags of terms and, with nulls, let H′ def= {null} ∪H and H′+ def= ℘+U−1
∞ H′.

Aggregation Functions Our programs need to reduce an arbitrary bag of results (i.e.,

terms and nulls, which we call aggregands) to a single term. We call the functions which

do so aggregators: functions f ∈ H′+ → H′ which obey f(∅) = null, ∀a∈H′f({|a|}) = a,

and ∀σ,σ′f(σ ⊎ σ′) = f({|f(σ)|} ∪ σ′), which ensure that f acts like reduction by an

associative-commutative binary operator with identity element null. We add a further

requirement f({|null@∞|}) = null to ensure that all null aggregands are ignored.5

1.2 µDyna Normal-Form Programs

We define µDyna, a minimal, set-theoretic, “administrative” normal-form [9] of weighted

logic programs. A µDyna program consists of several components: 1 its set of items,

I ⊆H; 2 a map from items to their aggregation operators, aggr ∈ I → (H′+ →H′); and
3 a bag of (µDyna) rules, {|ρr ∣ r ∈ Ξ|}, where Ξ is a finite set of rule indices. A µDyna

rule has three major parts: a head (an item name), a result, and a body. The body is

a tuple of subgoals, which are pairs of a key and a value (in that order, i.e., ⟨key,value⟩),
and which request the value of the item named by the key.6 A rule grounding, then,

is a nested tuple over these components: ⟨⟨head, result⟩, ⟨subgoal1, . . . , subgoaln⟩⟩. Each

grounding of a µDyna rule reads as an instruction: “aggregate the result into the head if

each subgoal’s key has been assigned the corresponding value”; groundings which satisfy

this condition are called rule answers. The set of rule answers will vary if items’ values

change (e.g., during a solver’s execution or in response to updates external to the solver).

Generalizing, a µDyna rule ρr is a set containing all possible groundings of this rule, from

which the rule answers will be selected. Our example of a weighted logic language rule

4 The identification of a non-ground term with its set of groundings is perhaps unusual; most alternative
expositions add an explicit notion of variable object within terms and a notion of binding contexts
which map variables to trees and/or other variables. Set refinement generalizes variable substitution.

5 Taking the special value null to be the identity element of every aggregator ensures that every
aggregator has an identity. It also ensures that the sum of no elements (namely null) is different from
the sum of {|5, 0,−5|} (namely 0). The former is ignored in subsequent aggregations, yielding a different
result if the subsequent aggregator is a different operator such as max.

6 Readers familiar with Prolog may think of a subgoal ⟨k, v⟩ as another rendering of v is k. In µDyna,
every subgoal is an is/2 subgoal, though one which evaluates against the program rules rather than a
built-in database and which is not restricted to the Prolog mode “-Number is +Expr”, where - and +
mean free and ground structure, respectively.

5

from above, rs(X) ⊕= r(X,Y) ⊗ s(Y), is now rendered as

ρ = {⟨

hr

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⟨rs⟨x⟩
²
head

, z

r̄es

⟩ ,

sg

³¹¹¹·¹¹µ
⟨r⟨x, y⟩↦ r

±
sg.1.2

,s⟨y⟩↦ s,⊗⟨r, s⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶
sg.3.1

↦ z⟩ ⟩ ∣ r, s, x, y, z ∈H}.

Recall that ↦ is simply an infix pair constructor; we use it here as a mnemonic between

subgoal key and value even though there is no functional dependence in ρ. We have

annotated the rule with several paths and given mnemonics to particular prefixes, hr
def= 1,

head
def= 1.1, res

def= 1.2, and sg
def= 2, to help clarify later operations. Variables used more

than once within the set element constructor give rise to covariance between different

positions within a rule: above, the res and sg.3.2 projections are equated (by reuse of z).

Our formal theory does not use variables; they are merely notation to help specify sets.

Formally, sets ρr used as µDyna rules obey five constraints: 1 projections along head,

res, and sg are defined for all elements of the set; 2 the head and result are terms, i.e.,

∀t∈ρr,π∈{head,res}t⇃π ∈ H; 3 the number of subgoals in r, denoted nr, is constant across

all groundings of the rule, i.e., ∀r∈Ξ,s∈(ρr⇃sg)tlen(s) = nr; 4 each subgoal is itself a pair

of two terms, i.e., ∀t∈ρr,i∈Nnr1 ,j∈{1,2}t⇃sg.i.j ∈H;7 and 5 the subgoals and head determine

the grounding, i.e., ∀α⊆ρr ∣α⇃sg∣ = ∣α⇃head∣ = 1⇒ ∣α∣ = 1 (and, in particular, that ∣α⇃res∣ = 1).

These clearly hold for the example above: 1 these projections clearly exist, 2 rs⟨x⟩ and

z are terms, 3 there are exactly three subgoals in any grounding, 4 subgoal keys and

values are terms, and 5 the reuses of x and z together imply the stronger statement

∀α⊆ρ ∣α⇃sg∣ = 1⇒ ∣α∣ = 1.

A rule query t⃗ for a rule r is a nr-tuple of items. A rule query gives rise to a set

of pre-answers by refining the subgoal keys: θt⃗r
def= ρr[{t1}/sg.1.1]⋯[{tnr}/sg.nr.1]. t⃗ is

trivial if θt⃗r = ∅. For example, ⟨r⟨1, 2⟩,s⟨3⟩⟩ is a trivial rule query for the rs rule, because

2 ≠ 3. Given an item valuation function S ∈ I →H′, one can filter pre-answers to the set

of rule answers, εt⃗r,S
def= θt⃗r[S(t1)/sg.1.2]⋯[S(tnr)/sg.nr.2].8 If any S(ti) = null, then ε

is ∅. As all subgoal projections have been refined to singletons within rule answers, the

constraints on µDyna rules imply that ∀h,r,t⃗,S ∣εt⃗r,S[{h}/head]∣ ≤ 1.

2 Ground Reasoning

Let us begin by considering the special case in which there are only finitely many items. In

this case, we could imagine that Lookup takes a possibly-infinite set of terms κ—an (item)

query—and returns an answer consisting of a (finite!) map from those items in κ to

their corresponding values. Formally, Lookup ∈ Πκ⊆H⋃α∈℘fin(κ∩I)(α →H). Let us assume

that we can ensure that Lookup gives us a coherent view of items’ values, so that if we call

it repeatedly with overlapping κs, the resulting maps will agree on the overlapping region;

in a real implementation, this may require some kind of concurrency control. To interpret

ρ’s influence on the item h against the backdrop provided by Lookup, we would compute

ρ[{h}/head] and then visit each subgoal in turn, projecting its key for Lookup, and then

7 It is, therefore, impossible to define rules which explicitly match on null and we need not define that,
by default, null passes through subgoals, e.g., by asserting that 1 + null = null. Any attempt to
refine a subgoal value to {null} will immediately empty the set of groundings. Thus, while null is an
identity of aggregation, it is an annihilator of the conjunction of rules’ subgoals.

8 There is no analog of pre-answers sitting between (item) queries and (item) answers: pre-answers
emerge due to the conjunction of queries, i.e., interactions among the subgoals of a rule. In this paper,
they will not appear computationally.

6 Nathaniel Wesley Filardo and Jason Eisner

use each point in the resulting map to refine the rule before visiting the next subgoal

or, should there be none left, arriving at a rule answer. Procedurally, we would define

a recursive function refineRuleSuffix(σ ⊆ ρr,i ∈ Nnr+1
1) which interpreted a suffix of a

rule subset σ, i.e., all subgoals at and after the i-th position, and called some function

contribRuleAnswer(t ∈ ρr) on each obtained rule answer. (Throughout our code listings,

we will use special formatting for procedures, reserved words, and type annotations.)

That is, we would write:

1 def refineRuleSuffix(σ ⊆ ρr,i ∈ Nnr+1
1)

2 if σ = ∅ then return

3 else if i = nr + 1 then contribRuleAnswer(selt(σ))
4 else foreach (k ↦ v) ∈ Lookup(σ⇃sg.i.1) do

5 refineRuleSuffix(σ[{⟨k, v⟩}/sg.i], i + 1)

The constraints on µDyna rules ensure that the call to selt(⋅) will succeed: the head and

sg projections of σ have been brought to singletons. Moreover, contribRuleAnswer will

be called only finitely many times, as each nested loop has finite domain.

While correct, the procedure above works only for one item h at a time! Rather than

having to iterate our (finite, but possibly large) item set, we would surely much rather

let the facts guide us, à la SLD resolution. If the rules of our program all obey range

restriction [1], the stronger constraint that subgoals alone determine the grounding,

i.e., ∀α⊆ρ ∣α⇃sg∣ = 1 ⇒ ∣α∣ = 1,9 then we can skip the initial selection of the head h

and still be assured that selt(⋅) succeeds. We now see how to execute a single step of

backward reasoning for some query set κ ⊆ I: visit each rule r, compute σ = ρr[κ/head],
and invoke refineRuleSuffix(σ,1), letting contribRuleAnswer accumulate all obtained

results. Connecting this back to our sets, we see that refineRuleSuffix computes the set

of rule answers εt⃗r,S , by interleaving the refinements given in the definitions of θ and ε,

with Lookup as S.

We can render the actions of refineRuleSuffix as a search tree. Non-leaf nodes represent

invocations of Lookup on subgoals, and their outgoing edges represent answer item/value

pairs; leaves are either ∅ or represent rule answers. In this light, our assumption that

Lookup returns finite maps now ensures that every node has finite branching factor (and,

thus, finitely many leaves) and range restriction ensures that each leaf corresponds to at

most one rule answer.

3 Non-ground Reasoning

3.1 A Motivating Example

We now seek a set-at-a-time execution strategy, which attempts to reason about sets of

similarly-behaving items at once. For example, the rule f(X,Y) ⊕= 1 defines an aggregand

for each of the infinitely many terms of fjH,Ho, but the pattern is so simple that all

these terms can be considered at once.

Example 1. This kind of bulk handling extends across rules, too. The pair of rules f(1,Y)

⊕= 3 and f(X,2) ⊕= 4 will contribute 3 ⊕ 4 to the aggregated value of item f(1,2),

9 The usual notion of range restriction is that variables appearing in the head must also appear in a
subgoal; the requirement given here is a trivial generalization to our set-based, weighted setting. The
current requirement excludes, e.g., {⟨⟨f⟨x, y⟩, v⟩, ⟨g⟨x⟩↦ v⟩⟩ ∣ ⋯}.

7

0

0

0

=

rjH,Ho {s⟨0⟩} {rs⟨0⟩} ⊕= ⊗⟨4,6⟩@1

sjZ ∖ {0}o rsjN ∖ {0}o ⊕= ⊗⟨3,5⟩@1

sjZo rsjZ ∖ {0}o ⊕= ⊗⟨2,6⟩@1

rsjZo ⊕= ⊗⟨2,5⟩@∞

κ = rsjHo τ1 = {r⟨0,0⟩}
v1 = 4

τ2 = {s⟨0⟩}
v2 = 6

{r⟨x,x⟩ ∣ x ∈ Z ∖ {0}}
3

sjN ∖ {0}o
5

{r⟨x, y⟩ ∣ x, y ∈ Z, x ≠ y}
2

{s⟨0⟩}
6

sjN ∖ {0}o
5

σ1 = ρ[κ/head]⋅⇃
s
g
.1
.1

σ2 = σ1[jτ1,{v1}o/sg.1]⋅⇃
s
g
.2
.1

ε⟨τ1,τ2⟩ = σ2[jτ2,{v2}o/sg.2]

⋅⇃he
a
d

⋅[{h}/head]⇃@
res

⋱ 2

3

4

3

3

2 ⋱

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

r:

⋮
null

6

5

5

⋮

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

s:

×

⋮ ⋮ ⋮ ⋮
⊗⟨2,6⟩ ⊕ ⊗⟨2,5⟩ ⊕ ⊗⟨2,5⟩ ⊕ ⊗⟨2,5⟩ ⊕ ⋯
⊗⟨4,6⟩ ⊕ ⊗⟨2,5⟩ ⊕ ⊗⟨2,5⟩ ⊕ ⊗⟨2,5⟩ ⊕ ⋯
⊗⟨2,6⟩ ⊕ ⊗⟨3,5⟩ ⊕ ⊗⟨2,5⟩ ⊕ ⊗⟨2,5⟩ ⊕ ⋯
⊗⟨2,6⟩ ⊕ ⊗⟨2,5⟩ ⊕ ⊗⟨3,5⟩ ⊕ ⊗⟨2,5⟩ ⊕ ⋯

⋮ ⋮ ⋮ ⋮

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0

rs:

ρ = {⟨⟨rs⟨x⟩, z⟩, ⟨r⟨x, y⟩↦ r,s⟨y⟩↦ s,⊗⟨r, s⟩↦ z⟩⟩ ∣ r, s, x, y, z ∈H}

Fig. 1: Our rule rs(X) ⊕= r(X,Y) ⊗ s(Y), shown in µDyna form at the top, can perform the
computation shown in the middle—the product of an infinite matrix (all of whose off-diagonal
elements are 2) with an infinite vector. To obtain the answer, we call Compute with query
κ = rsjHo. The bottom of the figure shows a search tree that computes the aggregands of
the answers. The root represents the initial query of the first subgoal r, and the edges from
the root correspond to the branches of answers returned by Lookup. Each such edge leads to
a new node with some refined query of the second subgoal s, and the edges from that node
again correspond to answers. Each such edge leads to a leaf that specifies some subset of the
head rs and contributes some aggregand at some multiplicity (colored box) to all items in
that subset. (We elide the handling of the third subgoal, ⊗, as it is only queried on singleton
sets and so no branching is possible.) Thus, the leaves (at right) correspond to rule answers (ε
sets). The rule answers must be further partitioned and aggregated (see §3.3) to yield the an-
swers to the original query rsjHo, namely {{rs⟨0⟩}↦⊕{|⊗⟨4,6⟩@1,⊗⟨2,5⟩@∞|},rsjN ∖ {0}o↦
⊕{|⊗⟨3,5⟩@1,⊗⟨4,6⟩@1,⊗⟨2,5⟩@∞|},rsjZ ∖No↦⊕{|⊗⟨4,6⟩@1,⊗⟨2,5⟩@∞|}}. The shape of the
search tree is determined by the answers from Lookup, which returns disjoint slices of the r

matrix {{r⟨0,0⟩} ↦ 4,{r⟨x,x⟩ ∣ x ∈ Z ∖ {0}} ↦ 3,{r⟨x, y⟩ ∣ x, y ∈ Z, x ≠ y} ↦ 2} and the s vector
{{s⟨0⟩}↦ 6,{s⟨t⟩ ∣ t ∈ N ∖ {0}}↦ 5}.

while also contributing 3 to each item in {f⟨1, y⟩ ∣ y ∈ H ∖ {2}} and 4 to each item in

{f⟨x,2⟩ ∣ x ∈H ∖ {1}}. ◊
A more dramatic example is shown in Figure 1: the product of a infinite matrix with an

infinite vector, exploiting the fact that both have simple definitions. The matrix r is defined

by the cases {r⟨0,0⟩} ↦ 4, {r⟨x,x⟩ ∣ x ∈ Z ∖ {0}} ↦ 3, and {r⟨x, y⟩ ∣ x, y ∈ Z, x ≠ y} ↦ 2,

where τ ↦ v means that v is the value of each t ∈ τ . Similarly, the vector s is defined by

{s⟨0⟩} ↦ 6 and {s⟨y⟩ ∣ y ∈ N ∖ {0}} ↦ 5. For simplicity, assume ⊗ is total. In this case,

our rs rule should answer non-ground rule queries as follows:

8 Nathaniel Wesley Filardo and Jason Eisner

1 {⟨⟨rs⟨0⟩,⊗⟨4,6⟩⟩, ⟨r⟨0,0⟩↦ 4,s⟨0⟩↦ 6,⋯⟩⟩}, from the query ⟨{r⟨0,0⟩},{s⟨0⟩}, . . .⟩;
2 {⟨⟨rs⟨x⟩,⊗⟨3,5⟩⟩, ⟨r⟨x,x⟩↦ 3,s⟨x⟩↦ 5,⋯⟩⟩ ∣ x ∈ N ∖ {0}};
3 {⟨⟨rs⟨x⟩,⊗⟨2,6⟩⟩, ⟨r⟨x,0⟩↦ 2,s⟨0⟩↦ 6,⋯⟩⟩ ∣ x ∈ Z ∖ {0}};
4 {⟨⟨rs⟨x⟩,⊗⟨2,5⟩⟩, ⟨r⟨x, y⟩↦ 2,s⟨y⟩↦ 5,⋯⟩⟩ ∣ x ∈ Z, y ∈ N ∖ {x}};

The other two relevant rule queries give ∅, as {0} ∩ (N ∖ {0}) = ∅. We can read out the

contributions of the ground answers contained in each non-ground rule answer: 1 rs⟨0⟩
gets {|⊗⟨4,6⟩@1|}. 2 Each rsjN ∖ {0}o gets {|⊗⟨3,5⟩@1|}.10 3 Each rsjZ ∖ {0}o gets

{|⊗⟨2,6⟩@1|}. 4 For each x ∈ Z, the item rs⟨x⟩ gets {|⊗⟨2,5⟩@∞|}—an infinite bag of

aggregands (one for each y ∈ N ∖ {x}).

Figure 1 shows how these answers are computed. Recall that our refineRuleSuffix

strategy in §2 simply enumerated individual items that matched a rule’s subgoals, in order

to deduce aggregands for individual items that matched the rule’s head. However, this

is inadequate to compute the infinite example above. Figure 1 must enumerate several

sets of related subgoal items, such as {r⟨x,x⟩ ∣ x ∈ N ∖ {0}}. Furthermore, each set may

produce contributions to multiple head items, and we must combine all contributions

to each head item, with the results given in the figure caption. The next two sections

explain how this is done in general.

3.2 Non-ground Rule Answers

A non-ground rule query for the rule r is a nr-tuple of sets of items, τ⃗ . The correspond-

ing set of pre-answers is the union of all pre-answers possible for different queries formed

by element-wise choices from τ⃗ , or, more simply, just the refinement by each element

in turn: θτ⃗r
def= ρr[τ1/sg.1.1]⋯[τnr/sg.nr.1]. In general, calling Lookup on a subgoal will

return a finite map with elements τ ↦ f , where τ ⊆ I is a set of items and f ∶ τ →H′ is a

valuation function on that set.11 (Recall that in the ground setting of §2, Lookup merely

returned a finite key-value map with individual items as keys.)

Suppose that τi ↦ fi is one of the elements returned by Lookup on the i-th subgoal, for

each i ∈ Nnr1 . Then the rule query τ⃗ = ⟨τ1, . . . , τnr ⟩ has a non-ground rule answer of

ε = ετ⃗
r,f⃗

def= ρr[{t↦ f1(t) ∣ t ∈ τ1}/sg.1]⋯[{t↦ fnr(t) ∣ t ∈ τnr}/sg.nr] ⊆ θτ⃗r .

This is essentially a set of ground rule answers (which, in principle, could be indi-

vidually processed by contribRuleAnswer). It contributes to each h ∈ ε⇃head the values

ε[{h}/head]⇃@
res

. Since the value fi(t) may covary with t, our expression for ε takes care

to refine subgoal i (that is, sg.i) by a set of pairs ⟨t, fi(t)⟩ that captures this covariance.

We will disallow this covariance in the next section.

3.2.1 Three Simplifying Assumptions

Recall from the introduction that Lookup may call Compute. Compute will issue rule queries

against the rules of the program—via recursive Lookup calls to their subgoals—and then

will combine the heads of the resuting rule answers ε (via §3.3 below) to obtain its own

return value. We now observe that Lookup will return a piecewise constant map if the

recursive Lookup calls do so and the resulting rule answers have sufficiently simple heads.

10 Preserving the covariance of x between the head and body is vital: if projected separately, we would be
at risk of claiming infinitely many contributions to each of infinitely many items!

11 We use H′ because some or all items in τi may have value null.

9

If the recursive Lookup calls could instead return arbitrary item valuation functions fi,

then it would presumably be hard to compute ε and hard to aggregate ε’s heterogenous

contributions to head items. (For example, imagine that fi = {g⟨x⟩ ↦ 2 ∗ x ∣ x ∈ Z}.)

We therefore restrict to cases of the sort illustrated by Figure 1: each fi is a constant

function returning some vi, so that the result of Lookup is piecewise constant with finitely

many pieces. Despite being a special case, this is still a strict generalization of our

ground reasoning story. Under this assumption, letting vi be the value associated with

all τi of a rule query, our set of rule answers has a much simpler definition: ετ⃗r,v⃗
def=

θτ⃗r [{v1}/sg.1.2]⋯[{vnr}/sg.nr]. There is no difficult preservation of covariance here: we

are directly refining the subgoal value positions, for all corresponding keys. In this context,

Lookup now has type Πκ⊆H⋃K∈fp(κ∩I)Πα∈K({null} ∪⋂t∈α τt), where fp(β) is the set of

all finite partitions of the set β: B ∈ fp(β) iff all of ⋃B = β, ∣B∣ <∞, and ∀β1,β2β1 ∩β2 = ∅.

We next insist that the rule answers ε = ετ⃗r,v⃗ in the previous paragraph have simple

heads, which we will be able to combine across rules (§3.3 below) to give a new piecewise

function. Recall that for ground reasoning (§2), we required “range-restricted” rules

so that each rule answer would have a single item as its head: that is, bringing ρr⇃sg
to a singleton would bring the entire set to a singleton. Now that we are prepared

to reason about sets of terms at once, this is no longer necessary and we can write

f(X,Y) ⊕= g(Y). However, we will assume a different condition, non-ground range

restriction: any rule answer ε = ετ⃗r,v⃗ that we compute must treat all its head items

η = ε⇃head identically, contributing the same aggregands {|v@m|} to each of them. (Formally,

∃v∈H,m∈N∞∀h∈η ε[{h}/head]⇃@res = {|v@m|}.) This will allow §3.3 to easily determine which

sets of head items receive which sets of aggregands.12

More trivially, we also need all head items in η to share an aggregator. To ensure this, we

require that each rule r specify an aggregator consistent with all its possible heads: all items

I ∩ ρr⇃head must use this aggregator. This ensures that aggr(η) def= selt({aggr(h) ∣ h ∈ η})
is well-defined when we use it to construct a query answer in Listing 1 below.

3.3 Combining Results

Recall that in §2, we imagined collecting ground rule answers by calling a procedure

contribRuleAnswer on each one. We now generalize this to the non-ground case. If rules

obey non-ground range restriction, then a rule query with non-empty answer ε can be read

as an instruction: “contribute, to each h ∈ η = ε⇃head, m = selt({∣ε[{h}/head]∣ ∣ h ∈ η})
copies of v = selt(ε⇃res).” We further assume the existence of a procedure ruleToInstr

which takes a non-empty ε and extracts η and {|v@m|}.

Given two rule answers, ε1 and ε2, with corresponding head projections, ηi, and

contributions, {|vi@mi|}, their combined contributions should be that (η1 ∖ η2) gets

only {|v1@m1|}, that (η2 ∖ η1) gets only {|v2@m2|}, and that (η1 ∩ η2) gets contri-

butions from both, i.e., {|v1@m1, v2@m2|}. (Recall Example 1.) Generalizing, if we

12 However, in constrast to range restriction, non-ground range restriction is no longer a simple syntactic
condition on the µDyna program. This is because it requires “any rule answers that we compute” to
have a simple head, but those rule answers are not determined by the rule alone, but also by the
particular rule queries. So actually our assumption is a joint constraint on the rules of the program
and the behavior of Lookup. Static analysis of such properties of a logic program is the purview of
mode analysis [13]; we leave all static analysis to future work.

10 Nathaniel Wesley Filardo and Jason Eisner

1 def Compute(κ ⊆ I)
2 c ← ∅ % initialize accumulator: no contributions to any item

3 foreach r ∈ Ξ do

4 refineRuleSuffix(ρr[κ/head], 1)

5

6 def refineRuleSuffix(σ ⊆ ρr, i ∈ Nnr+1
1) ∈ ⟨⟩

7 if σ = ∅ then return % no contributions here, or

8 elif i = nr + 1 then contribRuleAnswer(σ) % some answers to process, or

9 else foreach (τ ↦ v) ∈ Lookup(σ⇃sg.i.1) do

10 refineRuleSuffix(σ[jτ,{v}o/sg.i], i + 1) % refine and move to next subgoal

11

12 def contribRuleAnswer(ε ⊆ ρr) ∈ ⟨⟩ % extract answers and accumulate (§3.3)

13 c ← disjoin(c, η, β) where ⟨η, β⟩ = ruleToInstr(ε)

14

15 return {η ↦ aggr(η)(β) ∣ (η ↦ β) ∈ c}
16

17 Lookup ∈ Πκ⊆H⋃K∈fp(κ∩I)Πα∈K({null} ∪⋂t∈α τt) % answer a subgoal query

18 ruleToInstr ∈ Πε⊆ρr j{ε⇃head},℘+U−1
∞ (ε⇃res)o % extract head and result bag from rule

Listing 1: Non-ground Compute. Lookup(τ) is assumed to return an assignment of values
(now inclusive of null) to each element of a finite partitioning (fp) of τ . contribRuleAnswer
is prepared to deal with multiple answers at once, provided that ruleToInstr can extract a
head and result bag such that all results apply to each head. It uses disjoin to maintain the
invariant that all elements of the accumulator dom(c) are disjoint.

have already accumulated some number of rule answers into a map c, upon the ar-

rival of another set of heads η and bag of contributions β = {|v@m|}, one must con-

struct a new entry in the map for any novel items in η and then split every ex-

isting entry κ into κ ∩ η and κ ∖ η (we may safely omit the ∅ bin). Procedurally,

1 def disjoin(c, η, β) % Add all of β to each h ∈ η across all of c

2 return {(η ∖⋃(dom(c)))↦ β ∣ η /⊆ ⋃(dom(c))} % new bin for new terms;

3 ∪{(κ ∖ η)↦ τ ∣ (κ↦ τ) ∈ c, κ /⊆ η} % split existing bins: differences . . .

4 ∪{(κ ∩ η)↦ β ⊎ τ ∣ (κ↦ τ) ∈ c, κ ∩ η ≠ ∅} % . . . and intersections

This procedure forms the core of our contribRuleAnswer procedure for non-ground back-

ward reasoning.

3.4 An Algorithm

We now have all the pieces of Listing 1, our algorithm for non-ground backward reasoning.

3.5 Beyond Expression Trees

While the rs rule discussed above is a typical µDyna rule, it does not illustrate the full

potential and complexity of rules. The algorithm presented in Listing 1 will, however,

produce the correct answer for any µDyna program obeying the simplifying assumptions

above. In particular, it handles cases where a value returned for one subgoal constrains the

key of another subgoal, or vice-versa. Such cases are not allowed in some other weighted

11

logic programming languages in which rules primarily describe how to combine keys and

values “come along for the ride,” e.g., [2, 6].

User-Defined Operations on Values The µDyna translation of the rs rule is shown at

the top of Figure 1. The third subgoal ⊗⟨r, s⟩ takes the product of the values r, s returned

by the first two subgoals. In typical weighted logic programming languages (including

Datalog with aggregation), values can only be combined by built-in operations. In µDyna,

however, ⊗⟨r, s⟩ is simply a key built from values. Its own value is obtained via Lookup as

for any other subgoal; so ⊗ could be user-defined.

Value Chaining Nested function evaluation of the form g(f(X),Y) is possible via a

µDyna rule with subgoal structure {⋯,f⟨x⟩↦ f,g⟨f, y⟩↦ g,⋯ ∣ f, g, x, y}. Note that the

value f returned by the first subgoal appears within the key g⟨f, y⟩ of the second subgoal.

Alternatively, if we consider these subgoals in the other order, {⋯,g⟨f, y⟩ ↦ g,f⟨x⟩ ↦
f,⋯ ∣ f, g, x, y}, we have a subgoal f(X) whose value f is constrained by the key returned

by lookup on the previous subgoal.

Value-Head Covariance In µDyna, subgoal values may influence the graph structure of

the circuit. This happens when the head item’s key is determined by a subgoal’s value.

For example, the rule {⟨⟨f⟨a⟩,1⟩, ⟨a⟨⟩ ↦ a⟩⟩ ∣ a ∈ H} contributes the value 1 to an item

determined by the value of a⟨⟩. A more complex example is {⟨⟨f⟨a⟩, 1⟩, ⟨a⟨x⟩↦ a⟩⟩ ∣ a, x ∈
H}, whereby f⟨3⟩ gains an aggregand of 1 for each value of x such that, according to

Lookup, a⟨x⟩ has value 3.

3.6 Set Manipulations

A practical implementation of our algorithm requires a computational representation of

sets of terms, such as regular tree automata, which are closed under the set operations

we use and whose cardinality can be computed.

Unfortunately, to represent sets with covariance such as {r⟨x,x⟩ ∣ x}—or any µDyna

rule with repeated variables—we require tree automata with equality constraints [3]. This

extension destroys the nice computational properties, meaning that some sets cannot be

constructed or cannot be counted in finite time.

However, there are useful settings where our algorithm can be executed without running

into these problems.

Bounded-Depth Rules Recall that a µDyna rule is formally a set of nested tuples, typically

representing all allowed instantiations of a template such as rs(X) ⊕= r(X,Y) ⊗ s(Y).

If the variables in this template are restricted to bounded-depth terms (e.g., depth 0

in the case of Datalog programs), then the rule consists of bounded-depth tuples. In

this case, all sets that arise in our algorithm should be representable using acyclic tree

automata with equality and disequality (where the disequalities arise from set difference).

The operations on such sets are tractable.

Tree Automata With Bounded-Depth (Dis)Equalities More generally, for some programs,

we can similarly guarantee that all sets that arise can be represented using tree automata

with equality and disequality constraints that only mention nodes close to the root. For

example, this is true for a rule like rs(X) ⊕= r(X,Y) ⊗ s(Y) if X, Y are allowed to

range freely over H (rather than being typed variables that are restricted to terms of a

complicated type such as “lists of all-equal elements,” which requires deep equality checks).

12 Nathaniel Wesley Filardo and Jason Eisner

3.7 Lowering Set-Theoretic Requirements

A particular sticking point in our work has been that tree automata with equality are not

closed under set difference. A natural question was whether we could eliminate our need

for this operation, which we have used here to construct the piecewise constant valuation

function (§3.2.1) by partitioning its domain into non-overlapping sets (§3.3).

As we show in a companion paper also submitted to this venue [8], there indeed exists

an alternative design. The idea is to encode the piecewise function as a series of partial

functions with overlapping domains. These functions partially override one another, where

functions with smaller domains “win” on their domain: that is, of all the partial functions

that contain a given item name in their domain, there is one with strictly smallest domain,

and it defines the corresponding value. The sole remnant of subtraction in this system is

a need to compute cardinality of the difference of two sets; no explicit representation of

the difference set is needed.

For sets represented by tree automata with equality constraints, cardinality is Turing-

complete, and thus is not in general computable even for a single set. However, by

developing appropriate heuristics that cover common cases, we can enlarge the class of

programs on which we can guarantee terminating execution.

4 Related Work

4.1 Answer Subsumption

Many Prolog systems have been extended with mechanisms termed “Answer Subsumption”

to provide aggregation of (projections of) answers from the solver [14]. These extensions

allow Prolog programs to compute shortest paths, for example, even in the case of cyclic

input graphs (without negative-weight cycles, as is usual). For example, in XSB (adapted

from [15, Example 2]), the program

1 :-table p(_,_,lattice(min/3)).

2 p(X,Y,1) :- e(X,Y). p(X,Y,D) :- p(X,Z,D1), p(Z,Y,D2), D is D1 + D2.

will, given a set of e/2 facts, assign each an additive cost of 1 and compute their min-

weighted transitive closure.13 However, only recently was a formal semantics proposed for

these extensions [15]. This semantics works stratum-by-stratum within a Prolog program,

computing the fixed point of a modified immediate-consequence operator which first

computes the Prolog consequences and then adds any answers that are a consequence

of the aggregation. Having computed that fixed point, the subsumed answers are all

discarded, leaving only the order-maximal answers to be presented to the next stratum.

Answer subsumption thus has fundamentally different semantics than the privileged

functional dependency of weighted logic languages like µDyna. First, the reliance on the

Prolog fixed-point operator implies that non-idempotent aggregators, such as sum, are

not admissible: the programs “p(1). p(1).” and “p(1).”, which have identical answer

13 In idiomatic µDyna, one would not use an indexing position to hold the weight and instead
would rely on the privileged functional dependence between item and value. A weighted tran-
sitive closure would be written as the pair of rules {⟨⟨p⟨x, y⟩,1⟩, ⟨⟨e⟨x, y⟩,true⟨⟩⟩⟩⟩ ∣ ⋯} and
{⟨⟨p⟨x, z⟩, v⟩, ⟨⟨p⟨x, y⟩, l⟩, ⟨p⟨y, z⟩, r⟩, ⟨l + r, v⟩⟩⟩ ∣ ⋯}. Of course, one of the selling points of µDyna is
that it is possible to mix values into key positions, and the rule {⟨⟨p⟨x, y, v⟩,true⟨⟩⟩, ⟨⟨p⟨x, y⟩, v⟩⟩⟩ ∣ ⋯}
will derive p/3 items equivalent to those of the Prolog program from the p/2 items derived above.

13

sets, must also have identical subsumed answers.14 Weighted logic languages use bag

semantics, rather than set semantics, to interpret multiple justifications of a particular

aggregand for the same key. Second, the post-processing to remove answers means that

justification of the surviving answers is less obvious. In a pure Prolog program (without

the use of answer subsumption) or a weighted logic program, an item’s value is always a

fixed function of its parent items’ values; with answer subsumption, one must refer back

to subsumed answers for justification. Consider this program (also adapted from [15]):

1 :-table p(lattice(max/3)).

2 p(0). p(1) :- p(0).

which has answer {p⟨1⟩}. The justification for p⟨1⟩ is that p⟨0⟩ was true during computation

but has been subsumed. The related idiomatic µDyna program, consisting of the rules

{⟨⟨p⟨⟩, 0⟩, ⟨⟩⟩} and {⟨⟨p⟨⟩, 1⟩, ⟨⟨p⟨⟩, 0⟩⟩⟩}, with p⟨⟩ aggregated by max, makes the ill-founded

recursion more explicit.15 Third, we believe that the semantics of answer subsumption

are incompletely specified if one allows variables in indexing argument positions, as it

would be necessary to invoke a notion of set subtraction, à la disjoin, when a ground-

indexed answer was to (partially!) subsume a non-ground-indexed answer. However, such

operations are, at least, not readily apparent in [15] nor obviously available to typical

WAM-based representations of non-ground terms.

4.2 Other Weighted Logic Languages

The weighted logic languages we are aware of work solely with ground answers, making no

attempts at set-at-a-time reasoning. These languages include several Datalog derivatives

with aggregation [2, 4, 10, 12] and the predecessor of our current effort, Dyna [6].

Conclusion

We have formalized a strategy for set-at-a-time reasoning within a weighted logic program

solver. The approach can handle all finite circuits and many practical infinite ones,

although it will be unable to proceed if the execution of a particular program produces

overly complex valuation functions that are not piecewise constant (see §3.2.1) or whose

constant regions have cardinality that is too hard to compute (see §3.6). Concurrent work

[8] picks up where we have left off and investigates one avenue for representing these

valuation functions more neatly.

Acknowledgements

We are deeply indebted to the editorial proficiencies and intellects of Rachael Bennett, Dr.

Thomas Filardo, Dr. Nora Zorich, Dr. Scott Smith, Tim Vieira, and Matthew Francis-

Landau, who all read numerous early drafts of this document and kindly contributed

countless structural, prosodic, and grammatical suggestions to the text.

14 Much of the complexity of [15] is to extend beyond selective aggregations (i.e., those ⊕ for which
a⊕ b ∈ {a, b}); it is for this reason that their iteration to fixed point involves repeated addition of facts
computed from lattice joins. See Example 3 therein.

15 It is also possible to explicitly plumb “unless subsumed” subgoals into rules of a µDyna program to
emulate answer-subsumption semantics. The resulting program is cyclic, so while items’ values are still
functions of their parents’, the path by which a solver arrived (or not) at a particular fixed point is no
longer readily apparent, intermediate values as lost as the subsumed p⟨0⟩ answer. One could unroll the
cycle with time-stamp indices, if the entire trace is essential to have on-hand in-program.

14 Nathaniel Wesley Filardo and Jason Eisner

References

[1] Stefan Brass. “Range Restriction for General Formulas”. In: Proceedings of the 23rd

Workshop on (Constraint) Logic Programming. 2009.

[2] Sara Cohen, Werner Nutt, and Alexander Serebrenik. “Algorithms for Rewriting

Aggregate Queries Using Views”. In: Proc. of ADBIS-DASFAA. Springer-Verlag,

2000, pp. 65–78. doi: 10.1007/3-540-44472-6_6.

[3] Hubert Comon et al. Tree Automata Techniques and Applications. Online publication.

2007. url: http://tata.gforge.inria.fr/.

[4] M.P. Consens and A.O. Mendelzon. “Low-Complexity Aggregation in GraphLog

and Datalog”. In: Theoretical Computer Science 116.1 (1993), pp. 95–116.

[5] Jason Eisner and Nathaniel W. Filardo. “Dyna: Extending Datalog for modern AI”.

In: Datalog Reloaded. Ed. by Tim Furche et al. Vol. 6702. LNCS. Springer, 2011.

doi: 10.1007/978-3-642-24206-9_11.

[6] Jason Eisner, Eric Goldlust, and Noah A. Smith. “Compiling Comp. Ling.: Weighted

Dynamic Programming and the Dyna Language”. In: Proc. of HLT-EMNLP. Asso-

ciation for Computational Linguistics, 2005, pp. 281–290.

[7] Nathaniel Wesley Filardo and Jason Eisner. “A Flexible Solver for Finite Arithmetic

Circuits”. In: Technical Communications of the 28th ICLP. Ed. by Agostino Dovier

and Vı́tor Santos Costa. Vol. 17. Leibniz International Proceedings in Informatics

(LIPIcs). 2012, pp. 425–438.

[8] Nathaniel Wesley Filardo and Jason Eisner. “Default Reasoning in Weighted Logic

Programs”. In: In submission to ICLP’17; see http://www.cs.jhu.edu/~nwf/

ilcp17-2.1.pdf. 2017.

[9] Cormac Flanagan et al. “The Essence of Compiling with Continuations”. In: Proc.

of PLDI. PLDI ’93. ACM, 1993, pp. 237–247. doi: 10.1145/155090.155113.

[10] Sergio Greco. “Dynamic Programming in Datalog with Aggregates”. In: IEEE

Transactions on Knowledge and Data Engineering 11.2 (1999), pp. 265–283. doi:

10.1109/69.761663.

[11] Robert Kowalski. Predicate Logic as Programming Language. Memo 70. Department

of Artificial Intelligence, Edinburgh University, 1974.

[12] Abhijeet Mohapatra and Michael Genesereth. Aggregation in Datalog under set

semantics. Tech. rep. 2012.

[13] David Overton. “Precise and Expressive Mode Systems for Typed Logic Program-

ming Languages”. PhD thesis. University of Melbourne, 2003.

[14] Terrance Swift and David S. Warren. “Tabling with Answer Subsumption: Imple-

mentation, Applications and Performance”. In: Proceedings of the 12th European

Conference on Logics in Artificial Intelligence. JELIA’10. Springer-Verlag, 2010,

pp. 300–312.

[15] Alexander Vandenbroucke et al. “Tabling with Sound Answer Subsumption”. In:

Theory and Practice of Logic Programming 16.5-6 (2016), pp. 933–949. doi: 10.

1017/S147106841600048X.

[16] Neng-Fa Zhou and Taisuke Sato. “Toward a High-Performance System for Symbolic

and Statistical Modeling”. In: Proc. of the IJCAI Workshop on Learning Statistical

Models from Relational Data. 2003, pp. 153–159.

https://doi.org/10.1007/3-540-44472-6_6
http://tata.gforge.inria.fr/
https://doi.org/10.1007/978-3-642-24206-9_11
http://www.cs.jhu.edu/~nwf/ilcp17-2.1.pdf
http://www.cs.jhu.edu/~nwf/ilcp17-2.1.pdf
https://doi.org/10.1145/155090.155113
https://doi.org/10.1109/69.761663
https://doi.org/10.1017/S147106841600048X
https://doi.org/10.1017/S147106841600048X

15

Appendix A A Richer Query Interface

As an optimization, one could pass values, as well as keys, to Lookup, to take advantage of

its access to cached values. Suppose, for example, that the value at sg.i.2 has otherwise

been refined prior to the invocation of refineRuleSuffix(σ,i), due to covariances in the

rule or perhaps just by the rule itself (yielding, say, a subgoal with projection jaj. . .o,{1}o).
Absent this optimization, the algorithms given will rely on refinement to exclude keys

whose values mismatch σ. In practice, this additional information passed to Lookup

additionally allows for certain kinds of “inverse” modes where, e.g., the value and one

argument to addition are ground and the other argument is only partially constrained.

In both code listings, we would replace the calls to Lookup(σ⇃sg.i.1) with Lookup(σ⇃sg.i)
(note the shorter projection path). In the ground reasoning of §2, Lookup would have the

type ΠΣk∈κτk⊆jH,Ho⋃α∈℘fin(κ∩I)Πk∈ατk. In the non-ground reasoning of Listing 1, it would

be ΠΣk∈κτk⊆jH,Ho⋃K∈fp(κ∩I)Πα∈K({null} ∪⋂t∈α τt).

	Introduction
	Notation
	Dyna Normal-Form Programs

	Ground Reasoning
	Non-ground Reasoning
	A Motivating Example
	Non-ground Rule Answers
	Combining Results
	An Algorithm
	Beyond Expression Trees
	Set Manipulations
	Lowering Set-Theoretic Requirements

	Related Work
	Answer Subsumption
	Other Weighted Logic Languages

	A Richer Query Interface

